
Mythili Vutukuru
CSE, IIT Bombay

Trap handling and context switching



Recap: OS runs processes
• OS manages multiple active processes concurrently
• What is a process?

• Memory image in RAM = compiled code, data (compile-time, run-time)
• CPU context (in CPU registers when running, else saved in PCB)
• Other things like I/O connections, ..

• Processes created by fork from parent processes
• Periodically, OS scheduler loops over ready processes

• Find a suitable process to run, save old process context, restore new context

• Once process is context switched in, OS is out of picture, CPU in user 
mode, runs user code directly

• When does the OS run again? 



User mode vs. Kernel mode of a process
• CPU runs user code in user mode (low privilege) most of the time
• CPU switches to kernel mode execution when

• Process makes system call, needs OS services
• External device needs attention, raises interrupt
• Some fault has happened during program execution

• All such events are called traps: CPU “traps” into OS code
• CPU shifts to high privilege level (kernel mode), runs OS code to handle event
• Later, CPU switches to low privilege level, back to user code in user mode

• Process P goes to kernel mode to run OS code, but it is still process P 
itself that is in running state

• OS not a separate process, runs in kernel mode of existing processes



(2) Control passes 
to handler

(3) Fault
handler runs

(4) Handler either reexecutes
current instruction or aborts.

Icurr

(1) Current 
instruction
causes a fault

abort

(2) Control passes
to handler

(3) Syscall
handler runs

(4) Handler returns
to instruction
following the syscall

syscall
Inext

(1) Application
makes a 
system call

(2) Control passes 
to handler after current
instruction finishes

(3) Interrupt 
handler runs

(4) Handler
returns to 
next instruction

Icurr
Inext

(1) Interrupt pin
goes high during
execution of 
current instruction

InterruptInterrupt

System callSystem call

Program faultProgram fault

Image credit: CSAPP



Function call vs. system call

• What happens when a user program makes a function call?
• Allocate memory on user stack for function arguments, local variables, ..
• Push return address, PC jumps to function code
• Push register context (to resume execution when function returns)
• Execute function code
• When returning from function, pop return address, pop register context

• System call also must
• Use a stack to push register context 
• Save old PC, change PC to point to OS code to handle system call
• Run system call, restore context back to user code



Understanding a function call

Code/data

Heap

Stack

…..

Located at some memory addresses in RAM

from compiled executable 
(machine instructions, static/global data)

New stack frame pushed by function call
Contains args, local vars, return addr, …
Popped when function returns

CPU

PC 
Program 
Counter

Other 
regs

ESP 
(Stack 

pointer)

Changes on a function call



What is different for a system call?

• Changing PC in function call vs. system call
• In function call, address of function code known in executable, can jump to 

function code directly using a CPU instruction (“call” in x86)
• For system call, cannot trust user to jump to correct OS code (what if user 

jumps to inappropriate privileged code?)

• Saving register context on stack in function call vs. system call
• In function call, register context is saved and restored from user stack
• For system call, OS does not wish to use user stack (what if user has setup 

malicious values on the stack?)

• We require: a secure stack, a secure way of jumping to OS code



Kernel stack and IDT

• Every process uses a separate kernel stack for running kernel code
• Part of PCB of process, in OS memory, not accessible in user mode
• Used like user stack, but for kernel mode execution
• Context pushed on kernel stack during system call, popped when done

• To set PC, CPU accesses Interrupt Descriptor Table (IDT)
• Data structure with addresses of kernel code to jump to for events
• Setup by OS during bootup, not accessible in user mode
• CPU uses IDT to locate address of OS code to jump to

• Together: secure way of locating OS code, secure stack for OS to run



Hardware trap instruction

• When user code wants to make system call, it invokes special “trap 
instruction” with an argument

• Example: “int n” in x86, argument “n” indicates type of trap (syscall, interrupt)
• The value of “n” specifies index into IDT array, which OS function to jump to

• When CPU runs the trap instruction:
• CPU moves to higher privilege level
• CPU shifts stack pointer register to kernel stack of process
• Register context is saved on kernel stack (part of PCB)
• Address of OS code to jump to is obtained from IDT, PC points to OS code
• OS code starts to run, on a secure stack



Trap handling

Code/data

Heap

Stack

…..

CPU

EIP (PC)

EAX EDX…..

ESP

OS

high priv
Set EIP = IDT[n]

Set ESP = top of kernel stack

int n executed

Kernel stack of 
process (part of 
PCB kernel data 
structure)

User context saved
Changes on system call



IDT lookup

• IDT configured by OS
• Base address of IDT stored in 

CPU register
• Upon trap, CPU looks up IDT to 

find address of interrupt 
handler

Interrupt descriptor table

+

Interrupt number
(int n)

0
1

2

n-1

Address of entry
for exception # nInterrupt Descriptor Table 

base register

...

IDT
0
1
2 ...

n-1

Code for  
interrupt handler 0
Code for  
interrupt handler 0

Code for 
interrupt handler 1
Code for 
interrupt handler 1

Code for
interrupt handler 2
Code for
interrupt handler 2

Code for 
interrupt handler n-1
Code for 
interrupt handler n-1

...

Image credit: CSAPP



Why trap instruction?

• Need a secure way of jumping to OS code to handle traps
• User code cannot be trusted to jump to correct OS code
• Only CPU can be trusted to handover control from user to OS securely

• Who calls trap instruction?
• System call code in a language library (printf invokes system call via int n)
• External hardware raises interrupt, causes CPU to execute “int n”
• Argument “n” indicates whether system call /IRQ number of hardware device

• Across all cases, the mechanism is: save context on kernel stack, 
switch to OS address in IDT, run OS code to handle trap



Return from trap

• When OS is done handling syscall or interrupt, it calls a special 
instruction return-from-trap

• Restore context of CPU registers from kernel stack
• Change CPU privilege from kernel mode to user mode
• Restore PC and jump to user code after trap

• User process unaware that it was suspended, resumes execution at 
the point it stopped before 

• Always return to the same user process from kernel mode? No
• Before returning to user mode, OS checks if it must switch to another process

13



Why switch between processes?
• Sometimes when OS is in kernel mode, it cannot return back to the 

same process that was running in user mode before
• Process has exited or must be terminated (e.g., segfault)
• Process has made a blocking system call

• Sometimes, the OS does not want to return back to the same process
• The process has run for too long
• Must timeshare CPU with other processes

• In such cases, OS performs a context switch from one process to 
another

• Switch from kernel mode of one process to kernel mode of another
• OS scheduler decides which process to run next and switches to it

14



OS scheduler
• OS maintains list of all active processes (PCBs) in a data structure

• Processes added during fork, removed after clean up in wait

• OS scheduler is special code in the OS that periodically loops over this 
list and picks processes to run

• Basic outline of scheduler code
• When invoked, save context of currently running process in its PCB
• Loop over all ready/runnable processes and identify a process to run next
• Restore context of new process from PCB and get it to run on CPU
• Repeat this process as long as system is running



Scheduling and context switching

• OS scheduling involves two tasks
• Policy to pick which process to run (next lecture)
• Mechanism to switch to that process (this lecture)

• Non preemptive (cooperative) schedulers are polite
• Switch only if process blocked or terminated

• Preemptive (non-cooperative) schedulers can switch even when 
process is ready to continue

• CPU generates periodic timer interrupt
• After servicing interrupt, OS checks if the current process has run for too long

16



Mechanism of context switch (1)

CPU

EIP (PC)

EAX EDX…..

ESP ESP points to top of A’s 
kernel stack

Kernel stack of A

User context saved

• Process A has moved from 
user to kernel mode

• Kernel stack of A already 
has user register context

• After running for some 
time in kernel mode, A 
cannot run anymore (e.g., 
disk read initiated but data 
takes time to arrive)

• OS scheduler picks another 
process B to run next



Mechanism of context switch (2)

CPU

EIP (PC)

EAX EDX…..

ESP

Kernel stack of A

User context saved

• OS saves kernel context 
(PC, registers, kernel stack 
pointer) of A on kernel 
stack

• Why save context again?
• User context captures 

where execution stopped 
in user mode

• Kernel context captures 
where execution stopped 
in kernel mode

Kernel context saved



Mechanism of context switch (3)

CPU

EIP (PC)

EAX EDX…..

ESP

ESP switches to kernel stack of B

Kernel stack of A

User context saved

• The actual moment of the 
context switch: OS 
switches ESP from kernel 
stack of A to kernel stack 
of next process B

• What will we find on the 
kernel stack of B?

• Whatever the OS stored 
on it when it switched B 
out in the past Kernel context saved

Kernel stack of B



Mechanism of context switch (4)

CPU

EIP (PC)

EAX EDX…..

ESP

ESP points to kernel stack of B
User context

• Kernel stack of B contains 
kernel context and user 
context of B

• OS restores kernel context, 
resumes execution in 
kernel mode of B, at the 
point it gave up CPU

• OS pops user context, 
resumes execution in user 
mode of B where it 
trapped into OS

• Context switch complete!

Kernel context

Kernel stack of B



Understand saving and restoring context
• Context (PC and other CPU registers) saved on the kernel stack 

in two different scenarios
• When going from user mode to kernel mode, user context 

(e.g., which instruction of user code you stopped at) is saved 
on kernel stack by the trap instruction

• Restored by return-from-trap when process goes to user mode

• During a context switch, kernel context (e.g., where you 
stopped in the OS code) is saved on the kernel stack by the 
context switching code

• Restored when the process is ready to run and switched back in again

21


