
Mythili Vutukuru
CSE, IIT Bombay

Virtualization



Virtualization and cloud computing
• What is the cloud?

• Commodity servers with lots of compute and storage, connected with high 
speed networking, located in data centers

• What is virtualization?
• Multiple virtual machines (VMs) can run inside a physical machine (PM)
• VM gives user an illusion of running on a physical machine
• Containers are like lightweight VMs

• Virtualization is a building block for cloud computing
• Virtualization enables multiple clients share the cloud’s compute resources
• Multiple users on VMs/containers can share same cloud server

• In addition to compute, clouds also manage large amounts of data
• Cloud storage/big data systems for efficient storage and retrieval of data



Why cloud computing?
• Public cloud providers (Amazon AWS, Microsoft Azure, Google Cloud 

etc) setup and maintain data centers with high-end servers
• Powerful CPUs, lots of memory, disk storage etc., available to users
• Organizations can also run a private cloud only for their users

• Why run applications on cloud and not on “bare metal” servers?
• Multiplexing gains: multiple VMs can share the system resources
• Lower overhead of maintenance: hardware/software maintained by providers
• Flexibility: VMs can move to another machine if one fails
• Pay as per usage: no need to invest in servers if only lightly used

• Disadvantages of running applications on cloud
• Performance: longer delay to access servers via internet
• Higher cost if heavily used



Hypervisor (VMM)
• Hypervisor or virtual machine monitor (VMM): a piece of software 

that allows multiple VMs to run on a physical machine (PM)
• Multiple VMs running on a PM – multiplex the underlying machine

• Similar to how OS multiplexes processes on CPU 

• Guest OS expects complete control over hardware, but VMM must 
multiplex multiple guest OSes on the same hardware – how?

Virtual Machine

Hypervisor/VMM

Physical machine

VM

VMM

VMVM VM Proc

OS

ProcProc Proc



Basic idea: Trap and emulate VMM

• All CPUs have multiple privilege levels
• Ring 0,1,2,3 in x86 CPUs

• Normally, user process in ring 3, OS in ring 0
• Privileged instructions only run in ring 0

• Now, user process in ring 3, VMM/host OS in ring 0
• Guest OS must be protected from guest apps
• But not fully privileged like host OS/VMM
• Can run in ring 1?

• Trap-and-emulate VMM: guest OS runs at lower privilege level than 
VMM, traps to VMM for privileged operation

Guest app (ring 3)

Guest OS (ring 1)

VMM /
Host OS
(ring 0)



Trap and emulate VMM

• Guest app has to handle syscall/interrupt
• Special trap instr (int n), traps to VMM 
• VMM doesn’t know how to handle trap
• VMM jumps to guest OS trap handler
• Trap handled by guest OS normally

• Guest OS performs return from trap
• Privileged instr, traps to VMM
• VMM jumps to corresponding user process

• Any privileged action by guest OS traps to VMM, emulated by VMM
• Example: set IDT, set CR3, access hardware
• Sensitive data structures like IDT must be managed by VMM, not guest OS

Guest app
(ring 3)

Guest OS
(ring 1)

VMM /
Host OS
(ring 0)

Trap and
emulate



Problems with trap and emulate
• Guest OS may realize it is running at lower privilege level

• Some registers in x86 reflect CPU privilege level (code segment/CS)
• Guest OS can read these values and get offended!

• Some x86 instructions which change hardware state (sensitive 
instructions) run in both privileged and unprivileged modes

• Will behave differently when guest OS is in ring 0 vs in less privileged ring 1
• OS behaves incorrectly in ring1, will not trap to VMM

• Why these problems? 
• OSes not developed to run at a lower privilege level
• Instruction set architecture of x86 is not easily virtualizable (x86 wasn’t 

designed with virtualization in mind)



Example: Problems with trap and emulate

• Eflags register is a set of CPU flags
• IF (interrupt flag) indicates if interrupts on/off

• Consider the popf instruction in x86
• Pops values on top of stack and sets eflags

• Executed in ring 0, all flags set normally
• Executed in ring 1, only some flags set 

• IF is not set as it is privileged flag

• So, popf is a sensitive instruction, not 
privileged, does not trap, behaves differently 
when executed in different privilege levels

• Guest OS is buggy in ring 1

CPU

EIP
EAX EDX…..

Eflags

Code/data

Heap

Stack

…..



Popek Goldberg theorem
• Sensitive instruction = changes hardware state
• Privileged instruction = runs only in privileged mode

• Traps to ring 0 if executed from unprivileged rings

• In order to build a VMM efficiently via trap-and-emulate method, 
sensitive instructions should be a subset of privileged instructions

• x86 does not satisfy this criteria, so trap and emulate VMM is not possible

Sensitive
instructions

Privileged
instructions

CPU instructions
x86



Techniques to virtualize x86 (1)
• Paravirtualization: rewrite guest OS code to be virtualizable

• Guest OS won’t invoke privileged operations, makes “hypercalls” to VMM
• Needs OS source code changes, cannot work with unmodified OS
• Example: Xen hypervisor

• Full virtualization: CPU instructions of guest OS are translated to be 
virtualizable

• Sensitive instructions translated to trap to VMM
• Dynamic (on the fly) binary translation, so works with unmodified OS
• Higher overhead than paravirtualization
• Example: VMWare workstation



Techniques to virtualize x86 (2)
• Hardware assisted virtualization: KVM/QEMU in Linux

• CPU has a special VMX mode of execution
• X86 has 4 rings on non-VMX root mode, another 4 rings in VMX mode

• VMM enters VMX mode to run guest OS in (special) ring 0
• Exit back to VMM on triggers (VMM retains control)

Guest app (ring 3)

Guest OS (ring 0)

Host app (ring 3)

VMM / Host OS
(ring 0)

Non-VMX root modeNon-VMX root mode VMX modeVMX mode

Enter VMX mode to run VM

Exit to trap to VMM


