
Mythili Vutukuru
CSE, IIT Bombay

Processes



The process abstraction
• Process is a running program
• When program is run, OS creates 

new process, allocates memory, 
initializes CPU context, and starts 
process in user mode

• User program runs on CPU 
normally, unless OS needs to 
step in for system calls, 
interrupts, program faults

2
Image credit: OSTEP



What defines a process?

• Every process has a unique process identifier (PID)
• Process occupies some memory in RAM (memory image)

• Code+data from executable
• Stack+heap allocated for runtime use

• The execution context of the process (values of CPU registers)
• PC has address of instruction of process, some registers have process data
• Process context is in CPU registers when process is running on CPU
• Context saved in memory when process is paused, restored when run again

• Ongoing communication with I/O devices
• Information is maintained about files that are open, ongoing network 

connections, other active connections to I/O devices



States of a process

• OS manages multiple active processes at the same time. An active process 
can be in one of the following situations.

• Running: currently executing on CPU
• CPU registers contain context of process

• Blocked/suspended/sleeping: process cannot run for some time
• Example: process has requested data from disk, command issued, but process 

cannot proceed until the data from disk is available

• Ready/runnable: ready to run but waiting for OS scheduler to switch the 
process in

• Many processes can be ready but scheduler can only run one on a CPU core

• Context of blocked and ready processes is saved in OS memory, so that 
they can continue to run later on



Image credit: Dive into Systems



Example: process state transitions

• Consider a system that has two user processes P0 and P1
• Initially P0 is running, P1 is ready and awaiting its turn
• P0 wants to read a file from disk via a system call
• OS handles the system call and gives command to disk, but data is not 

available immediately
• Process P0 is moved to blocked state, OS switches to process P1
• Process P1 runs for some time, and then an interrupt occurs from disk
• CPU jumps to OS which handles interrupt, P0 is moved to ready state
• OS can continue to run P1 again after interrupt and OS scheduler switches to 

ready process P0 later on after some time 



Example: process state transitions

Image credit: OSTEP



Process State Transitions

8
Image credit: OSTEP



Process control block (PCB)

• All information about a process is stored in a kernel data structure called 
the process control block (PCB)

• Process identifier (PID)
• Process state (running, ready, blocked, terminated, ..)
• Pointers to other related processes (parent, children)
• Saved CPU context of process when it is not running
• Information related to memory locations of a process
• Information related to ongoing I/O communication
• …

• PCB is known by different names in different OS
• struct proc in xv6
• task_struct in Linux



CPU scheduler

• Every OS maintains list of PCBs in some data structure
• Array, linked list, heap – what is suitable when?

• Scheduler loops through list of PCBs and picks process to run, 
switches to process, switches to another process after some time, 
and this continues…

• Scheduler picks one process to run on every core, so number of 
running process is the number of parallel processors available



Booting

• What happens when you boot up a computer system?
• Basic Input Output System (BIOS) starts to run

• Resides in non-volatile memory, sets up all other hardware
• BIOS locates the boot loader in the boot disk (hard disk, USB, ..)

• Simple program whose job is to locate and load the OS
• Present in the first sector of the boot disk
• Combination of assembly and C code

• Boot loader sets up CPU registers suitably, loads kernel image from 
disk to memory, transfers control to kernel

• OS code starts to run, exposes terminal to user, user starts programs



Booting real systems

• Bootloader must fit into 512 bytes (first sector of boot disk) to be 
found easily by BIOS

• Bootloaders for simple/old OS could fit into one sector, but no longer 
the case for modern OS

• Real life bootloaders are complex, need to read a large kernel image 
from disk and network, do not fit into 512 bytes

• Real life booting is two step process: BIOS loads simple bootloader, 
which loads a more complex bootloader, which then loads the OS


