
Lectures on Operating Systems (Mythili Vutukuru, IIT Bombay)

Lab: Introduction to Linux Tools

In this lab, we will run a few simple commands on the Linux shell to understand the basics of
operating systems. In each of the exercises below, you will be expected to run a command, observe
some output and report it. Please note down the answers to all questions in a report. In addition to
the final answer, you must also state the commands or tools you used to arrive at your answer. The
following helper files are provided to you: cpu.c, cpu-print.c, disk.c, disk1.c, foo.pdf,
make-copies.sh, memory1.c, and memory2.c.

Before you begin

• Before you begin this course, you must be comfortable with writing and compiling code on Linux.
You must also be comfortable with basic operations like creating / editing / copying / moving /
viewing files using Linux commands, running commands from the terminal, and using command-
line techniques like redirection or pipes or searching for a string in the output. If you are not
familiar with Linux, it may be a good idea to familiarize yourself with the most common Linux
commands before proceeding further. You will find many helpful tutorials online, like this one:

http://www.ee.surrey.ac.uk/Teaching/Unix/

• Learn how to compile and run C programs, both from graphical IDEs, as well as using a simple
terminal on a Linux machine. Type up your programs in the editor of your choice. Compile and
run your code from the terminal as follows.

$gcc helloworld.c
$./a.out
$gcc helloworld.c -o hello
$./hello

• Learn how to tar and untar files. For example, you can untar the tar-gzip file provided with the lab
using the following command:
tar -zxvf intro-code.tgz

• Familiarize yourself with the common tools on Linux like top and ps that are used to monitor
processes running in the system. Understand the most useful and common commandline options
to use with these commands, and the fields in the output produced.

• Understand the /proc filesystem in Linux. The /proc file system is a mechanism provided by
Linux for the kernel to report information about the system and processes to users. The /proc
file system is nicely documented in the proc man page. You can access this document by running

1

the command man proc on a Linux system. Understand the system-wide proc files such as
meminfo and cpuinfo, and per-process files such as status, stat, limits, and maps.

• Understand what are system calls, and which system calls are supported by your OS.

Exercises

1. In this question, we will understand the hardware configuration of your working machine using
the /proc filesystem.

(a) Run command more /proc/cpuinfo and explain the following terms: processor
and cores. Use the command lscpu to verify your definitions. You may want to under-
stand the concept of CPU hyperthreading at a high level before attempting this question.

(b) How many cores does your machine have?

(c) How many processors does your machine have?

(d) What is the frequency of each processor?

(e) What is the architecture of your CPU?

(f) How much physical memory does your system have ?

(g) How much of this memory is free ?

(h) What is total number of number of forks and context switches since the system booted up?

2. In this question, we will understand how to monitor the status of a running process using the top
command. Compile the program cpu.c given to you and execute it in the bash or any other
shell of your choice as follows.

$ gcc cpu.c -o cpu
$./cpu

This program runs in an infinite loop without terminating. Now open another terminal, run the
top command and answer the following questions about the cpu process.

(a) What is the PID of the process running the cpu command?

(b) How much CPU and memory does this process consume?

(c) What is the current state of the process? For example, is it running or in a blocked state or a
zombie state?

3. In this question, we will understand how the Linux shell (e.g., the bash shell) runs user commands
by spawning new child processes to execute the various commands.

(a) Compile the program cpu-print.c given to you and execute it in the bash or any other
shell of your choice as follows.

$ gcc cpu-print.c -o cpu-print
$./cpu-print

2

This program runs in an infinite loop printing output to the screen. Now, open another
terminal and use the ps command with suitable options to find out the pid of the process
spawned by the shell to run the cpu-print executable. You may want to explore the ps
command thoroughly to understand the various output fields it shows.

(b) Find the PID of the parent of the cpu-print process, i.e., the shell process. Next, find
the PIDs of all the ancestors, going back at least 5 generations (or until you reach the init
process).

(c) We will now understand how the shell performs output redirection. Run the following com-
mand.

./cpu-print > /tmp/tmp.txt &

Look at the proc file system information of the newly spawned process. Pay particular atten-
tion to where its file descriptors 0, 1, and 2 (standard input, output, and error) are pointing
to. Using this information, can you describe how I/O redirection is being implemented by
the shell?

(d) Next, we will understand how the shell implements pipes. Run the following command.

./cpu-print | grep hello &

Once again, identify the newly spawned processes, and find out where their standard in-
put/output/error file descriptors are pointing to. Use this information to explain how pipes
are implemented by the shell.

(e) When you type in a command into the shell, the shell does one of two things. For some
commands, executables that perform that functionality already come with your Linux kernel
installation. For such commands, the shell simply invokes the executable like it runs the
executables of your own programs. For other commands where the executable does not exist,
the shell implements the command itself within its code. Consider the following commands
that you can type in the bash shell: cd, ls, history, ps. Which of these commands
already exist as executables in the Linux kernel directory tree that are then simply executed
by the bash shell, and which are implemented by the bash code itself?

4. Consider the two programs memory1.c and memory2.c given to you. Compile and run them
one after the other. Both programs allocate a large array in memory. One of them accesses the
array and the other doesn’t. Both programs pause before exiting to let you inspect their memory
usage. You can inspect the memory used by a process with the ps command. In particular, the
output will tell you what the total size of the “virtual” memory of the process is, and how much
of this is actually physically resident in memory. You will learn later that the virtual memory of
the process is the memory the process thinks it has, while the OS only allocates a subset of this
memory physically in RAM.

Compare the virtual and physical memory usage of both programs, and explain your observations.
You can also inspect the code to understand your observations.

5. In this question, you will compile and run the programs disk.c and disk1.c given to you.
These programs read a large number of files from disk, and you must first create these files as

3

follows. Create a folder disk-files and place the file foo.pdf in that folder. Then use
the script make-copies.sh to make 5000 copies of the same file in that folder, with different
filenames. The disk programs will read these files. Now, run the disk programs one after the other.
For each program, measure the utilization of the disk while the program is running. Report and
explain your observations. You will find a tool like iostat useful for measuring disk utilization.
Also read through the code of the programs to help explain your observations.

Note that for this exercise to work correctly, you must be reading from a directory on the local disk.
If your disk-files directory is not on a local disk (but, say, mounted via NFS), then you must
alter the location of the files in the code provided to you to enable reading from a local disk. Also,
modern operating systems store recently read files in a cache in memory (called disk buffer cache)
for faster access to the same files in the future. In order to ensure that you are making observations
while actually reading from disk, you must clear your disk buffer cache between multiple runs of
disk.c. If you do not clear the disk buffer cache between successive runs of disk.c, you will
be reading the files not from disk but from memory. Look up online for commands on how to
clear your disk buffer cache, and note that you will need superuser permissions to execute these
commands.

6. User programs make several system calls (which are sort of like function calls to the OS, but more
complicated) to invoke OS functionality during their execution. The strace tool lets you trace
the system calls invoked by a running executable.

Consider any executable in the examples above, or any Linux command like ls and run it with
the strace command as follows

strace <executable>

This command shows the list of all system calls made by the executable during its executation.
How many system calls in total does the program make? Look up online to find the list of system
calls supported by your operating system, and see if you can locate any of them in the output of
the strace command.

Submission instructions

• You must submit a text/pdf file containing answers to all the questions above in order.

• Place this file and any other files you wish to submit in your submission directory, with the direc-
tory name being your roll number (say, 12345678).

• Tar and gzip the directory using the command tar -zcvf 12345678.tar.gz 12345678
to produce a single compressed file of your submission directory. Submit this tar gzipped file on
Moodle.

4

