
Mythili Vutukuru
CSE, IIT Bombay

Locking in xv6

Locking in xv6
• No threads in xv6, no two user programs can access same memory image

• No need for userspace locks like pthreads mutex

• However, scope for concurrency in xv6 kernel
• Two processes in kernel mode in different CPUs can access same kernel data

structures like ptable
• Even in single core, when a process is running in kernel mode, another trap occurs,

trap handler can access data that was being accessed by previous kernel code

• Solution: spinlocks used to protect critical sections
• Limit concurrent access to kernel data structures that can result in race conditions

• xv6 also has a sleeping lock (built on spinlock, not discussed)

2

Spinlocks in xv6
• Acquiring lock: uses xchg x86 atomic instruction (test and set)

• Atomically set lock variable to new value and returns previous value
• If previous value is 0, it means free lock has been acquired, success!
• If previous value is 1, it means lock is held by someone, continue to spin in a busy

while loop till success

3

Disabling interrupts for kernel spinlocks (1)
• When acquiring kernel spinlock, disables interrupts on CPU core: why?

• What if interrupt and handler requests same lock: deadlock
• Interrupts disabled only on local core, OK to spin for lock on another core
• Why disable interrupts before even acquiring lock? (otherwise, vulnerable

window after lock acquired and before interrupts disabled)

• Disabling interrupts not needed for userspace locks like pthread mutex
• Kernel interrupt handlers will not deadlock for userspace locks

4

Kernel spinlock L acquired
Interrupt, switch to trap handler

Process in kernel mode

Spin to acquire L
DEADLOCK

Interrupt handler
Kernel spinlock L acquired

CRITICAL SECTION

Spinlock released

Process in kernel mode

Spin to acquire L
Spin
Spin
Spin
Spinlock L acquired

On another core

Disabling interrupts for kernel spinlocks (2)
• Function pushcli: disables interrupts on

CPU core before spinning for lock
• Interrupts stay disabled until lock is

released

• What if multiple spinlocks are
acquired?

• Interrupts must stay disabled until all locks
are released

• Disabling/enabling interrupts:
• pushcli disables interrupts on first lock

acquire, increments count for future locks
• popcli decrements count, renables

interrupts only when all locks released

5

Recap: Context switching in xv6 (1)
• Every CPU has a scheduler thread

(special process that runs scheduler
code)

• Scheduler goes over list of processes
and switches to one of the runnable
ones

• The special function “swtch” performs
the actual context switch

• Save context on kernel stack of old process
• Restore context from kernel stack of new

process

6

Recap: Context switching in xv6 (2)
• After running for some time, the process

switches back to the scheduler thread,
when:

• Process has terminated (exit system call)
• Process needs to sleep (e.g., blocking read

system call)
• Process yields after running for long (timer

interrupt)
• Process calls “sched” which calls “swtch”

to switch to scheduler thread again
• Scheduler thread runs its loop and picks

next process to run, and the story repeats

7

ptable.lock (1)

• The process table protected by a lock, any access to ptable must be
done with ptable.lock held

• Normally, a process in kernel mode acquires ptable.lock, changes ptable
in some way, releases lock

• Example: when allocproc allocates new struct proc

• But during context switch from process P1 to P2, ptable structure is
being changed all through context switch, so when to release lock?

• P1 acquires lock, switches to scheduler, switches to P2, P2 releases lock

8

P1 scheduler P2
Acquire ptable.lock Release ptable.lock

ptable.lock (2)
• Every function that calls sched() to give up CPU will do

so with ptable.lock held
• Which functions invoke sched() to give up CPU?

• Yield: process gives up CPU due to timer interrupt
• Sleep: when process wishes to block
• Exit: when process terminates

• Every function where a process resumes after being
scheduled release ptable.lock

• What functions does a process resume after swtch?
• Yield: resuming process after yield is done
• Sleep: resuming process that is waking up after sleep
• Forkret: for newly created processes

• Purpose of forkret: to release ptable.lock
• New process then returns from trap like its parent

9

ptable.lock (3)
• Scheduler goes into loop with lock

held
• Acquire ptable.lock in P1

scheduler picks P2 release in P2
• Later, acquire ptable.lock in P2

scheduler picks P3 release in P3
• Periodically, end of looping over all

processes, releases lock temporarily
• What if no runnable process found

due to interrupts being disabled?
Release lock, enable interrupts, allow
processes to become runnable.

10

P1 scheduler P2
Acquire ptable.lock Release ptable.lock

