
Lectures on Operating Systems (Mythili Vutukuru, IIT Bombay)

Lab: Building a Shell

In this lab, you will build a simple shell to execute user commands, much like the bash shell in
Linux. This lab will deepen your understanding of various concepts of process management in Linux.

Before you begin

• Familiarize yourself with the various process related system calls in Linux: fork, exec, exit
and wait. The “man pages” in Linux are a good source of learning. You can access the man
pages from the Linux terminal by typing man fork, man 2 fork, man 2 wait and so on.
You can also find several helpful links online.

• It is important to understand the different variants of these system calls. In particular, there are
many different variants of the exec and wait system calls; you need to understand these to use
the correct variant in your code. For example, you may need to invoke wait differently depending
on whether you need to block for a child to terminate or not. You may need to invoke different
variants of exec like execvp or execlp, depending on the format of the arguments.

• Familiarize yourself with simple shell commands in Linux like echo, cat, sleep, ls, ps, top,
grep and so on. To run these commands from your shell, you must simply “exec” these existing
executables, and not implement the functionality yourself.

• Understand the chdir system call in Linux (see man chdir). This will be useful to implement
the cd command in your shell.

• Understand the concepts of foreground and background execution in Linux. Execute various com-
mands on the Linux shell both in foreground and background, to understand the behavior of these
modes of execution.

• Understand the concept of signals and signal handling in Linux. Understand how processes can
send signals to one another using the kill system call. Read up on the common signals (SIGINT,
SIGTERM, SIGKILL, ..), and how to write custom signal handlers to “catch” signals and override
the default signal handling mechanism, using interfaces such as signal() or sigaction().

• Understand the notion of processes and process groups. Every process belongs to a process group
by default. When a parent forks a child, the child also belongs to the process group of the parent
initially. When a signal like Ctrl+C is sent to a process, it is delivered to all processes in its process
group, including all its children. If you do not want some subset of children receiving a signal,
you may place these children in a separate process group, say, by using the setpgid system call.
Lookup this system call in the man pages to learn more about how to use it, but here is a simple

1

description. The setpgid call takes two arguments: the PID of the process and the process
group ID to move to. If either of these arguments is set to 0, they are substituted by the PID of
the process instead. That is, if a process calls setpgid(0,0), it is placed in a separate process
group from its parent, whose process group ID is equal to its PID. Understand such mechanisms
to change the process group of a process.

• Read the problem statement fully, and build your shell incrementally, part by part. Test each part
thoroughly before adding more code to your shell for the next part.

Warm-up exercises

Below are some “warm-up” exercises you can do before you start implementing the shell.

1. Write a program that forks a child process using the fork system call. The child should print “I am
child” and exit. The parent, after forking, must print “I am parent”. The parent must also reap the
dead child before exiting. Run this program a few times. What is the order in which the statements
are printed? How can you ensure that the parent always prints after the child? You may refer to
the man page for wait (man 2 wait) that has a very detailed example of a simple program using
fork and wait.

2. Write a program that forks a child process using the fork system call. The child should print its
PID (using the getpid system call) and exit. The parent should wait for the child to terminate,
reap it, print the PID of the child that it has reaped, and then exit. Explore different variants of the
wait system call (wait, waitpid) while you write this program.

3. Write a program that uses the exec system call to run the “ls” command in the program. First, run
the command with no arguments. Then, change your program to provide some arguments to “ls”,
e.g., “ls -l”. In both cases, running your program should produce the same output as that produced
by the “ls” command. There are many variants of the exec system call, e.g., execvp, execlp,
and so on. Read through the man pages to find something that suits your needs.

4. Write a program runcmd.c that executes a simple Linux command with a single argument, for
example, sleep 10. Your program should take two commandline arguments: the name of the
command and the argument to the command. You can access the strings given as commandline
arguments using the variables argv[0], argv[1], and so on. The program must then fork a
child process, and exec the command in the child process. The parent process must wait for the
child to finish, reap it, and print a message that the command executed successfully. Your program
must throw an error if it is given an incorrect number of arguments.

A sample execution of the program is shown below.

$gcc runcmd.c -o runcmd
$./runcmd echo hello
hello
Command successfully completed
$./runcmd ls
Incorrect number of arguments
$

2

5. Write a program that uses the exec system call to run some command. Place a print statement
just before and just after the exec statements, and observe which of these statements is printed.
Understand the behavior of print statement placed after the exec system call statement in your
program by giving different arguments to exec. When is this statement printed and when is it not?

6. Write a program where the fork system call is invoked N times, for different values of N . Let
each newly spawned child print its PID before it finishes. Predict the number of child processes
that will be spawned for each value of N , and verify your prediction by actually running the code.
You must also ensure that all the newly created processes are reaped by using the correct number
of wait system calls.

7. Write a program where a process forks a child. The child runs for a long time, say, by calling the
sleep function. The parent must use the kill system call to terminate the child process, reap it,
print a message, and exit. Understand how signals work before you write the program.

8. Write a program that runs an infinite while loop. The program should not terminate when it
receives SIGINT (Ctrl+C) signal, but instead, it must print “I will run forever” and continue its
execution. You must write a signal handler that handles SIGINT in order to achieve this. So,
how do you end this program? When you are done playing with this program, you may need to
terminate it using the SIGKILL signal.

3

Part A: A simple shell

We will first build a simple shell to run simple Linux commands. A shell takes in user input, forks a
child process using the fork system call, calls exec from this child to execute the user command, reaps
the dead child using the wait system call, and goes back to fetch the next user input. Your shell must
execute any simple Linux command given as input, e.g., ls, cat, echo and sleep. These commands
are readily available as executables on Linux, and your shell must simply invoke the corresponding
executable, using the user input string as argument to the exec system call. It is important to note that
you must implement the shell functionality yourself, using the fork, exec, and wait system calls. You
must NOT use library functions like system which implement shell commands by invoking the Linux
shell—doing so defeats the purpose of this assignment!

Your simple shell must use the string “$ ” as the command prompt. Your shell should interactively
accept inputs from the user and execute them. In this part, the shell should continue execution indefinitely
until the user hits Ctrl+C to terminate the shell. You can assume that the command to run and its
arguments are separated by one or more spaces in the input, so that you can “tokenize” the input stream
using spaces as the delimiters. You are given starter code my shell.c which reads in user input and
“tokenizes” the string for you. The tokenization function returns an null-terminated array of strings
called tokens, where the first element of the array tokens[0] is the command to execute, and the
rest of the elements in the array are the arguments. For variants of the exec command that need the name
of the command along with a null-terminated list of arguments, you should be able to pass the entire
tokens array easily. You must add code to my shell.c to execute the commands found in these
“tokens”. You may assume that the input command has no more than 1024 characters, and no more than
64 tokens. Further, you may assume that each token is no longer than 64 characters.

For this part, you can assume that the Linux commands are invoked with simple command-line
arguments, and without any special modes of execution like background execution, I/O redirection, or
pipes. You need not parse any other special characters in the input stream. Please do not worry about
corner cases or overly complicated command inputs for now; just focus on getting the basics right.

Your shell must gracefully handle errors. An empty command (typing return) should simply cause
the shell to display a prompt again without any error messages. For all incorrect commands or any other
erroneous input, the shell itself should not crash. It must simply notify the error and move on to prompt
the user for the next command. Note that it is not easy to identify if the user has provided incorrect
options to the Linux command (unless you can check all possible options of all commands), so you
need not worry about checking the arguments to the command, or whether the command exists or not.
Your job is to simply invoke exec on any command that the user gives as input. If the Linux command
execution fails due to incorrect arguments, an error message will be printed on screen by the executable
itself. If the command itself does not exist, then the exec system call will fail, and your shell must print
an error message. In both cases, in addition to errors being suitably notified to the user, the child process
must also be reaped. Finally, the shell must move to the next command.

Once you complete the execution of simple commands, proceed to implement support for the cd
command in your shell using the chdir system call. The command cd <directoryname> must
cause the shell process to change its working directory, and cd .. should take you to the parent
directory. You need not support other variants of cd that are available in the various Linux shells. For
example, just typing cd will take you to your home directory in some shells; you need not support such
complex features. Note that you must NOT spawn a separate child process to execute the chdir system
call, but must call chdir from your shell itself, because calling chdir from the child will change the
current working directory of the child whereas we wish to change the working directory of the main

4

parent shell itself. Any incorrect format of the cd command should result in your shell printing an error
message to the display, and prompting for the next command.

For all commands, you must take care to terminate and carefully reap any child process the shell may
have spawned. Please verify this property using the ps command, in parallel in another terminal, when
testing your shell code. When the forked child calls exec to execute a command, the child automatically
terminates after the executable completes. However, if the exec system call did not succeed for some
reason, the shell must ensure that the child is terminated suitably. When not running any command, there
should only be the one main shell process running in your system, and no other children.

To test this lab, run a few common Linux commands in your shell, and check that the output matches
what you would get on a regular Linux shell. Further, check that your shell is correctly reaping dead
children, so that there are no extra zombie processes left behind in the system.

Part B: Background execution

Now, we will extend the shell to support background execution of processes. Extend your shell program
of part A in the following manner: if a Linux command is followed by &, the command must be executed
in the background. That is, the shell must start the execution of the command, and return to prompt the
user for the next input, without waiting for the previous command to complete. The output of the
command can get printed to the shell as and when it appears. A command not followed by & must
simply execute in the foreground as before.

You can assume that the commands running in the background are simple Linux commands without
pipes or redirections or any other special case handling like cd. You can assume that the user will enter
only one foreground or background command at a time on the command prompt, and the command and
& are separated by a space. You may assume that there are no more than 64 background commands
executing at any given time. A helpful tip for testing: use long running commands like sleep to test
your foreground and background implementations, as such commands will give you enough time to run
ps in another window to check that the commands are executing as specified.

Across both background and foreground execution, ensure that the shell reaps all its children that
have terminated. Unlike in the case of foreground execution, the background processes can be reaped
with a time delay. For example, the shell may check for dead children periodically, say, when it obtains
a new user input from the terminal. When the shell reaps a terminated background process, it must print
a message Shell: Background process finished to let the user know that a background
process has finished.

You must test your implementation for the cases where background and foreground processes are
running together, and ensure that dead children are being reaped correctly in such cases. Recall that a
generic wait system call can reap and return any dead child. So if you are waiting for a foreground
process to terminate and invoke wait, it may reap and return a terminated background process. In that
case, you must not erroneously return to the command prompt for the next command, but you must wait
for the foreground command to terminate as well. To avoid such confusions, you may choose to use the
waitpid variant of this system call, to be sure that you are reaping the correct foreground child. Once
again, use long running commands like sleep, run ps in another window, and monitor the execution
of your processes, to thoroughly test your shell with a combination of background and foreground pro-
cesses. In particular, test that a background process finishing up in the middle of a foreground command
execution will not cause your shell to incorrectly return to the command prompt before the foreground
command finishes.

5

Part C: The exit command

Up until now, your shell executes in an infinite loop, and only the signal SIGINT (Ctrl+C) would have
caused it to terminate. Now, you must implement the exit command that will cause the shell to ter-
minate its infinite loop and exit. When the shell receives the exit command, it must terminate all
background processes, say, by sending them a signal via the kill system call. Obviously, if the shell is
receiving the comand to exit, it goes without saying that it will not have any active foreground process
running. Before exiting, the shell must also clean up any internal state (e.g., free dynamically allocated
memory), and terminate in a clean manner.

Part D: Handling the Ctrl+C signal

Up until now, the Ctrl+C command would have caused your shell (and all its children) to terminate.
Now, you will modify your shell so that the signal SIGINT does not terminate the shell itself, but only
terminates the foreground process it is running. Note that the background processes should remain
unaffected by the SIGINT, and must only terminate on the exit command. You will accomplish this
functionality by writing custom signal handling code in the shell, that catches the Ctrl+C signal and
relays it to the relevant processes, without terminating itself.

Note that, by default, any signal like SIGINT will be delivered to the shell and all its children. To
solve this part correctly, you must carefully place the various children of the shell in different process
groups, say, using the setpgid system call. For example, setpgid(0,0) places a process in its own
separate process group, that is different from the default process group of its parent. Your shell must do
some such manipulation on the process group of its children to ensure that only the foreground child
receives the Ctrl+C signal, and the background children in a separate process group do not get killed by
the Ctrl+C signal immediately.

Once again, use long running commands like sleep to test your implementation of Ctrl+C. You
may start multiple long running background processes, then start a foreground command, hit Ctrl+C,
and check that only the foreground process is terminated and none of the background processes are
terminated.

Part E: Serial and parallel foreground execution

Now, we will extend the shell to support the execution of multiple commands in the foreground, as
described below.

• Multiple user commands separated by && should be executed one after the other serially in the
foreground. The shell must move on to the next command in the sequence only after the previous
one has completed (successfully, or with errors) and the corresponding terminated child reaped by
the parent. The shell should return to the command prompt after all the commands in the sequence
have finished execution.

• Multiple commands separated by &&& should be executed in parallel in the foreground. That is,
the shell should start execution of all commands simultaneously, and return to command prompt
after all commands have finished execution and all terminated children reaped correctly.

Like in the previous parts of the assignment, you may assume that the commands entered for serial
or parallel execution are simple Linux commands, and the user enters only one type of command (serial

6

or parallel) at a time on the command prompt. You may also assume that there are spaces on either
side of the special tokens && and &&&. You may assume that there are no more than 64 foreground
commands given at a time. Once again, use multiple long running commands like sleep to test your
series and parallel implementations, as such commands will give you enough time to run ps in another
window to check that the commands are executing as specified.

The handling of the Ctrl+C signal should terminate all foreground processes running in serial or par-
allel. When executing multiple commands in serial mode, the shell must terminate the current command,
ignore all subsequent commands in the series, and return back to the command prompt. When in parallel
mode, the shell must terminate all foreground commands and return to the command prompt.

Submission instructions

• You must submit the shell code my shell.c or my shell.cpp.

• Place this file and any other files you wish to submit in your submission directory, with the direc-
tory name being your roll number (say, 12345678).

• Tar and gzip the directory using the command tar -zcvf 12345678.tar.gz 12345678
to produce a single compressed file of your submission directory. Submit this tar gzipped file on
Moodle.

7

