
Lectures on Operating Systems (Mythili Vutukuru, IIT Bombay)

Practice Problems: Memory Management
in xv6

1. Consider a system with V bytes of virtual address space available per process, running an xv6-like
OS. Much like with xv6, low virtual addresses, up to virtual address U , hold user data. The kernel
is mapped into the high virtual address space of every process, starting at address U and upto the
maximum V . The system has P bytes of physical memory that must all be usable. The first K
bytes of the physical memory holds the kernel code/data, and the rest P −K bytes are free pages.
The free pages are mapped once into the kernel address space, and once into the user part of the
address space of the process they are assigned to. Like in xv6, the kernel maintains page table
mappings for the free pages even after they have been assigned to user processes. The OS does
not use demand paging, or any form of page sharing between user space processes. The system
must be allowed to run up to N processes concurrently.

(a) Assume N = 1. Assume that the values of V , U , and K are known for a system. What
values of P (in terms of V , U , K) will ensure that all the physical memory is usable?

(b) Assume the values of V , K, and N are known for a system, but the value of P is not known
apriori. Suggest how you would pick a suitable value (or range of values) for U . That is,
explain how the system designer must split the virtual address space into user and kernel
parts.

Ans:

(a) The kernel part of the virtual address space of a process should be large enough to map all
physical memory, so V − U ≥ P . Further, the user part of the virtual address space of a
process should fit within the free physical memory that is left after placing the kernel code,
so U ≤ P −K. Putting these two equations together will get you a range for P .

(b) If there are N processes, the second equation above should be modified so that the combined
user part of the N processes can fit into the free physical pages. So we will have N ∗ U ≤
P −K. We also have P ≤ V − U as before. Eliminating P (unknown), we get U ≤ V−K

N+1 .

2. Consider a system running the xv6 OS. A parent process P has forked a child C, after which
C executes the exec system call to load a different binary onto its memory image. During the
execution of exec, does the kernel stack of C get reinitialized or reallocated (much like the page
tables of C)? If it does, explain what part of exec performs the reinitialization. If not, explain
why not.

Ans: The kernel stack cannot be reallocated during exec, because the kernel code is executing on
the kernel stack itself, and releasing the stack on which the kernel is running would be disastrous.
Small changes are made to the trap frame however, to point to the start of the new executable.

1



3. The xv6 operating system does not implement copy-on-write during fork. That is, the parent’s
user memory pages are all cloned for the child right at the beginning of the child’s creation. If xv6
were to implement copy-on-write, briefly explain how you would implement it, and what changes
need to be made to the xv6 kernel. Your answer should not just describe what copy-on-write is (do
not say things like “copy memory only when parent or child modify it”), but instead concretely
explain how you would ensure that a memory page is copied only when the parent/child wishes to
modify it.

Ans: The memory pages shared by parent and child would be marked read-only in the page table.
Any attempt to write to the memory by the parent or child would trap the OS, at which point a
copy of the page can be made.

4. Consider a process P in xv6 that has executed the kill system call to terminate a victim process V.
If you read the implementation of kill in xv6, you will see that V is not terminated immediately,
nor is its memory reclaimed during the execution of the kill system call itself.

(a) Give one reason why V’s memory is not reclaimed during the execution of kill by P.
(b) Describe when V is actually terminated by the kernel.

Ans: Memory cannot be reclaimed during the kill itself, because the victim process may actually
be executing on another core. Processes are periodically checked for whether they have been killed
(say, when they enter/exit kernel mode), and termination and memory reclamation happens at a
time that is convenient to the kernel.

5. Consider the implementation of the exec system call in xv6. The implementation of the system
call first allocates a new set of page tables to point to the new memory image, and switches page
tables only towards the end of the system call. Explain why the implementation keeps the old page
tables intact until the end of exec, and not rewrite the old page tables directly while building the
new memory image.

Ans: The exec system call retains the old page tables, so that it can switch back to the old image
and print an error message if exec does not succeed. If exec succeeds however, the old memory
image will no longer be needed, hence the old page tables are switched and freed.

6. In a system running xv6, for every memory access by the CPU, the function walkpgdir is
invoked to translate the logical address to physical address. [T/F]

Ans: F

7. Consider a process in xv6 that makes the exec system call. The EIP of the exec instruction is
saved on the kernel stack of the process as part of handling the system call. When and under what
conditions is this EIP restored from the stack causing the process to execute the statement after
exec?

Ans: If some error occurs during exec, the process uses the eip on trap frame to return to instruc-
tion after exec in the old memory image.

8. Consider a process in an xv6 system. Consider the following statement: “All virtual memory
addresses starting from 0 to N − 1 bytes, where N is the process size (proc->sz), can be read
by the process in user mode.” Is the above statement true or false? If true, explain why. If false,
provide a counter example.

Ans: False, the guard page is not accessible by user.

2



9. When an xv6 process invokes the exec system call, where are the arguments to the system call
first copied to, before the system call execution begins? Tick one: user heap / user stack / trap
frame / context structure

Ans: user stack

10. When a process successfully returns from the exec system call to its new memory image in xv6,
where are the commandline arguments given to the new executable to be found? Tick one: user
heap / user stack / trap frame / context structure

Ans: user stack

11. After the exec system call completes successfully in xv6, where is the EIP of the starting instruc-
tion of the new executable stored, to enable the process to start execution at the entry of the new
code? Tick one: user heap / user stack / trap frame / context structure

Ans: trap frame

12. Consider the list of free memory frames maintained by xv6 in the free list. Whenever a process in
kernel mode requests memory via the function kalloc(), xv6 extracts and returns free frames from
this list. Which of the following things can be stored in the pages thus allocated from the free list?

(a) New page table created for child process during fork

(b) New memory image (code/data/stack/heap) created for child during fork

(c) Kernel stack of new process created in fork

(d) New page table created for the new memory image in exec

Ans: (a), (b), (c), (d)

13. Consider a process P in xv6 that executes the sbrk system call to increase the size of the user
part of its virtual address space from N1 bytes to N2 bytes. Assume N1 and N2 are multiples of
page size, N2 ¿ N1, and the difference between N1 and N2 is K pages. Which of the following
statements is/are true about the actions that occur during the execution of the system call?

(a) The OS assigns K free physical frames to the process and adds the frame numbers into the
page table.

(b) The OS does not assign any new physical frames to the process, but updates the page table.

(c) The OS updates (N2-N1) page table entries in the page table of P.

(d) The OS updates K page table entries in the page table of P.

Ans: (a), (d)

14. Consider a process P running in xv6. The high virtual addresses in the address space of P are
assigned to OS code/data. Consider a virtual address V assigned to OS code/data. Which of the
following statements is/are true?

(a) If the CPU accesses address V in user mode, the MMU raises a trap to the OS.

(b) The address V is translated to the same physical address by the page tables of all processes
in the system.

3



(c) The address V can be translated to different physical address by the page tables of different
processes in the system.

(d) The page table entry that translates address V to a physical address is present in the page
table of P only when it is running in kernel mode.

Ans: (a), (b)

15. Consider a process running in xv6. The page table of the process maps virtual address V to
physical address P. Which of the following statements is/are true? Assume KERNBASE is set to
2GB in xv6.

(a) V = P + KERNBASE always

(b) V = P – KERNBASE always

(c) V = P + KERNBASE only for V ¿= KERNBASE

(d) V = P + KERNBASE only for V ¡ KERNBASE

Ans: (c)

4


