
Lectures on Operating Systems (Mythili Vutukuru, IIT Bombay)

Lab: Processes management xv6

The goal of this lab is to understand process management in xv6.

Before you begin

• Download, install, and run the original xv6 OS code. You can use your regular desktop/laptop
to run xv6; it runs on an x86 emulator called QEMU that emulates x86 hardware on your local
machine. In the xv6 folder, run make, followed by make qemu or make-qemu-nox, to boot
xv6 and open a shell.

• We have modified some xv6 files for this lab, and these patched files are provided as part of this
lab’s code. Before you begin the lab, copy the patched files into the main xv6 code directory.

• For this lab, you will need to understand and modify following files: proc.c, proc.h, syscall.c,
syscall.h, sysproc.c, defs.h, user.h, and usys.S. Below are some details on these
files.

– user.h contains the system call definitions in xv6.

– usys.S contains a list of system calls exported by the kernel, and the corresponding invo-
cation of the trap instruction.

– syscall.h contains a mapping from system call name to system call number. Every
system call must have a number assigned here.

– syscall.c contains helper functions to parse system call arguments, and pointers to the
actual system call implementations.

– sysproc.c contains the implementations of process related system calls.

– defs.h is a header file with function definitions in the kernel.

– proc.h contains the struct proc structure.

– proc.c contains implementations of various process related system calls, and the scheduler
function. This file also contains the definition of ptable, so any code that must traverse the
process list in xv6 must be written here.

• Learn how to add a new system call in xv6. You can follow the implementation of an existing
system call to understand how to add a new one. Some system calls do not take any arguments
and return just an integer value (e.g., uptime in sysproc.c). Some other system calls take in
multiple arguments like strings and integers (e.g., open system call in sysfile.c), and return
a simple integer value. Further, more complex system calls return a lot of information back to the

1



user program in a user-defined structure. As an example of how to pass a structure of information
across system calls, you can see the code of the ls userspace program and the fstat system call
in xv6. The fstat system call fills in a structure struct stat with information about a file,
and this structure is fetched via the system call and printed out by the ls program.

• Learn how to write your own user programs in xv6. For example, if you add a new system call,
you may want to write a simple C program that calls the new system call. There are several user
programs as part of the xv6 source code, from which you can learn. We have also provided a
simple test program testcase.c as part of our patched code. This test program is compiled by
our patched Makefile and you can run it on the xv6 shell by typing testcase at the command
prompt. We have also provided several test programs to test the xv6 code you write in this lab.
Feel free to test your code with these, as well as with other test cases you write. Remember that
any test program you write should be included in the Makefile for it to be compiled and executed
from the xv6 shell. Note that the xv6 OS itself does not have any text editor or compiler support,
so you must write and compile the code in your host machine, and then run the executable in the
xv6 QEMU emulator.

Part A: New system calls in xv6

You will implement the following new system calls in xv6.

• Implement a system call, called hello(), which prints Hello to the console. You can use cprintf
for printing in kernel mode. You can use testcase-hello.c provided to you to test your
implementation.

• Implement a system call, called helloYou(name), which prints a string name to the console.
You can use cprintf for printing in kernel mode. You can use testcase-helloyou.c provided
to you to test your implementation.

• Next, we will implement system calls to get information about currently active processes in the
system. Implement the system call getNumProc(), to return the total number of active pro-
cesses in the system (either in embryo, running, runnable, sleeping, or zombie states). Also im-
plement the system call getMaxPid() that returns the maximum PID amongst the PIDs of all
currently active processes in the system.

Next, implement the system call getProcInfo(pid, &processInfo). This system call
takes as arguments an integer PID and a pointer to a structure processInfo. This structure
is used for passing information between user and kernel mode. We have already defined this
structure in the xv6 patched files folder provided to you, in the file processInfo.h. You may
want to include this structure in user.h, so that it is available to userspace programs. You may
also want to include this header file in proc.c to fill in the fields suitably. The information about
the process that must be returned includes the parent PID, the number of times the process was
context switched in by the scheduler, and the process size in bytes. Note that while some of this
information is already available as part of the struct proc of a process, you will have to add
new fields to keep track of some other extra information. Note that the parent PID of the init
process (PID=1) is set to 0 by convention.

2



With all of these system calls put together, it is possible to iterate over all active processes in the
system, and print their information to screen, just like the ps command does in Linux. The test
program testcase-procinfo.c does this for you.

For all system calls that do not have an explicit return value mentioned above, you must return 0 on
success and a negative value on failure.

Note: It is important to keep in mind that the process table structure ptable is protected by a lock.
You must acquire the lock before accessing this structure for reading or writing, and must release the
lock after you are done. Please ensure good locking discipline to avoid bugs in your code.

Part B: Weighted round robin scheduler

The current scheduler in xv6 is an unweighted round robin scheduler. In this lab, you will modify the
scheduler to take into account user-defined process priorities and implement a weighted scheduler.

First, add new system calls to xv6 to set/get process priorities. When a process calls setprio(n),
the priority of the process should be set to the specified value. The priority can be any positive integer
value, with higher values denoting more priority. Also add the system call getprio() to read back
the priority set, in order to verify that it has worked. You may assume that a maximum value of priority
(say, 1000) to simplify your implementation. Use testcase-prio.c to test your implementation of
setting priorities.

Next, modify the xv6 scheduler to use this priority in picking the next process to schedule, by using
the priorities as weights to implement a weighted round robin scheduler. We would like you to achieve
two things: (a) a higher numerical priority should translate into more CPU time for the process, so that
higher priority processes finish faster than lower priority ones, and (b) lower priority processes should not
be excessively starved, and should get some CPU time even in the presence of higher priority processes.

Make sure you handle all corner cases correctly in your scheduler implementation. For example, you
may have to set a default priority for new processes. Also make sure your code is safe when run over
multiple CPU cores by using locks when accessing the kernel data structures.

You must think about how you will test the correctness of your scheduler. Come up with test-
cases that showcase your new scheduling policy. We have provided one sample test case for you in
testcase-sched.c, in which a parent spawns multiple children with increasing priorities, and
makes them perform a CPU-intensive task. If your scheduler is working correctly, you will see that
the higher priority processes will complete the task before the lower priority ones, because they will get
more time to run from the weighted round robin scheduler.

Part C: A “welcoming” fork

In this part, we will implement a simple variant of the fork system call, to help you understand how
processes return from trap. The default behavior of the fork system call is that a forked child starts
execution from the same point in the code that the parent returns to after the fork system call. In this
part, you will modify the behavior of fork to enable a child process to resume execution, first in a
“welcome” function set by the parent, and then return to the code after fork. This functionality will be
implemented via the following two new system calls.

• A parent process that wishes for a child to begin execution in a different function should invoke
the system call welcomeFunction. This system call takes the address of the welcome function

3



as an argument. If this welcome function is not set, child processes should begin execution right
after fork, as usual. If a welcome function address is set using this system call, new processes
should begin execution in this welcome function instead.

• A child that begins execution in a welcome function set by the parent must invoke the system
call welcomeDone to go back to executing code after the fork system call, like regular child
processes do. This system call takes no arguments, and will be invoked by the child at the end of
its execution of the welcome function.

The implementation of this functionality will require you to modify the trap frame of the child
process suitably, to alter the EIP to point to the welcome function initially, and to restore it back to its
original value when the child completes the welcome function execution. We have provided a simple
test program testcase-fork-welcome.c that can be used to test your implementation. In the
test program, a parent spawns two children, one before it sets the welcome function pointer, and one
after. The first child will return to the code after fork as usual, while the second child will first run the
welcome function and then resume execution in the code after fork. You can come up with other such
test programs to test your implementation.

Submission instructions

• For this lab, you will need to modify the following files: proc.c, proc.h, defs.h, syscall.c,
syscall.h, sysproc.c, user.h, and usys.S. You may also write new test cases, and
modify the Makefile to compile additional test cases.

• Place all the files you modified in a directory, with the directory name being your roll number (say,
12345678).

• Tar and gzip the directory using the command tar -zcvf 12345678.tar.gz 12345678 to produce a
single compressed file of your submission directory. Submit this tar gzipped file on Moodle.

4


