Colouring planar graphs with a precoloured induced cycle

Ajit A. Diwan
Department of Computer Science and Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India. email: aad@cse.iitb.ac.in

June 8, 2023

Abstract

Let C be a cycle and $f: V(C) \rightarrow\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$ a proper k-colouring of C for some $k \geq 4$. We say the colouring f is safe if for any planar graph G in which C is an induced cycle, there exists a proper k-colouring f^{\prime} of G such that $f^{\prime}(v)=f(v)$ for all $v \in V(C)$. The only safe 4 -colouring is any proper colouring of a triangle. We give a simple necessary condition for a k-colouring of a cycle to be safe and conjecture that it is sufficient for all $k \geq 4$. The sufficiency for $k=4$ follows from the four colour theorem and we prove it for $k=5$, independent of the four colour theorem. We show that a stronger condition is sufficient for all $k \geq 4$. As a consequence, it follows that any proper k-colouring of a cycle that uses at most $k-3$ distinct colours is safe. Also, any proper k-colouring of a cycle of length at most $2 k-5$ that uses at most $k-1$ distinct colours is safe.

1 Introduction

A proper k-colouring of a graph G is an assignment $f: V(G) \rightarrow\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$ of colours to the vertices of G such that for every edge $u v$ in the graph $f(u) \neq f(v)$. We will refer to proper colourings as simply colourings and a graph is k-colourable if there exists a k-colouring. The study of colourings of planar graphs has a long history, starting with the four colour conjecture and its eventual proof [2] [3] [7]. Many variations of this have since been considered, the most important of which is perhaps the notion of list-colouring. Let $L(v)$ be a list of allowed colours assigned to each vertex $v \in V(G)$. An L-colouring of G is a proper colouring such that each vertex v is assigned a colour in $L(v)$. The usual colouring problem is the special case when the lists $L(v)$ are the same for all vertices. While all planar graphs are four colourable, it is not true that they are L-colourable if $|L(v)| \geq 4$ for all vertices v [9]. Thomassen [8] showed that all planar graphs are L-colourable if $|L(v)| \geq 5$
for each vertex v. Subsequently, there has been a lot of work on finding conditions on the lists $L(v)$ that guarantee any planar graph is L-colourable. A recent result of Zhu [10] shows that if $|L(v)|=4$ for each vertex v, and $|L(u) \cap L(v)| \leq 2$ for any edge $u v$, then any planar graph is L-colourable. Many such results with different restrictions were proved earlier, and several conjectured, as mentioned in [10].

Another variation considered is colouring or L-colouring with some precoloured vertices, whose colours are specified. This is equivalent to considering an L-colouring in which some vertices have lists of size 1 . This can also be viewed as extending a partial assignment of colours to some vertices to a colouring or L-colouring of the whole graph. Albertson [1] showed that every planar graph with precoloured vertices is five colourable if the precoloured vertices are at distance at least 4 from each other and the precolouring uses at most five distinct colours. No such result is possible for four colours, even if only two vertices are precoloured. The corresponding result for L-colouring was shown in [5]. There exists a constant M such that if the precoloured vertices are at distance at least M from each other, and $|L(v)|=5$ for all other vertices, then any planar graph is L-colourable.

In most of these results, the restrictions on the lists are in terms of their sizes, or the sizes of their intersections, but not the actual elements in the list. Here, we consider another special case where the vertices of a connected induced subgraph are assigned lists of size 1 and all other vertices have the same list of a specified size. This is equivalent to asking when can a specified k-colouring of a graph H be extended to a k-colouring of any planar graph that contains H as in induced subgraph. We call such a k-colouring of the graph H a safe k-colouring. The subgraph we consider is a cycle. If H is any 2-connected planar graph, a k-colouring of H is safe if and only if the colouring of every non-separating induced cycle in H is safe. Thus considering a cycle as the subgraph H is a natural choice.

We give a simple necessary condition for a k-colouring of a cycle to be safe. We conjecture that this condition is sufficient for all $k \geq 4$. The sufficiency for $k=4$ follows from the four colour theorem. We prove it for $k=5$. The proof is independent of and much simpler than the proof of the four colour theorem. We prove that a stronger condition is sufficient for all $k \geq 4$. As a consequence, any k-colouring of a cycle that uses at most $k-3$ distinct colours is safe. Also, any k-colouring of a cycle of length at most $2 k-5$ that uses at most $k-1$ colours is safe. If the conjecture is true, then any k-colouring of a cycle of length at most $3 k-10$ that uses at most $k-2$ colours is safe. However, we have not been able to prove this.

Such results have been considered for 3-colourings of planar triangle-free graphs. In [6] for example, 3 -colourings of a cycle of length at most 8 contained in a planar triangle-free graph that cannot be extended to a 3 -colouring of the whole graph have been characterized. The same has been done for cycles of length 9 in [4]. However, we do not know any such results for general planar graphs when the number of colours and the cycle length is arbitrary. Also, these results are based on characterizing all critical graphs, that is graphs for which the colouring of the cycle cannot be extended to the whole graph, but can be extended for any proper subgraph that contains the cycle. We do not attempt to do this here. To show that
a colouring is not safe, it is enough to show one graph for which the colouring of the cycle cannot be extended. To show it is safe, we use properties of the colouring to extend it to the whole graph.

2 Main Result

Let $C=v_{1}, v_{2}, \ldots, v_{l}$ be a cycle of length $l \geq 3$ and f a safe k-colouring of C. Any k-colouring of C obtained from f by permuting the colours is also safe. The colouring f_{i} defined by $f_{i}\left(v_{j}\right)=f\left(v_{i+j}\right)$, where addition is modulo l, is also safe, for all $1 \leq i<l$. Similarly, the colouring obtained by reversing the cycle, that is $f_{r}\left(v_{i}\right)=f\left(v_{l+1-i}\right)$ is safe. We say these colourings of C are equivalent and consider safety to be a property of the equivalence class.

Let $[i, j]=\{i, i+1, \ldots, j\}$ for $1 \leq i, j \leq l$, where again addition is considered modulo l. Let $[i, j)=[i, j] \backslash\{j\},(i, j]=[i, j] \backslash\{i\}$, and $(i, j)=[i, j] \backslash\{i, j\}$. Let $F[i, j]=\left\{c_{t} \mid 1 \leq t \leq k, \exists m \in[i, j] f\left(v_{m}\right)=c_{t}\right\}$ be the subset of colours that occur in the subpath of C from v_{i} to v_{j}. The sets $F[i, j), F(i, j], F(i, j)$ are defined similarly.

To prove that a k-colouring f of C is safe, we consider an arbitrary planar graph G such that C is an induced cycle in G, and show that the colouring of C can be extended to a k-colouring of G. It is sufficient to do this in the case C is a nonseparating induced cycle in G, since otherwise we can consider each component of $G-V(C)$ separately. Thus we may assume C bounds a face of G and without loss of generality, we can embed G so that C is the boundary of the external face. We may further assume $G-V(C)$ is not empty, and add edges to G that are not chords of C if needed, so that every internal face of G is bounded by a triangle. We call such a graph G a chordless near-triangulation. Thus a k-colouring f of a cycle C is safe if and only if for any chordless near-triangulation G with external face bounded by the cycle C, there exists a k-colouring of G that extends f.

We first give some simple necessary conditions for a k-colouring to be safe.
Lemma 1 Let f be a k-colouring of a cycle C of length l. If f satisfies any one of the following conditions, then f is not safe.

1. $|F[1, l]|=k$.
2. There exist indices $1 \leq p<q \leq l$ such that $|F[p, q] \cap F[q, p]| \geq k-1$.
3. There exist indices $1 \leq p<q<r \leq l$ such that $|F[p, q] \cap F[q, r] \cap F[r, p]| \geq k-2$.

Proof: If $|F[1, l]|=k$ then the k-colouring cannot be extended to a k-colouring of the wheel W_{l}, hence it is not safe. If there are indices $p<q$ such that $\mid F[p, q] \cap$ $F[q, p] \mid \geq k-1$, construct a chordless near-triangulation by adding a vertex u that is adjacent to all vertices v_{m} for $m \in[p, q]$, and a vertex v that is adjacent to u and all vertices v_{m} for $m \in[q, p]$. The k-colouring of the cycle cannot be extended to this near-triangulation, hence such a colouring is not safe. The same argument holds if there are indices $p<q<r$ such that $|F[p, q] \cap F[q, r] \cap F[r, p]| \geq k-2$. Construct a near-triangulation by adding a triangle u, v, w with u adjacent to vertices v_{m} for
$m \in[p, q], v$ adjacent to vertices v_{m} for $m \in[q, r]$ and w adjacent to vertices v_{m} for $m \in[r, p]$. Again it is easy to check that the colouring of the cycle cannot be extended to the near-triangulation, hence any such k-colouring is not safe.

We call a k-colouring of a cycle that satisfies any of the conditions in Lemma 1 a bad k-colouring. If $k=4$ and $l \geq 4$, then every 4 -colouring of C is bad. Consider any 4 -colouring of a cycle C of length at least 4. Assume $|F[1, l]|<4$ otherwise condition 1 in Lemma 1 is satisfied. If $|F[1, l]|=2$, we have $|F[1,2]|=2$, and $F[1,2]=F[2,3]=F[3,1]$, which implies f satisfies condition 3 in Lemma 1 with $p=1, q=2, r=3$. If $|F[1, l]|=3$, there exists an index i such that $|F[i, i+2]|=3$. If $|F[i+2, i]|=3$, then f satisfies condition 2 in Lemma 1 with $\{p, q\}=\{i, i+2\}$, otherwise we have $l \geq 5, f\left(v_{i+3}\right)=f\left(v_{i}\right)$ and $f\left(v_{i+4}\right)=f\left(v_{i+2}\right)$. In this case, we have $|F[i+1, i+3]|=|F[i+3, i+1]|=3$ and f again satisfies condition 2 in Lemma 1 with $\{p, q\}=\{i+1, i+3\}$. Therefore, the only 4 -colourings that are not bad are those of the triangle. It follows from the four colour theorem that any 4 -colouring of a triangle is safe and hence a 4-colouring is safe if and only if it is not bad. We conjecture that this property holds for all $k \geq 4$.

Conjecture 1 A k-colouring of a cycle is safe if and only if it is not bad, for all $k \geq 4$.

We prove Conjecture 1 for $k=5$. Although the statement of Conjecture 1 may be considered to be a generalization of the four colour theorem, the proof for $k=5$ is much simpler and does not depend on the four colour theorem. We in fact show that k-colourings satisfying a stronger property are safe for all $k \geq 4$. All 5 -colourings that are not bad satisfy the stronger property and are therefore safe. Moreover, there exist such k-colourings satisfying the stronger property for cycles of all lengths, for all $k \geq 5$. However, this proof depends crucially on the fact that $k \geq 5$, and cannot be easily adapted to prove the four colour theorem itself. Also, for $k \geq 6$, there are k-colourings that are not bad but do not satisfy the stronger property, so this does not prove Conjecture 1 for $k \geq 6$.

Henceforth, we will assume that $k \geq 5$ is a fixed integer. We call a k-colouring of a cycle of length l a good k-colouring if it satisfies one of the following properties.

1. $|F[1, l]| \leq k-3$.
2. $|F[1, l]|=k-2$ and there exist indices $1 \leq p<q \leq l$ and a set A of $k-4$ colours such that $|F[p, q) \backslash A|=1$ and $|F[q, p) \backslash A|=1$.
3. $|F[1, l]|=k-1$ and there exist indices $1 \leq p<q<r \leq l$ and a set A of $k-4$ colours such that $|F[p, q) \backslash A|=|F[q, r) \backslash A|=|F[r, p) \backslash A|=1$.

Lemma 2 A 5-colouring f of a cycle of length l is not bad if and only if it is good.
Proof: We show that if f is good it cannot satisfy any of the conditions in Lemma 1 and is therefore not bad. This argument holds for all $k \geq 4$, but we state it only for $k=5$. Clearly $|F[1, l]|<5$, hence f does not satisfy condition 1 in Lemma 1 . Similarly if $|F[1, l]|=2, f$ does not satisfy any of the conditions in Lemma 1.

Suppose $|F[1, l]|=3$ and f satisfies condition 2 in the definition of a good 5 colouring with indices p_{1}, q_{1}. Then f cannot satisfy condition 2 in the statement of Lemma 1. Suppose for contradiction f satisfies condition 3 in Lemma 1 with indices p_{2}, q_{2}, r_{2}. Since $\left[p_{1}, q_{1}\right),\left[q_{1}, p_{1}\right)$ is a partition of $[1, l]$, two of the indices p_{2}, q_{2}, r_{2} are contained in one of the sets $\left[p_{1}, q_{1}\right)$ or $\left[q_{1}, p_{1}\right)$. Without loss of generality, assume $p_{2}, q_{2} \in\left[p_{1}, q_{1}\right)$. However, this implies $3 \leq\left|F\left[p_{2}, q_{2}\right]\right| \leq\left|F\left[p_{1}, q_{1}\right)\right| \leq 2$, a contradiction. So f cannot satisfy any of the conditions in Lemma 1 and is not bad.

Suppose $|F[1, l]|=4$ and f satisfies condition 3 in the definition of a good 5 -colouring with indices p_{1}, q_{1}, r_{1} and let $A=\left\{c_{1}\right\}$. Suppose for contradiction f satisfies condition 2 in Lemma 1 with indices p_{2}, q_{2}. Again, we may assume, without loss of generality, $p_{1}, q_{1} \in\left[p_{2}, q_{2}\right)$. If $p_{1} \neq p_{2}$, then $\left[q_{2}, p_{2}\right] \subseteq\left[q_{1}, r_{1}\right) \cup\left[r_{1}, p_{1}\right)$, which contradicts the fact that $\left|F\left[q_{2}, p_{2}\right]\right| \geq 4$ but $\left|F\left[q_{1}, r_{1}\right) \cup F\left[r_{1}, p_{1}\right)\right| \leq 3$. If $p_{1}=p_{2}$ and $r_{1} \in\left[p_{2}, q_{2}\right]$ then $\left[q_{2}, p_{2}\right] \subseteq\left[r_{1}, p_{1}\right]$, which is again a contradiction. If $r_{1} \notin\left[p_{2}, q_{2}\right]$ then $\left[p_{2}, q_{2}\right] \subseteq\left[p_{1}, q_{1}\right) \cup\left[q_{1}, r_{1}\right)$, which again contradicts the fact that $\left|F\left[p_{2}, q_{2}\right]\right| \geq 4$ and $\left|F\left[p_{1}, q_{1}\right) \cup F\left[q_{1}, r_{1}\right)\right| \leq 3$. Finally, suppose f satisfies condition 3 in Lemma 1 with indices p_{2}, q_{2}, r_{2}. Let c_{2} be a colour other than c_{1} that is contained in $F\left[p_{2}, q_{2}\right] \cap F\left[q_{2}, r_{2}\right] \cap F\left[r_{2}, p_{2}\right]$. Without loss of generality, we may assume any vertex v_{m} such that $f\left(v_{m}\right)=c_{2}$ satisfies $m \in\left[p_{1}, q_{1}\right)$. However, this implies one of the sets $\left[p_{2}, q_{2}\right],\left[q_{2}, r_{2}\right],\left[r_{2}, p_{2}\right]$ must be contained in $\left[p_{1}, q_{1}\right)$ contradicting the fact that each of $F\left[p_{2}, q_{2}\right], F\left[q_{2}, r_{2}\right], F\left[r_{2}, p_{2}\right]$ has at least three elements, but $\left|F\left[p_{1}, q_{1}\right)\right| \leq$ 2. This proves that if f is good, it is not bad.

We next show that if f is not good then it is bad. This argument holds only for $k=5$. We may assume $3 \leq|F[1, l]| \leq 4$, otherwise f satisfies condition 1 in Lemma 1 and is bad.

Suppose $|F[1, l]|=3$. Let p, q be indices such that $|[p, q]|$ is maximum and $|F[p, q)|=2$. Then $f\left(v_{q}\right) \neq f\left(v_{m}\right)$ and $f\left(v_{p-1}\right) \neq f\left(v_{m}\right)$ for any $m \in[p, q)$. Since $|F[1, l]|=3$, we must have $f\left(v_{q}\right)=f\left(v_{p-1}\right)$ and $|F[q, p)|>2$, otherwise f satisfies condition 2 in the definition of a good colouring with indices p, q. This implies $q \neq p-1$ and $[q, p)$ has at least four elements. Since $|F[p, q)|=2$, we must have $q \geq p+2$. If $|F(p, q]| \geq 3$ then $\{p-1, p+1, q\}$ are three indices that satisfy condition 3 in Lemma 1 and f is bad. If $|F(p, q]|=2$, we must have $q=p+2$. The choice of $[p, q]$ then implies that $f\left(v_{q+1}\right)=f\left(v_{p}\right)$ and $f\left(v_{q+2}\right)=f\left(v_{p+1}\right)$. This implies f satisfies condition 3 in Lemma 1 with indices $\{p, q, q+2\}$ and is bad.

Suppose $|F[1, l]|=4$. Let p, q be indices such that $|F[p, q]| \geq 4$ and $|[p, q]|$ is minimum possible. We have $f\left(v_{p}\right) \neq f\left(v_{m}\right)$ for any $m \in(p, q], f\left(v_{q}\right) \neq f\left(v_{m}\right)$ for any $m \in[p, q)$, and also $f\left(v_{p}\right) \neq f\left(v_{q}\right)$. This implies $|F(p, q)|=2$. If $|F[q, p]| \geq 4$ then p, q are indices satisfying condition 2 in Lemma 1 and f is bad. So $|F[q, p]| \leq 3$, which implies $|F(p, q) \cap F[q, p]| \leq 1$ and let c_{1} be the colour in this set, if it is not empty, otherwise let c_{1} be any colour in $F(p, q)$. Suppose there exists an index $r \in[q, p)$ such that $f\left(v_{p}\right) \notin F[q, r]$ and $f\left(v_{q}\right) \notin F(r, p]$. Then $F(p, q), F[q, r], F(r, p]$ are sets of size at most 2 , and each contains one element other than c_{1}. This implies f satisfies condition 3 in the definition of a good colouring, a contradiction. Therefore there is no such index r and we have $p \neq q+1$. This implies there exists an index r in (q, p) such that $f\left(v_{r}\right)=f\left(v_{p}\right)$ and an index r^{\prime} in (r, p) such that $f\left(v_{r^{\prime}}\right)=f\left(v_{q}\right)$. If $q \geq p+4$ then we have $|F[p+2, r]| \geq 4$ and $|F[r, p+2]| \geq 4$, implying f satisfies
condition 2 in Lemma 1 and is bad. Finally, suppose $q=p+3$. If either the colour $f\left(v_{p+1}\right) \in F\left[q, r^{\prime}\right]$ or $f\left(v_{p+2}\right) \in F[r, p]$, the same argument holds with indices $\left\{p+2, r^{\prime}\right\}$ or $\{p+1, r\}$, respectively. Without loss of generality, assume the colour c_{1} is $f\left(v_{p+1}\right)$ so v_{p+2} is the only vertex with the colour $f\left(v_{p+2}\right)$. Choose r^{\prime} so that $\left|\left[r^{\prime}, p\right]\right|$ is as small as possible. Then $f\left(v_{q}\right) \notin F\left(r^{\prime}, p\right]$ and $|F[p+2, q)|=1,\left|F\left[q, r^{\prime}\right]\right| \leq 2$ and $\left|F\left(r^{\prime}, p+2\right)\right| \leq 2$. Also $\left|F\left[q, r^{\prime}\right] \backslash\left\{f\left(v_{p}\right)\right\}\right|=1$ and $\left|F\left(r^{\prime}, p+2\right) \backslash\left\{f\left(v_{p}\right)\right\}\right|=1$, which implies the indices $p+2, q, r^{\prime}+1$ with $A=\left\{f\left(v_{p}\right)\right\}$, satisfy condition 3 in the definition of a good colouring, a contradiction.

The 6 -colouring of the 8 cycle defined by $f\left(v_{i}\right)=f\left(v_{i+4}\right)=c_{i}$ for $1 \leq i \leq 4$ is an example of a colouring that is neither good nor bad.

We can now state the main result.
Theorem 1 Any good k-colouring of a cycle is safe for all $k \geq 5$.
In order to prove Theorem 1 by induction, we need to consider sets of k colourings of a cycle, rather than a single k-colouring. We also need to consider near-triangulations G with a given external boundary C that may have chords. Let $C=v_{1}, v_{2}, \ldots, v_{l}$ be a cycle and $L\left(v_{i}\right) \subseteq\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$ a non-empty list of at most k colours assigned to the vertex v_{i}, for $1 \leq i \leq l$. A near-triangulation G with external boundary C is said to be consistent with the list assignment if for any two vertices $u, v \in V(C)$ such that $u v$ is an edge or chord of C, both u and v are not assigned the same list of size 1 . We will only consider list assignments such that there are no two adjacent vertices u, v in C such that $|L(u)|=1$ and $L(u)=L(v)$. We show that for certain kinds of list assignments to the vertices of C, for any neartriangulation G with external boundary C that is consistent with it, there exists an L-colouring of C that can be extended to a k-colouring of G.

Let $S_{i}=\left\{c_{i}\right\} \cup\left\{c_{j} \mid 5 \leq j \leq k\right\}$ for $i \in\{1,2,3\}$. A vertex v is said to be of type T_{i} for $i \in\{1,2,3\}$ if either $L(v)=\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\} \backslash\left\{c_{i}\right\}$ or $|L(v)|=1$ and $L(v) \subset S_{i}$. The list assignments that we consider will be such that every vertex will be of one of the three types.

Lemma 3 Let $C=v_{1}, v_{2}, \ldots, v_{l}$ be a cycle of length l and L an assignment of list of colours such that every vertex is of type T_{1}. Let $(s, t) \in L\left(v_{1}\right) \times L\left(v_{l}\right)$ be any ordered pair of distinct colours. Then for any near-triangulation G with boundary C that is consistent with the list assignment, there exists an L-colouring f of C that extends to a k-colouring of G with $f\left(v_{1}\right)=s$ and $f\left(v_{l}\right)=t$.

Proof: Suppose there is a counterexample and let G be one with minimum number of edges.
Case 1. Suppose G has a chord $v_{i} v_{j}$ for some $i<j$. Then both (i, j) and (j, i) are non-empty sets. Let C_{1} be the cycle $v_{1}, v_{2}, \ldots, v_{i}, v_{j}, v_{j+1}, \ldots, v_{l}$ and G_{1} the near-triangulation induced by the vertices on or in the interior of C_{1}. Then G_{1} is consistent with the list assignment L restricted to the vertices of C_{1}, and by the minimality of G, there exists an L-colouring f_{1} of C_{1} that can be extended to a k-colouring of G_{1} with $f_{1}\left(v_{1}\right)=s$ and $f_{1}\left(v_{l}\right)=t$. Let C_{2} be the cycle $v_{i}, v_{i+1}, \ldots, v_{j}$ and let G_{2} be the near-triangulation induced by the vertices on or in the interior of
C_{2}. Again, the list assignment to the vertices of C_{2} satisfies the induction hypothesis and G_{2} is consistent with it. The minimality of G implies there exists an L-colouring f_{2} of C_{2} that can be extended to a k-colouring of G_{2} with $f_{2}\left(v_{i}\right)=f_{1}\left(v_{i}\right)$ and $f_{2}\left(v_{j}\right)=f_{1}\left(v_{j}\right)$. Defining $f(v)=f_{1}(v)$ for all vertices $v \in V\left(G_{1}\right)$ and $f(v)=f_{2}(v)$ for all vertices $v \in V\left(G_{2}\right)$, gives a k-colouring of G that extends an L-colouring of C, a contradiction.
Case 2. A similar argument holds if G has a separating triangle $u v w$, that is a triangle whose interior as well as exterior contain vertices of G. Let G_{1} be the near-triangulation obtained by deleting the vertices in the interior of the separating triangle $u v w$. Then G_{1} has the same boundary C as G and is consistent with the list assignment L. The minimality of G implies there exists an L-colouring f_{1} of C that extends to a k-colouring of G_{1}, with $f_{1}\left(v_{1}\right)=s$ and $f_{1}\left(v_{l}\right)=t$. Rename the colours so that $f_{1}(u)=c_{2}, f_{1}(v)=c_{3}$ and $f_{1}(w)=c_{4}$. Let G_{2} be the triangulation induced by the vertices on and in the interior of the triangle $u v w$ and let $L(u)=L(v)=L(w)=\left\{c_{2}, c_{3}, c_{4}\right\}$. Then the triangle uvw satisfies the induction hypothesis and by induction, there exists an L-colouring f_{2} of the triangle that extends to a k-colouring of G_{2}, with $f_{2}(u)=c_{2}$ and $f_{2}(v)=c_{3}$. The list assigned to w ensures $f_{2}(w)=c_{4}$. Rename the colours in the colouring f_{2} so that $f_{2}(x)=f_{1}(x)$ for all $x \in\{u, v, w\}$. Again, setting $f(v)=f_{1}(v)$ for all vertices $v \in V\left(G_{1}\right)$ and $f(v)=f_{2}(v)$ for all vertices $v \in V\left(G_{2}\right)$, gives a k-colouring of G that extends an L-colouring of C, a contradiction.
Case 3. We may now assume that G is chordless and has no separating triangle. If G is a triangle, let $f\left(v_{1}\right)=s$ and $f\left(v_{3}\right)=t$ with $s \neq t$ by assumption. If $\left|L\left(v_{1}\right)\right|=3$ then $s \in\left\{c_{2}, c_{3}, c_{4}\right\}$ and the same holds for v_{3}. This implies that if $\left|L\left(v_{2}\right)\right|=1$, then $s, t \notin L\left(v_{2}\right)$, and otherwise $\left|L\left(v_{2}\right)\right|=3$ and $L\left(v_{2}\right)$ contains a colour other than s, t. Assigning this colour to v_{2} gives an L-colouring of C.

Suppose G is not a triangle, which implies that for every edge $v_{i} v_{i+1}$ in C, there exists an internal vertex v in G such that $v v_{i} v_{i+1}$ is an internal face in G. Suppose there exists such an edge $v_{i} v_{i+1}$ for some $1 \leq i<l$ such that $L\left(v_{i}\right) \cap L\left(v_{i+1}\right)=\emptyset$. Let G_{1} be obtained from G by deleting the edge $v_{i} v_{i+1}$. Then G_{1} is a near-triangulation bounded by the cycle $C_{1}=v_{1}, \ldots, v_{i}, v, v_{i+1}, \ldots, v_{l}$. Setting $L(v)=\left\{c_{2}, c_{3}, c_{4}\right\}$ gives a list assignment to the vertices of C_{1} that satisfies the induction hypothesis, and G_{1} is consistent with it. The minimality of G implies there exists an L-colouring f of C_{1} that extends to a k-colouring of G_{1} with $f\left(v_{1}\right)=s$ and $f\left(v_{l}\right)=t$. Since $L\left(v_{i}\right) \cap L\left(v_{i+1}\right)=\emptyset$ by assumption, this gives the required L-colouring of C that extends to a k-colouring of G. If there is no such edge $v_{i} v_{i+1}$ in C, then for all $m \in(1, l), L\left(v_{m}\right)=\left\{c_{2}, c_{3}, c_{4}\right\}$, for otherwise $L\left(v_{i}\right)=\{a\}$ for some $a \in S_{1}$ and $a \notin L\left(v_{i+1}\right)$, which implies $L\left(v_{i}\right) \cap L\left(v_{i+1}\right)=\emptyset$. This also implies $L\left(v_{1}\right)=L\left(v_{l}\right)=$ $\left\{c_{2}, c_{3}, c_{4}\right\}$.

Let $v_{1}=u_{1}, u_{2}, \ldots, u_{r}=v_{3}$ be the vertices adjacent to v_{2} such that $v_{2} u_{i} u_{i+1}$ is an internal face of G, for some $r \geq 3$ and all $1 \leq i<r$. Let G_{1} be the graph obtained from G by deleting the vertex v_{2}. Then G_{1} is a near-triangulation bounded by the cycle $C_{1}=v_{1}, u_{2}, \ldots, u_{r-1}, v_{3}, \ldots, v_{l}$. Let $L\left(u_{i}\right)=\left\{c_{1}\right\}$ if i is odd and $L\left(u_{i}\right)=\left\{c_{5}\right\}$ if i is even, for all $1<i<r$. The list assignment L to the vertices of C_{1} satisfies the induction hypothesis and G_{1} is consistent with it. The minimality
of G implies there exists an L-colouring f of C_{1} that extends to a k-colouring of G_{1} with $f\left(v_{1}\right)=s$ and $f\left(v_{l}\right)=t$. Since $L\left(v_{2}\right)=\left\{c_{2}, c_{3}, c_{4}\right\}$, setting $f\left(v_{2}\right)$ to be a colour in $\left\{c_{2}, c_{3}, c_{4}\right\} \backslash\left(\left\{f\left(v_{1}\right)\right\} \cup\left\{f\left(v_{3}\right)\right\}\right)$, gives the required L-colouring of C that extends to a k-colouring of G. This completes all cases and the proof of the lemma.

We next consider the case when the vertices can be of two types. In this case, we need to put more restrictions on the L-colouring of the cycle. If $u v$ is an edge in the cycle C, we place restrictions on the ordered pair of colours $(f(u), f(v))$ assigned to the vertices u and v in an L-colouring f. In the usual list colouring, this can be any pair in $L(u) \times L(v)$ such that the two colours are distinct. Here we allow only specified subsets of such pairs and assign a list of allowed pairs from $L(u) \times L(v)$ to the edge $u v$. We call these sets of ordered pairs the labels of the edges. Let a denote any colour in S_{1}, b denote any colour in S_{2}, and x denote any colour in $\left\{c_{3}, c_{4}\right\}$ with $\{x, y\}=\left\{c_{3}, c_{4}\right\}$. The allowed label sets are the following and we call the collection of these \mathcal{L}_{12}.
(i) $\{(a, b)\}, a \neq b$
(ii) $\{(a, x)\}$
(iii) $\{(x, b)\}$
(iv) $\left\{\left(c_{2}, x\right),(y, x)\right\}$
(v) $\left\{\left(x, c_{1}\right),(x, y)\right\}$
(vi) $\left\{\left(c_{2}, x\right),\left(x, c_{1}\right)\right\}$

We consider list assignments to a cycle C in which every vertex v is assigned a list of colours and exactly two edges $u_{1} v_{1}$ and $u_{2} v_{2}$ are assigned labels $L\left(u_{1} v_{1}\right), L\left(u_{2} v_{2}\right) \in$ \mathcal{L}_{12} respectively, where $L\left(u_{1} v_{1}\right) \subseteq L\left(u_{1}\right) \times L\left(v_{1}\right)$ and $L\left(u_{2} v_{2}\right) \subseteq L\left(u_{2}\right) \times L\left(v_{2}\right)$. Let G be a near-triangulation with boundary C that is consistent with the lists assigned to the vertices in C. We say the list assignment is feasible for G if for every ordered pair $\left(s_{1}, t_{1}\right) \in L\left(u_{1} v_{1}\right)$ there exists an ordered pair $\left(s_{2}, t_{2}\right) \in L\left(u_{2} v_{2}\right)$ and an L colouring f of C that can be extended to a k-colouring of G with $f\left(u_{i}\right)=s_{i}$ and $f\left(v_{i}\right)=t_{i}$ for $i \in\{1,2\}$. We call $\left(L\left(u_{1} v_{1}\right), L\left(u_{2} v_{2}\right)\right)$ a feasible pair of labels for G.

Lemma 4 Let $C=v_{1}, v_{2}, \ldots, v_{l}$ be a cycle of length l and p an integer such that $1 \leq p<l$. Let L be an assignment of list of colours to each vertex in C such that v_{m} is of type T_{1} for all $m \in[1, p]$, and of type T_{2} for all $m \in(p, 1)$. Let $L_{2}=L\left(v_{p} v_{p+1}\right) \subseteq L\left(v_{p}\right) \times L\left(v_{p+1}\right)$ be any label in \mathcal{L}_{12} assigned to the edge $v_{p} v_{p+1}$. For any near-triangulation G with boundary C that is consistent with L, there exists a label $L_{1} \in \mathcal{L}_{12}$ and $L_{1} \subseteq L\left(v_{1}\right) \times L\left(v_{l}\right)$ that can be assigned to the edge $v_{1} v_{l}$ such that $\left(L_{1}, L_{2}\right)$ is a feasible pair of labels for G.

Proof: The proof is again by induction on the number of edges. Let G be a counterexample with the minimum number of edges.
Case 1. Suppose G has a chord $v_{i} v_{j}$ with $1 \leq i<j \leq l$. Let C_{1} be the cycle $v_{1}, v_{2}, \ldots, v_{i}, v_{j}, \ldots, v_{l}$ and G_{1} the near-triangulation induced by the vertices on and in the interior of C_{1}. Let G_{2} be the near-triangulation induced by the vertices on and in the interior of the cycle $C_{2}=v_{i}, v_{i+1}, \ldots, v_{j}$.
Case 1.1 Suppose $j \leq p$. The list assignment L restricted to the vertices in C_{1}, along with the label L_{2} assigned to the edge $v_{p} v_{p+1}$, satisfies the induction hypothesis, and the minimality of G implies the existence of a feasible pair of labels (L_{1}, L_{2}) for G_{1}. We claim that this is also feasible for G. Consider any L-colouring f_{1} of C_{1} that can be extended to a k-colouring of G_{1}. The list assignment L restricted to the vertices of C_{2} satisfies the conditions of Lemma 3 and applying it gives an L-colouring f_{2} of C_{2} that can be extended to a k-colouring of G_{2}, with $f_{2}(v)=f_{1}(v)$
for $v \in\left\{v_{i}, v_{j}\right\}$. Thus any L-colouring of C_{1} that can be extended to a k-colouring of G_{1} can also be extended to a k-colouring of G. Therefore the labels $\left(L_{1}, L_{2}\right)$ form a feasible pair for G. A similar argument holds if $i>p$. In this case, for applying Lemma 3 to the near-triangulation G_{2}, first swap the colours c_{1} and c_{2} in the lists assigned to the vertices of C_{2}. This converts all vertices v_{m} with $m \in(i, j)$ to type T_{1} and Lemma 3 can be applied. After getting the L-colouring of C_{2} that can be extended to a k-colouring of G_{2}, again swap the colours c_{1}, c_{2} in the k-colouring of G_{2} to get the required L-colouring of C_{2}.
Case 1.2 Suppose $i \leq p<j$. In this case, the list assignment L restricted to the vertices of C_{2} satisfies the induction hypothesis, considering $v_{i} v_{j}$ to be the edge $v_{1} v_{l}$. The minimality of G implies there exists a label L_{1}^{\prime} that can be assigned to the edge $v_{i} v_{j}$ such that $\left(L_{1}^{\prime}, L_{2}\right)$ is a feasible pair of labels for G_{2}. The list assignment L restricted to the vertices of C_{1}, with the label L_{1}^{\prime} assigned to the edge $v_{i} v_{j}$, also satisfies the induction hypothesis, and there exists a label L_{1} that can be assigned to the edge $v_{1} v_{l}$ such that $\left(L_{1}, L_{1}^{\prime}\right)$ is a feasible pair for G_{1}. This implies $\left(L_{1}, L_{2}\right)$ is a feasible pair of labels for G.
Case 2. We may assume G is chordless. If G has a separating triangle, the same argument as in Lemma 3 can be used. Delete the vertices in the interior of a separating triangle to get a near-triangulation G_{1} with the same boundary as G. By induction, there exists a feasible pair of labels $\left(L_{1}, L_{2}\right)$ for G_{1}. It can then be argued as in Lemma 3 that $\left(L_{1}, L_{2}\right)$ is also feasible for G. We may therefore assume G has no chord and no separating triangle.
Case 2.1 Suppose $l=3$ and without loss of generality assume $p=2$, otherwise reverse the cycle and swap the colours c_{1} and c_{2} to apply the argument. In this case, it is sufficient to show that for every label $L_{2} \in \mathcal{L}_{12}$ assigned to the edge $v_{2} v_{3}$, there exists a label L_{1} that can be assigned to $v_{1} v_{3}$ such that for every pair $(s, t) \in L_{1}$, there exists a colour $r \notin\{s, t\}$ such that $(r, t) \in L_{2}$. Lemma 3 implies that the L-colouring f of C defined by $f\left(v_{1}\right)=s, f\left(v_{2}\right)=r, f\left(v_{3}\right)=t$, can be extended to a k-colouring of G, hence $\left(L_{1}, L_{2}\right)$ is a feasible pair for G.

If $\left|L\left(v_{2}\right)\right|=\left|L\left(v_{3}\right)\right|=1$ then $L_{2}=L\left(v_{2}\right) \times L\left(v_{3}\right)$. If $\left|L\left(v_{1}\right)\right|=1$, then since G is consistent with $L, L\left(v_{1}\right) \neq L\left(v_{2}\right)$ and $L\left(v_{1}\right) \neq L\left(v_{3}\right)$. Setting $L_{1}=L\left(v_{1}\right) \times L\left(v_{3}\right)$ gives a feasible pair of labels $\left(L_{1}, L_{2}\right)$ for G. If $\left|L\left(v_{1}\right)\right|=3$, then since v_{1} is of type $T_{1}, L\left(v_{1}\right)=\left\{c_{2}, c_{3}, c_{4}\right\}$. Setting $L_{1}=\left\{c_{3}\right\} \times L\left(v_{3}\right)$ gives the required label for the edge $v_{1} v_{3}$.

Suppose $\left|L\left(v_{2}\right)\right|=3$ and $\left|L\left(v_{3}\right)\right|=1$. We can assume $L_{2}=\{(x, b)\}$ for some $x \in\left\{c_{3}, c_{4}\right\}$ and $b \in S_{2}$. If $\left|L\left(v_{1}\right)\right|=1$, let L_{1} be the set $L\left(v_{1}\right) \times\{b\}$. If $\left|L\left(v_{1}\right)\right|=3$, let L_{1} be the set $\{(y, b)\}$, where $y \in\left\{c_{3}, c_{4}\right\} \backslash\{x\}$. In both cases, we get a feasible pair of labels $\left(L_{1}, L_{2}\right)$ for G.

Suppose $\left|L\left(v_{2}\right)\right|=1$ and $\left|L\left(v_{3}\right)\right|=3$. We can assume that $L_{2}=\{(a, x)\}$ for some $x \in\left\{c_{3}, c_{4}\right\}$ and $a \in S_{1}$. If $\left|L\left(v_{1}\right)\right|=1$ let $L_{1}=L\left(v_{1}\right) \times\{x\}$, otherwise $L\left(v_{1}\right)=\left\{c_{2}, c_{3}, c_{4}\right\}$ and let $L_{1}=\left\{\left(c_{2}, x\right),(y, x)\right\}$. In both cases $\left(L_{1}, L_{2}\right)$ is a feasible pair of labels for G.

Suppose both $\left|L\left(v_{2}\right)\right|$ and $\left|L\left(v_{3}\right)\right|$ are 3, which implies $L\left(v_{2}\right)=\left\{c_{2}, c_{3}, c_{4}\right\}$ and $L\left(v_{3}\right)=\left\{c_{1}, c_{3}, c_{4}\right\}$. Then L_{2} can be any one of $\left\{\left(c_{2}, x\right),(y, x)\right\},\left\{\left(x, c_{1}\right),(x, y)\right\}$ and $\left\{\left(c_{2}, x\right),\left(x, c_{1}\right)\right\}$. If $\left|L\left(v_{1}\right)\right|=1$, then $L\left(v_{1}\right)=\{a\}$ for some $a \in S_{1}$. If $\left(c_{2}, x\right) \in L_{2}$,
let $L_{1}=\{(a, x)\}$, otherwise $(x, y) \in L_{2}$ and let $L_{1}=\{(a, y)\}$. In both cases $\left(L_{1}, L_{2}\right)$ is a feasible pair for G. If $\left|L\left(v_{1}\right)\right|=3$, then $L\left(v_{1}\right)=\left\{c_{2}, c_{3}, c_{4}\right\}$. If $L_{2}=$ $\left\{\left(c_{2}, x\right),(y, x)\right\}$ let $L_{1}=L_{2}$. If $L_{2}=\left\{\left(x, c_{1}\right),(x, y)\right\}$ let $L_{1}=\left\{\left(y, c_{1}\right),\left(c_{2}, y\right)\right\}$ and if $L_{2}=\left\{\left(c_{2}, x\right),\left(x, c_{1}\right)\right\}$ let $L_{1}=\left\{(y, x),\left(y, c_{1}\right)\right\}$. In each case, it is easy to verify that (L_{1}, L_{2}) is a feasible pair of labels for G.
Case 2.2 Suppose now that $l>3$. Since G is chordless, for every edge $v_{i} v_{i+1}$ in C, there exists an internal vertex v such that $v v_{i} v_{i+1}$ is an internal face in G. Suppose there exists such an edge $v_{i} v_{i+1}$ for some $1 \leq i<l$ and $i \neq p$ such that $L\left(v_{i}\right) \cap L\left(v_{i+1}\right)=\emptyset$. Let G_{1} be the near-triangulation obtained by deleting the edge $v_{i} v_{i+1}$, with the cycle $C_{1}=v_{1}, v_{2}, \ldots, v_{i}, v, v_{i+1}, \ldots, v_{l}$ as the boundary. If $i<p$, let $L(v)=\left\{c_{2}, c_{3}, c_{4}\right\}$ and if $i>p$ then let $L(v)=\left\{c_{1}, c_{3}, c_{4}\right\}$. The list assignment L to the vertices of C_{1}, along with the label L_{2} to the edge $v_{p} v_{p+1}$, satisfies the induction hypothesis and G_{1} is consistent with it. By induction, there exists a label L_{1} for the edge $v_{1} v_{l}$ such that $\left(L_{1}, L_{2}\right)$ is a feasible pair of labels for G_{1}. Since every L-colouring of C_{1} is also an L-colouring of $C,\left(L_{1}, L_{2}\right)$ is a feasible pair of labels for G also. We may assume there is no such edge in C.
Case 2.2.1 Suppose there exists a vertex v_{i} with $\left|L\left(v_{i}\right)\right|=1$. Suppose $i=1$, which implies $L\left(v_{1}\right)=\{a\}$ for some $a \in S_{1}$. If $p>1$, then $L\left(v_{1}\right) \cap L\left(v_{2}\right)=\emptyset$, a contradiction. Therefore $p=1$ and the label L_{2} attached to the edge $v_{1} v_{2}$ is either $\{(a, b)\}$ for some $b \in S_{2}$ or $\{(a, x)\}$ for $x \in\left\{c_{3}, c_{4}\right\}$. Let v be the internal vertex in G such that $v v_{1} v_{2}$ is an internal face in G. Let G_{1} be the near-triangulation obtained by deleting the edge $v_{1} v_{2}$ with the cycle $C_{1}=v_{1}, v, v_{2}, \ldots, v_{l}$ as the boundary. Let $L(v)=\left\{c_{2}, c_{3}, c_{4}\right\}$ and assign the label L_{2}^{\prime} to the edge $v v_{2}$, where $L_{2}^{\prime}=\left\{\left(c_{3}, b\right)\right\}$ if $L_{2}=\{(a, b)\}$ and $L_{2}^{\prime}=\left\{\left(c_{2}, x\right),(y, x)\right\}$ if $L_{2}=\{(a, x)\}$. The list assignment L to the vertices in C_{1}, along with the label L_{2}^{\prime} assigned to the edge $v v_{2}$, satisfies the induction hypothesis, and by induction, there exists a feasible pair (L_{1}, L_{2}^{\prime}) for G_{1}. Since any L-colouring of C_{1} is also an L-colouring of $C,\left(L_{1}, L_{2}\right)$ is a feasible pair for G. A symmetrical argument holds if $\left|L\left(v_{2}\right)\right|=1$, by reversing the cycle and swapping the colours c_{1}, c_{2}.

If $1<i \leq p$ then $L\left(v_{i-1}\right) \cap L\left(v_{i}\right)=\emptyset$ and if $l>i>p$ then $L\left(v_{i}\right) \cap L\left(v_{i+1}\right)=\emptyset$, a contradiction.
Case 2.2.2 Suppose $\left|L\left(v_{i}\right)\right|=3$ for all $i \in[1, l]$ and suppose $p>2$. Let $v_{1}=$ $u_{1}, u_{2}, \ldots, u_{r}=v_{3}$ be the vertices adjacent to v_{2} such that $v_{2} u_{i} u_{i+1}$ is an internal face in G for all $1 \leq i<r$. Let G_{1} be obtained from G by deleting the vertex v_{2}. Then G_{1} is a near-triangulation bounded by the cycle $C_{1}=v_{1}, u_{2}, \ldots, u_{r-1}, v_{3}, \ldots, v_{l}$. Let $L\left(u_{i}\right)=\left\{c_{1}\right\}$ if i is odd and $L\left(u_{i}\right)=\left\{c_{5}\right\}$ if i is even, for all $2 \leq i<r$. This gives a list assignment to the vertices of C_{1}, which along with the label L_{2} for the edge $v_{p} v_{p+1}$, satisfies the induction hypothesis and G_{1} is consistent with it. By induction, there exists a label L_{1} for the edge $v_{1} v_{l}$ such that $\left(L_{1}, L_{2}\right)$ is a feasible pair of labels for G_{1}. Since any L-colouring of C_{1} can be extended to an L-colouring of C by assigning v_{2} a colour in $\left\{c_{2}, c_{3}, c_{4}\right\}$ that is not assigned to v_{1} or $v_{3},\left(L_{1}, L_{2}\right)$ is also a feasible pair of labels for G. A symmetrical argument can be used if $p<l-2$, by relabeling the vertex v_{i} as v_{l+1-i} and swapping the colours c_{1} and c_{2}.
Case 2.2.3 Suppose $\left|L\left(v_{i}\right)\right|=3$ for all $i \in[1, l], p \leq 2$ and $p \geq l-2$, which implies $l=4, p=2$. This implies L_{2} is one of the labels $\left\{\left(c_{2}, x\right),(y, x)\right\},\left\{\left(x, c_{1}\right),(x, y)\right\}$ or
$\left\{\left(c_{2}, x\right),\left(x, c_{1}\right)\right\}$.
Suppose $\left(x, c_{1}\right) \in L_{2}$. Again consider the near-triangulation G_{1} obtained by deleting the vertex v_{2} and bounded by the cycle $C_{1}=v_{1}, u_{2}, \ldots, v_{3}, v_{4}$. Let $L\left(u_{r}\right)=$ $\left\{c_{1}\right\}$ and $L\left(u_{i}\right)=\left\{c_{1}, c_{5}\right\} \backslash L\left(u_{i+1}\right)$ for $2 \leq i<r$. Note that the list for $v_{3}=u_{r}$ is modified by removing the elements c_{3}, c_{4} from it. Assign the label $L_{2}^{\prime}=\left\{\left(c_{1}, x\right)\right\}$ to the edge $v_{3} v_{4}$. Then the list assignment to the vertices of C_{1} satisfies the induction hypothesis, and G_{1} is consistent with it. By induction, there exists a label L_{1} for the edge $v_{1} v_{4}$ such that $\left(L_{1}, L_{2}^{\prime}\right)$ is a feasible pair of labels for G_{1}. Since in any L-colouring f of C_{1} we must have $f\left(v_{4}\right)=x, L_{1}=\left\{\left(c_{2}, x\right),(y, x)\right\}$. Therefore any L-colouring of C_{1} can be extended to an L-colouring of C by assigning colour x to v_{2}. This implies $\left(L_{1}, L_{2}\right)$ is a feasible pair of labels for G. If $\left(x, c_{1}\right) \notin L_{2}$, we can assume $\left(c_{2}, x\right) \in L_{2}$, and a symmetrical argument can be used after reversing the cycle and swapping the colours c_{1}, c_{2}.

This completes all cases and the proof of Lemma 4.
We now consider list assignments with vertices of 3 different types. We define two other sets of possible labels for edges in the cycle. Let $a \in S_{1}, b \in S_{2}$ and $c \in S_{3}$ be any colours. The label set \mathcal{L}_{13} contains the following sets of ordered pairs.
(i) $\{(a, c)\} \quad$ (ii) $\left\{\left(a, c_{2}\right),\left(a, c_{4}\right)\right\} \quad$ (iii) $\left\{\left(c_{2}, c\right),\left(c_{4}, c\right)\right\}$
(iv) $\left\{\left(c_{3}, c_{2}\right),\left(c_{3}, c_{4}\right),\left(c_{2}, c_{4}\right),\left(c_{4}, c_{2}\right)\right\}$
(v) $\left\{\left(c_{2}, c_{1}\right),\left(c_{4}, c_{1}\right),\left(c_{2}, c_{4}\right),\left(c_{4}, c_{2}\right)\right\}$
(vi) $\left\{\left(c_{3}, c_{2}\right),\left(c_{3}, c_{4}\right),\left(c_{2}, c_{1}\right),\left(c_{4}, c_{1}\right)\right\}$

A set in \mathcal{L}_{13} is obtained from a set in \mathcal{L}_{12} by first adding all pairs obtained by swapping colours c_{3} and c_{4} and then swapping the colours c_{2} and c_{3}. Thus if the set in \mathcal{L}_{12} is $\left\{\left(c_{2}, c_{3}\right),\left(c_{3}, c_{1}\right)\right\}$, adding all pairs obtained by swapping c_{3} and c_{4} gives the set $\left\{\left(c_{2}, c_{3}\right),\left(c_{3}, c_{1}\right),\left(c_{2}, c_{4}\right),\left(c_{4}, c_{1}\right)\right\}$ and then swapping the colours c_{2} and c_{3} gives the label $\left\{\left(c_{3}, c_{2}\right),\left(c_{2}, c_{1}\right),\left(c_{3}, c_{4}\right),\left(c_{4}, c_{1}\right)\right\} \in \mathcal{L}_{13}$. The labels in \mathcal{L}_{32} are obtained in a similar way from those in \mathcal{L}_{12}, by first adding all pairs obtained by swapping colours c_{3} and c_{4} and then swapping the colours c_{1} and c_{3}. For the example given, the label obtained is $\left\{\left(c_{2}, c_{1}\right),\left(c_{1}, c_{3}\right),\left(c_{2}, c_{4}\right),\left(c_{4}, c_{3}\right)\right\}$. The label set \mathcal{L}_{32} contains the following sets of ordered pairs.
(i) $\{(c, b)\} \quad$ (ii) $\left\{\left(c, c_{1}\right),\left(c, c_{4}\right)\right\} \quad$ (iii) $\left\{\left(c_{1}, b\right),\left(c_{4}, b\right)\right\}$
(iv) $\left\{\left(c_{2}, c_{1}\right),\left(c_{2}, c_{4}\right),\left(c_{1}, c_{4}\right),\left(c_{4}, c_{1}\right)\right\}$
(v) $\left\{\left(c_{1}, c_{3}\right),\left(c_{4}, c_{3}\right),\left(c_{1}, c_{4}\right),\left(c_{4}, c_{1}\right)\right\}$
(vi) $\left\{\left(c_{2}, c_{1}\right),\left(c_{2}, c_{4}\right),\left(c_{1}, c_{3}\right),\left(c_{4}, c_{3}\right)\right\}$.

The sets in \mathcal{L}_{13} and \mathcal{L}_{32} correspond to the sets in \mathcal{L}_{12} from which they are obtained.

Note that in Lemma 4, the list assignments and labels are symmetric in the colours c_{3} and c_{4}. Therefore if (L_{1}, L_{2}) is a feasible pair for a near-triangulation G, then so is ($L_{1}^{\prime}, L_{2}^{\prime}$), where L_{1}^{\prime} and L_{2}^{\prime} are obtained from L_{1} and L_{2} by swapping the colours c_{3} and c_{4}.

Lemma 5 Let $C=v_{1}, v_{2}, \ldots, v_{l}$ be a cycle of length l and p, q positive integers such that $1 \leq p<q<l$. Let L be an assignment of list of colours to the vertices of C such that the vertex v_{m} is of type T_{1} for all $m \in[1, p]$, of type T_{3} for $m \in(p, q]$ and of type T_{2} for $m \in(q, l]$. Suppose $L_{2} \in \mathcal{L}_{13}$ and $L_{3} \in \mathcal{L}_{32}$ are labels assigned
to the edges $v_{p} v_{p+1}$ and $v_{q} v_{q+1}$, respectively, such that $L_{2} \subseteq L\left(v_{p}\right) \times L\left(v_{p+1}\right)$ and $L_{3} \subseteq L\left(v_{q}\right) \times L\left(v_{q+1}\right)$. Then for any near-triangulation G with boundary C that is consistent with the list assignment L, there exists a label $L_{1} \in \mathcal{L}_{12}$ and $L_{1} \subseteq$ $L\left(v_{1}\right) \times L\left(v_{l}\right)$ that can be assigned to the edge $v_{1} v_{l}$, such that for any ordered pair $\left(s_{1}, t_{1}\right) \in L_{1}$, there exist ordered pairs $\left(s_{2}, t_{2}\right) \in L_{2},\left(s_{3}, t_{3}\right) \in L_{3}$ and an L-colouring f of C that can be extended to a k-colouring of G with $f\left(v_{1}\right)=s_{1}, f\left(v_{l}\right)=t_{1}$, $f\left(v_{p}\right)=s_{2}, f\left(v_{p+1}\right)=t_{2}, f\left(v_{q}\right)=s_{3}$ and $f\left(v_{q+1}\right)=t_{3}$.

Proof: The proof is again by induction, and we consider a counterexample G with the minimum number of edges. We call the triple of labels (L_{1}, L_{2}, L_{3}) satisfying the properties in the lemma a feasible triple, and suppose G does not have a feasible triple for some list assignment L to the vertices of C and labels L_{2}, L_{3}.
Case 1. Suppose G has a chord $v_{i} v_{j}$ for some $1 \leq i<j \leq l$. Again, let G_{1} be the near-triangulation induced by the vertices on or in the interior of the cycle $C_{1}=v_{1}, \ldots, v_{i}, v_{j}, \ldots, v_{l}$ and G_{2} the near-triangulation induced by the vertices on or in the interior of the cycle $C_{2}=v_{i}, v_{i+1} \ldots, v_{j}$.
Case 1.1 Suppose v_{i} and v_{j} are vertices of the same type. Then the list assignment L restricted to the vertices of C_{1}, along with the labels L_{2} and L_{3} assigned to the edges $v_{p} v_{p+1}$ and $v_{q} v_{q+1}$, satisfies the induction hypothesis. By induction, there exists a feasible triple (L_{1}, L_{2}, L_{3}) for G_{1}, and we claim that it is also feasible for G. Let f_{1} be any L-colouring of C_{1}. The list assignment L restricted to the vertices of C_{2} satisfies the conditions of Lemma 3, perhaps after renaming colours so that vertices v_{m} have type T_{1} for $m \in[i, j]$. Lemma 3 then implies there exists an L colouring f_{2} of C_{2} that can be extended to a k-colouring of G_{2} with $f_{2}\left(v_{i}\right)=f_{1}\left(v_{i}\right)$ and $f_{2}\left(v_{j}\right)=f_{1}\left(v_{j}\right)$. Since this holds for any L-colouring of $C_{1},\left(L_{1}, L_{2}, L_{3}\right)$ is a feasible triple for G.
Case 1.2 Suppose v_{i} is of type T_{1} and v_{j} of type T_{2}, which implies $1 \leq i \leq p$ and $q<j \leq l$. The list assignment L restricted to the vertices of C_{2}, along with the labels L_{2}, L_{3}, satisfies the induction hypothesis, and by induction there exists a label $L_{1}^{\prime} \in \mathcal{L}_{12}$ that can be assigned to the edge $v_{i} v_{j}$ such that $\left(L_{1}^{\prime}, L_{2}, L_{3}\right)$ is a feasible triple for G_{2}. The list assignment L restricted to the vertices of C_{1}, along with the label L_{1}^{\prime} assigned to the edge $v_{i} v_{j}$, satisfies the conditions of Lemma 4. Applying Lemma 4 to G_{1}, there exists a label L_{1} that can be assigned to the edge $v_{1} v_{l}$ such that $\left(L_{1}, L_{1}^{\prime}\right)$ is a feasible pair of labels for G_{1}. This implies $\left(L_{1}, L_{2}, L_{3}\right)$ is a feasible triple for G.
Case 1.3 Suppose v_{i} is of type T_{1} and v_{j} of type T_{3}. Then the list assignment L restricted to the cycle C_{1} satisfies the induction hypothesis but the edge $v_{p} v_{p+1}$ is not in C_{1}. We choose an appropriate label $L_{2}^{\prime} \in \mathcal{L}_{13}$ for the edge $v_{i} v_{j}$ and the label L_{3} for the edge $v_{q} v_{q+1}$ in C_{1}. Applying induction gives a feasible triple ($L_{1}, L_{2}^{\prime}, L_{3}$) for G_{1}. We choose L_{2}^{\prime} so that for any ordered pair $\left(s_{2}^{\prime}, t_{2}^{\prime}\right) \in L_{2}^{\prime}$, there exists an ordered pair $\left(s_{2}, t_{2}\right) \in L_{2}$ and an L-colouring f_{2} of C_{2} that can be extended to a k-colouring of G_{2} with $f_{2}\left(v_{i}\right)=s_{2}^{\prime}, f_{2}\left(v_{j}\right)=t_{2}^{\prime}, f_{2}\left(v_{p}\right)=s_{2}$ and $f_{2}\left(v_{p+1}\right)=t_{2}$. Then $\left(L_{1}, L_{2}, L_{3}\right)$ is a feasible triple for G.

The label L_{2}^{\prime} for the edge $v_{i} v_{j}$ is found by applying Lemma 4 to the neartriangulation G_{2}. We first swap the colours c_{2} and c_{3} in all the lists and the ordered
pairs in the label so that vertices v_{m} of type T_{3} for $m \in(p, j]$ are converted to type T_{2}. This swap does not affect the lists for the vertices v_{m} of type T_{1} for $m \in[i, p]$. After swapping colours c_{2} and c_{3}, the labels in \mathcal{L}_{13} are closed under swapping colours c_{3} and c_{4}. Retaining only one of the pairs that can be obtained by such a swap converts the label L_{2} into a label $L_{2}^{\prime \prime}$ that is in \mathcal{L}_{12}. In other words, $L_{2}^{\prime \prime}$ is the label in \mathcal{L}_{12} corresponding to the label $L_{2} \in \mathcal{L}_{13}$. Lemma 4 implies there exists a label $L_{2}^{\prime \prime \prime} \in \mathcal{L}_{12}$ that can be assigned to the edge $v_{i} v_{j}$ such that ($L_{2}^{\prime \prime \prime}, L_{2}^{\prime \prime}$) is a feasible pair for G_{2}. Let L_{2}^{\prime} be the label in \mathcal{L}_{13} corresponding to the label $L_{2}^{\prime \prime \prime}$. It follows from Lemma 4, that $\left(L_{2}^{\prime}, L_{2}\right)$ is a feasible pair of labels for G_{2}.

The argument in the case v_{i} is of type T_{3} and v_{j} is of type T_{2} is symmetric, and the above argument can be applied after reversing the cycle and swapping the colours c_{1} and c_{2} in the lists and the labels.
Case 2. We may now assume G has no chords. If G has a separating triangle, exactly the same argument as in Lemmas 3 and 4 can be used. So we may assume G has no chords or separating triangles.
Case 2.1 Suppose $l=3$, which implies $p=1$ and $q=2$. In this case, it is sufficient to show that for any labels L_{2}, L_{3} assigned to the edges $v_{1} v_{2}$ and $v_{2} v_{3}$, respectively, there exists a label L_{1} that can be assigned to $v_{1} v_{3}$ such that for every pair $(s, t) \in L_{1}$, there is colour $r \notin\{s, t\}$ that can be assigned to v_{2} such that $(s, r) \in L_{2}$ and $(r, t) \in L_{3}$. Lemma 3 implies that any such L-colouring of C can be extended to a k-colouring of G, hence (L_{1}, L_{2}, L_{3}) is a feasible triple for any triangulation G.

Suppose the label L_{2} is $\{(a, c)\}$ for some $a \in S_{1}$ and $c \in S_{3}$. Then L_{3} is either $\{(c, b)\}$ for some $b \in S_{2}$ or $\left\{\left(c, c_{1}\right),\left(c, c_{4}\right)\right\}$. In the first case, the L-colouring is given by $f\left(v_{1}\right)=a, f\left(v_{2}\right)=c$ and $f\left(v_{3}\right)=b$, hence $L_{1}=\{(a, b)\}$. In the second case, set $f\left(v_{3}\right)=c_{4}$ and hence $L_{1}=\left\{\left(a, c_{4}\right)\right\}$ satisfies the requirements.

Suppose L_{2} is the label $\left\{\left(a, c_{2}\right),\left(a, c_{4}\right)\right\}$ for some $a \in S_{1}$. If $L_{3}=\left\{\left(c_{1}, b\right),\left(c_{4}, b\right)\right\}$, for some $b \in S_{2}$, let f be the L-colouring of C with $f\left(v_{1}\right)=a, f\left(v_{2}\right)=c_{4}$ and $f\left(v_{3}\right)=b$. In this case, the label L_{1} is $\{(a, b)\}$. Otherwise if $\left(c_{1}, c_{3}\right),\left(c_{4}, c_{3}\right) \in L_{3}$, set $f\left(v_{3}\right)=c_{3}$ to get the required label $L_{1}=\left\{\left(a, c_{3}\right)\right\}$. The remaining possibility is that $L_{3}=\left\{\left(c_{2}, c_{1}\right),\left(c_{2}, c_{4}\right),\left(c_{1}, c_{4}\right),\left(c_{4}, c_{1}\right)\right\}$. In this case, choose $f\left(v_{2}\right)=c_{2}$ and $f\left(v_{3}\right)=c_{4}$, to get the required label $L_{1}=\left\{\left(a, c_{4}\right)\right\}$.

We may now assume $\left|L\left(v_{1}\right)\right|=3$ and by symmetry, $\left|L\left(v_{3}\right)\right|=3$. Suppose $\left|L\left(v_{2}\right)\right|=1$, which implies $L\left(v_{2}\right)=\{c\}$ for some $c \in S_{3}$. In this case $L_{2}=$ $\left\{\left(c_{2}, c\right),\left(c_{4}, c\right)\right\}$ and $L_{3}=\left\{\left(c, c_{1}\right),\left(c, c_{4}\right)\right\}$. Then setting $f\left(v_{1}\right)=c_{2}, f\left(v_{2}\right)=c$ and $f\left(v_{3}\right)=c_{4}$ gives an L-colouring of C. Similarly, $f\left(v_{1}\right)=c_{4}, f\left(v_{2}\right)=c$ and $f\left(v_{3}\right)=c_{1}$ is an L-colouring of C. This implies $L_{1}=\left\{\left(c_{2}, c_{4}\right),\left(c_{4}, c_{1}\right)\right\}$ gives a feasible triple for G.

Finally, suppose all three vertices have lists of size 3. Suppose $\left(c_{2}, c_{1}\right),\left(c_{4}, c_{1}\right) \in$ L_{2}. If $\left(c_{1}, c_{3}\right),\left(c_{4}, c_{3}\right) \in L_{3}$, let $f\left(v_{2}\right)=c_{1}, f\left(v_{3}\right)=c_{3}$ and $f\left(v_{1}\right)$ can be either c_{2} or c_{4}. These give L-colourings of C, hence setting $L_{1}=\left\{\left(c_{2}, c_{3}\right),\left(c_{4}, c_{3}\right)\right\}$ gives a feasible triple for G. If $\left(c_{1}, c_{3}\right) \notin L_{3}$ then $L_{3}=\left\{\left(c_{2}, c_{1}\right),\left(c_{2}, c_{4}\right),\left(c_{1}, c_{4}\right),\left(c_{4}, c_{1}\right)\right\}$. Applying a symmetrical argument by reversing the cycle and swapping the colours c_{1}, c_{2}, we must have $L_{2}=\left\{\left(c_{2}, c_{1}\right),\left(c_{4}, c_{1}\right),\left(c_{2}, c_{4}\right),\left(c_{4}, c_{2}\right)\right\}$. In this case, setting $f\left(v_{1}\right)=$ $c_{2}, f\left(v_{2}\right)=c_{1}$ and $f\left(v_{3}\right)=c_{4}$ gives an L-colouring of C, as does setting $f\left(v_{1}\right)=c_{4}$,
$f\left(v_{2}\right)=c_{2}$ and $f\left(v_{3}\right)=c_{1}$. This implies $L_{1}=\left\{\left(c_{2}, c_{4}\right),\left(c_{4}, c_{1}\right)\right\}$ gives a feasible triple for G. The final case to consider is if $\left(c_{2}, c_{1}\right),\left(c_{4}, c_{1}\right) \notin L_{2}$ and by a symmetrical argument $\left(c_{2}, c_{1}\right),\left(c_{2}, c_{4}\right) \notin L_{3}$. This implies $L_{2}=\left\{\left(c_{3}, c_{2}\right),\left(c_{3}, c_{4}\right),\left(c_{2}, c_{4}\right),\left(c_{4}, c_{2}\right)\right\}$ and $L_{3}=\left\{\left(c_{1}, c_{3}\right),\left(c_{4}, c_{3}\right),\left(c_{1}, c_{4}\right),\left(c_{4}, c_{1}\right)\right\}$. Therefore $f\left(v_{1}\right)=c_{3}, f\left(v_{2}\right)=c_{4}$ and $f\left(v_{3}\right)=c_{1}$ is an L-colouring of C and so is $f\left(v_{1}\right)=c_{2}, f\left(v_{2}\right)=c_{4}$ and $f\left(v_{3}\right)=c_{3}$. This implies $L_{1}=\left\{\left(c_{2}, c_{3}\right),\left(c_{3}, c_{1}\right)\right\}$ gives a feasible triple for G. This completes all cases when $l=3$.
Case 2.2 We may now assume $l>3$ and G is a chordless near-triangulation with no separating triangles. Therefore for every edge $v_{i} v_{i+1}$ in C there exists an internal vertex v in G such that $v v_{i} v_{i+1}$ is an internal face in G. As in the proof of Lemma 4, we may assume that $L\left(v_{i}\right) \cap L\left(v_{i+1}\right) \neq \emptyset$ for any $i \notin\{p, q\}$, otherwise we can get the required feasible triple of labels by deleting such an edge and applying induction.
Case 2.2.1 Suppose there exists a vertex v_{i} with $\left|L\left(v_{i}\right)\right|=1$. Suppose $i=1$, which implies $L\left(v_{1}\right)=\{a\}$ for some $a \in S_{1}$. Then we must have $p=1$ otherwise v_{2} is also a vertex of type T_{1} and $L\left(v_{1}\right) \cap L\left(v_{2}\right)=\emptyset$. This implies the label L_{2} assigned to the edge $v_{1} v_{2}$ is either $\{(a, c)\}$ for some $c \in S_{3}$ or $\left\{\left(a, c_{2}\right),\left(a, c_{4}\right)\right\}$. Let v be the vertex such that $v v_{1} v_{2}$ is an internal face in G. Let G_{1} be the near-triangulation obtained by deleting the edge $v_{1} v_{2}$ having $C_{1}=v_{1}, v, v_{2}, \ldots, v_{l}$ as the boundary. Let $L(v)=$ $\left\{c_{2}, c_{3}, c_{4}\right\}$ and assign the label L_{2}^{\prime} to the edge $v v_{2}$, where $L_{2}^{\prime}=\left\{\left(c_{2}, c\right),\left(c_{4}, c\right)\right\}$ if $L_{2}=\{(a, c)\}$ and $L_{2}^{\prime}=\left\{\left(c_{3}, c_{2}\right),\left(c_{3}, c_{4}\right),\left(c_{2}, c_{4}\right),\left(c_{4}, c_{2}\right)\right\}$ otherwise. The list assignment to the vertices of C_{1} satisfies the induction hypothesis, and by induction, there exists a label L_{1} that can be assigned to $v_{1} v_{l}$ such that $\left(L_{1}, L_{2}^{\prime}, L_{3}\right)$ is a feasible triple for G_{1}. Since any L-colouring of C_{1} is also an L-colouring of $C,\left(L_{1}, L_{2}, L_{3}\right)$ is a feasible triple for G. A symmetrical argument holds if $L\left(v_{l}\right)=\{b\}$ for some $b \in S_{2}$.

Suppose $i \in(1, l)$. If v_{i} is of type T_{1} then $L\left(v_{i}\right) \cap L\left(v_{i-1}\right)=\emptyset$, and if it is of type $T_{2}, L\left(v_{i}\right) \cap L\left(v_{i+1}\right)=\emptyset$, a contradiction. If it is of type T_{3} and v_{i-1} is also of type T_{3}, the same argument holds. The only possibility is that $i=p+1$, $L\left(v_{p+1}\right)=\left\{c_{3}\right\}$ and $L\left(v_{p}\right)=\left\{c_{2}, c_{3}, c_{4}\right\}$. The label L_{2} assigned to the edge $v_{p} v_{p+1}$ must be $\left\{\left(c_{2}, c_{3}\right),\left(c_{4}, c_{3}\right)\right\}$. Let v be the vertex such that $v v_{p} v_{p+1}$ is an internal face in G. Let G_{1} be the near-triangulation obtained by deleting the edge $v_{p} v_{p+1}$ with the cycle $C_{1}=v_{1}, \ldots, v_{p}, v, v_{p+1}, \ldots, v_{l}$ as the boundary. Let $L(v)=\left\{c_{1}, c_{2}, c_{4}\right\}$ and assign the label $L_{2}^{\prime}=\left\{\left(c_{2}, c_{1}\right),\left(c_{4}, c_{1}\right),\left(c_{2}, c_{4}\right),\left(c_{4}, c_{2}\right)\right\}$ to the edge $v_{p} v$. The list assignment to the vertices of C_{1}, along with the label L_{2}^{\prime}, satisfies the induction hypothesis, and by induction there exists a feasible triple ($L_{1}, L_{2}^{\prime}, L_{3}$) for G_{1}. In any L-colouring of C_{1}, the label L_{2}^{\prime} ensures that v_{p} is coloured c_{2} or c_{4}, hence it is also an L-colouring of C. Therefore $\left(L_{1}, L_{2}, L_{3}\right)$ is a feasible triple for G.
Case 2.2.2 We may now assume $\left|L\left(v_{i}\right)\right|=3$ for all $i \in[1, l]$.
Case 2.2.2.1 Suppose $p>1$ and $q>p+1$. Suppose the label L_{2} contains the pairs $\left(c_{2}, c_{1}\right)$ and $\left(c_{4}, c_{1}\right)$. Let $v_{p-1}=u_{1}, \ldots, u_{r}=v_{p+1}$ be the neighbours of v_{p}. Consider the near-triangulation G_{1} obtained by deleting v_{p} having the cycle $v_{1}, \ldots, v_{p-1}, u_{2}, \ldots, u_{r-1}, v_{p+1}, \ldots, v_{l}$ as the boundary. Remove the elements c_{2}, c_{4} from $L\left(v_{p+1}\right)$ so that $L\left(v_{p+1}\right)=\left\{c_{1}\right\}$, which converts v_{p+1} to a vertex of type T_{1}. Let $L\left(u_{i}\right)=\left\{c_{1}, c_{5}\right\} \backslash L\left(u_{i+1}\right)$ for $2 \leq i<r$. Assign the label $L_{2}^{\prime}=\left\{\left(c_{1}, c_{2}\right),\left(c_{1}, c_{4}\right)\right\}$ to the edge $v_{p+1} v_{p+2}$ and keep the label L_{3} for the edge $v_{q} v_{q+1}$. The resulting list
assignment to the vertices of C_{1} satisfies the induction hypothesis, and by induction, there exists a feasible triple $\left(L_{1}, L_{2}^{\prime}, L_{3}\right)$ for G_{1}. Since any L-colouring of C_{1} can be extended to an L-colouring of C by assigning v_{p} a colour in $\left\{c_{2}, c_{4}\right\}$ that is not assigned to v_{p-1}, and since $\left(c_{2}, c_{1}\right),\left(c_{4}, c_{1}\right) \in L_{2},\left(L_{1}, L_{2}, L_{3}\right)$ is a feasible triple for G.

If $\left(c_{2}, c_{1}\right) \notin L_{2}$ then both $\left(c_{3}, c_{2}\right)$ and $\left(c_{3}, c_{4}\right)$ are in L_{2}. Now let $v_{p}=u_{1}, \ldots, u_{r}=$ v_{p+2} be the neighbours of v_{p+1}. Let G_{1} be the near-triangulation obtained by deleting the vertex v_{p+1} with the cycle $C_{1}=v_{1}, \ldots, v_{p}, u_{2}, \ldots, u_{r-1}, v_{p+1}, \ldots, v_{l}$ as the boundary. Remove the elements c_{2}, c_{4} from $L\left(v_{p}\right)$ so that $L\left(v_{p}\right)=\left\{c_{3}\right\}$, which converts v_{p} to a vertex of type T_{3}. Let $L\left(u_{i}\right)=\left\{c_{3}, c_{5}\right\} \backslash L\left(u_{i-1}\right)$ for $2 \leq i<r$. Assign the label $L_{2}^{\prime}=\left\{\left(c_{2}, c_{3}\right),\left(c_{4}, c_{3}\right)\right\}$ to the edge $v_{p-1} v_{p}$ and retain the label L_{3} for the edge $v_{q} v_{q+1}$ in C_{1}. The list assignment to the vertices of C_{1} satisfies the induction hypothesis and by induction there exists a feasible triple $\left(L_{1}, L_{2}^{\prime}, L_{3}\right)$ for G_{1}. Any L-colouring of C_{1} can be extended to an L-colouring of C by assigning v_{p+1} a colour in $\left\{c_{2}, c_{4}\right\}$ that is not assigned to v_{p+2}. This gives an L-colouring of C in which v_{p} is coloured c_{3} and v_{p+1} is coloured c_{2} or c_{4}, hence $\left(L_{1}, L_{2}, L_{3}\right)$ is a feasible triple for G.
Case 2.2.2.2 Suppose $p>1$ and $q=p+1$. The argument is similar to that in Case 2.2.2.1. Suppose $\left(c_{2}, c_{1}\right) \in L_{2}$, and again consider the near-triangulation obtained by deleting the vertex v_{p}. If $\left(c_{1}, c_{3}\right) \in L_{3}$, assign $L\left(v_{p+1}\right)=\left\{c_{1}\right\}$ and $L\left(u_{i}\right)=\left\{c_{1}, c_{5}\right\} \backslash L\left(u_{i+1}\right)$ for $2 \leq i<r$. There is no vertex of type T_{3} in C_{1} now. Instead of the label L_{3} assigned to the edge $v_{p+1} v_{p+2}$, assign the corresponding label $L_{3}^{\prime}=\left\{\left(c_{1}, c_{3}\right)\right\}$. Applying Lemma 4, there exists a feasible pair $\left(L_{1}, L_{3}^{\prime}\right)$ for G_{1}. Assigning v_{p} a colour in $\left\{c_{2}, c_{4}\right\}$ that is not assigned to v_{p-1} extends any L-colouring of C_{1} to an L-colouring of C. Therefore $\left(L_{1}, L_{2}, L_{3}\right)$ is a feasible triple for G. If $\left(c_{1}, c_{3}\right) \notin L_{3}$, then $L_{3}=\left\{\left(c_{2}, c_{1}\right),\left(c_{2}, c_{4}\right),\left(c_{1}, c_{4}\right),\left(c_{4}, c_{1}\right)\right\}$ and the same argument holds by choosing $L_{3}^{\prime}=\left\{\left(c_{1}, c_{4}\right)\right\}$. The remaining possibility is $\left(c_{2}, c_{1}\right) \notin L_{2}$, and by symmetry, $\left(c_{2}, c_{1}\right) \notin L_{3}$ which implies $L_{2}=\left\{\left(c_{3}, c_{2}\right),\left(c_{3}, c_{4}\right),\left(c_{2}, c_{4}\right),\left(c_{4}, c_{2}\right)\right\}$ and $L_{3}=\left\{\left(c_{1}, c_{3}\right),\left(c_{4}, c_{3}\right),\left(c_{1}, c_{4}\right),\left(c_{4}, c_{1}\right)\right\}$. In this case, swap the colours c_{3} and c_{4} in all the lists and labels and assign list $\left\{c_{3}\right\}$ to the vertex v_{p+1}. The lists for the other vertices remain the same and the label L_{2} changes to $\left\{\left(c_{2}, c_{3}\right),\left(c_{4}, c_{3}\right)\right\}$ and L_{3} to $\left\{\left(c_{3}, c_{1}\right),\left(c_{3}, c_{4}\right)\right\}$. This reduces to the Case 2.2 .1 considered previously.

Cases 2.2.2.1 and 2.2.2.2 cover all possibilities with $p>1$. A symmetrical argument can be used if $q<l-1$ by reversing the cycle and swapping the colours c_{1} and c_{2}.
Case 2.2.2.3 The only case that remains now is when $p=1$ and $q=l-1$, which means v_{1} is the only vertex of type T_{1} and v_{l} is the only vertex of type T_{2}.

Suppose $l \geq 5$ and let $v_{2}=u_{1}, u_{2}, \ldots, u_{r}=v_{4}$ be the neighbours of v_{3} such that $v_{3} u_{i} u_{i+1}$ is an internal face in G, for $1 \leq i<r$. Let G_{1} be the near-triangulation obtained by deleting the vertex v_{3} with the cycle $C_{1}=v_{1}, v_{2}, u_{2}, \ldots, u_{r-1}, v_{4}, \ldots, v_{l}$ as the boundary. Let $L\left(u_{i}\right)=\left\{c_{3}\right\}$ if i is odd and $L\left(u_{i}\right)=\left\{c_{5}\right\}$ if i is even for $2 \leq i<r$. The list assignment to the vertices of C_{1}, together with the labels L_{2} and L_{3} for the edges $v_{1} v_{2}$ and $v_{l-1} v_{l}$ respectively, satisfies the induction hypothesis, and by induction there exists a feasible triple $\left(L_{1}, L_{2}, L_{3}\right)$ for G_{1}. Any L-colouring of C_{1} can be extended to an L-colouring of C by assigning v_{3} a colour in $\left\{c_{1}, c_{2}, c_{4}\right\}$
that is not assigned to v_{2} or v_{4}. This implies $\left(L_{1}, L_{2}, L_{3}\right)$ is also a feasible triple for G.

Suppose $l=4,\left(c_{2}, c_{1}\right),\left(c_{4}, c_{1}\right) \in L_{2}$ and $\left(c_{1}, c_{3}\right),\left(c_{4}, c_{3}\right) \in L_{3}$. Let $v_{4}=$ $u_{1}, u_{2}, \ldots, u_{r}=v_{2}$ be the neighbours of v_{1} such that $v_{1} u_{i} u_{i+1}$ is an internal face in G for $1 \leq i<r$. Consider the near-triangulation G_{1} obtained by deleting the vertex v_{1} with the cycle $C_{1}=u_{2}, \ldots, v_{2}, v_{3}, v_{4}$ as the boundary. Assign the list $L\left(u_{r}\right)=L\left(v_{2}\right)=\left\{c_{1}\right\}$ and $L\left(u_{i}\right)=\left\{c_{1}, c_{5}\right\} \backslash L\left(u_{i+1}\right)$ for $2 \leq i<r$. Assign the list $\left\{c_{2}, c_{3}, c_{4}\right\}$ to v_{3} and v_{4} so that all vertices in C_{1} are of type T_{1}. By Lemma 3, there exists an L-colouring f of C_{1} that extends to a k-colouring of G_{1} with $f\left(v_{4}\right)=c_{3}$, $f\left(v_{3}\right)=c_{4}$ and $f\left(v_{2}\right)=c_{1}$. This can be extended to an L-colouring of C by assigning the colour c_{2} or c_{4} to the vertex v_{1}. Then with $L_{1}=\left\{\left(c_{2}, c_{3}\right),\left(c_{4}, c_{3}\right)\right\},\left(L_{1}, L_{2}, L_{3}\right)$ is a feasible triple for G. A symmetrical argument can be used if $\left\{\left(c_{3}, c_{2}\right),\left(c_{3}, c_{4}\right)\right\} \in L_{2}$ and $\left\{\left(c_{2}, c_{1}\right),\left(c_{2}, c_{4}\right)\right\} \in L_{3}$.

Suppose $\left(c_{2}, c_{1}\right),\left(c_{4}, c_{1}\right) \in L_{2}$ but $\left(c_{1}, c_{3}\right),\left(c_{4}, c_{3}\right) \notin L_{3}$. This implies $L_{3}=$ $\left\{\left(c_{2}, c_{1}\right),\left(c_{2}, c_{4}\right),\left(c_{1}, c_{4}\right),\left(c_{4}, c_{1}\right)\right\}$ and by the previous argument, $\left(c_{3}, c_{2}\right),\left(c_{3}, c_{4}\right) \notin$ L_{2}. This implies $L_{2}=\left\{\left(c_{2}, c_{1}\right),\left(c_{4}, c_{1}\right),\left(c_{4}, c_{2}\right),\left(c_{2}, c_{4}\right)\right\}$. In this case, the previous argument gives an L-colouring of C_{1} that extends to a k-colouring of G_{1} with $f\left(v_{4}\right)=$ $c_{4}, f\left(v_{3}\right)=c_{2}$ and $f\left(v_{1}\right)=c_{1}$. Assigning colour c_{2} to v_{1} gives an L-colouring f of C. Again using symmetry after reversing the cycle and swapping colours c_{1}, c_{2}, we get an L-colouring f of C that extends to a k-colouring of G with $f\left(v_{1}\right)=c_{4}$, $f\left(v_{2}\right)=c_{1}, f\left(v_{3}\right)=c_{2}$ and $f\left(v_{4}\right)=c_{1}$. Therefore setting $L_{1}=\left\{\left(c_{2}, c_{4}\right),\left(c_{4}, c_{1}\right)\right\}$ gives a feasible triple for G.

The remaining case to be considered is if $\left(c_{2}, c_{1}\right),\left(c_{4}, c_{1}\right) \notin L_{2}$, and by symmetry, $\left(c_{2}, c_{1}\right),\left(c_{2}, c_{4}\right) \notin L_{3}$. Then $L_{2}=\left\{\left(c_{3}, c_{2}\right),\left(c_{3}, c_{4}\right),\left(c_{2}, c_{4}\right),\left(c_{4}, c_{2}\right)\right\}$ and $L_{3}=\left\{\left(c_{1}, c_{3}\right),\left(c_{4}, c_{3}\right),\left(c_{1}, c_{4}\right),\left(c_{4}, c_{1}\right)\right\}$. Consider the triangulation G_{1}, and assign the lists $L\left(v_{4}\right)=\left\{c_{1}\right\}, L\left(u_{i}\right)=\left\{c_{1}, c_{5}\right\} \backslash L\left(u_{i-1}\right)$ for $2 \leq i<r$, and $L\left(v_{2}\right)=L\left(v_{3}\right)=$ $\left\{c_{2}, c_{3}, c_{4}\right\}$. Then all vertices are of type T_{1} and there exists an L-colouring f of C_{1} that extends to a k-colouring of G_{1} with $f\left(v_{4}\right)=c_{1}, f\left(v_{2}\right)=c_{2}$ and $f\left(v_{3}\right)=c_{4}$. Assigning $f\left(v_{1}\right)=c_{3}$ gives an L-colouring f of C that extends to a k-colouring of G. A symmetrical argument, after reversing the cycle and swapping the colours c_{1}, c_{2} gives an L-colouring f of C that extends to a k-colouring of G with $f\left(v_{1}\right)=c_{2}$, $f\left(v_{2}\right)=c_{4}, f\left(v_{3}\right)=c_{1}$ and $f\left(v_{4}\right)=c_{3}$. This implies setting $L_{1}=\left\{\left(c_{3}, c_{1}\right),\left(c_{2}, c_{3}\right)\right\}$ gives a feasible triple of labels $\left(L_{1}, L_{2}, L_{3}\right)$. This completes all cases when $l=4$ and hence the proof of Lemma 5 .
Proof of Theorem 1: The proof follows from Lemmas 3, 4 and 5. Let f be a good k-colouring of a cycle C of length l. Suppose f satisfies condition 1 in the definition of a good colouring. By permuting the colours, we can assume that $F[1, l] \subseteq S_{1}$. Then assigning the list $L\left(v_{i}\right)=\left\{f\left(v_{i}\right)\right\}$ for all $1 \leq i \leq l$ gives a list assignment to the vertices of C that satisfies the conditions of Lemma 3. Since any chordless near-triangulation G with boundary C is consistent with the list assignment to C, Lemma 3 implies the colouring of C can be extended to a k-colouring of G.

Suppose f satisfies condition 2 in the definition of a good colouring, with indices p and q. By relabeling the vertices and permuting the colours, we may assume that $p=1, F[1, q) \subseteq S_{1}, F[q, 1) \subseteq S_{2}$, and the set $A=\left\{c_{j} \mid 5 \leq j \leq k\right\}$. Then the list assignment $L\left(v_{i}\right)=\left\{f\left(v_{i}\right)\right\}$ for $1 \leq i \leq l$, with the label $L_{2}=L\left(v_{q-1}\right) \times L\left(v_{q}\right)$
assigned to the edge $v_{q-1} v_{q}$, satisfies the conditions of Lemma 4 and the result follows.

Suppose f satisfies condition 3 in the definition of a good colouring, with indices p, q, r. Again by relabeling vertices and permuting colours, we may assume that $p=1, F[1, q) \subseteq S_{1}, F[q, r) \subseteq S_{3}$ and $F[r, 1) \subseteq S_{2}$, where again $A=\left\{c_{j} \mid 5 \leq j \leq k\right\}$. The list assignment $L\left(v_{i}\right)=\left\{f\left(v_{i}\right)\right\}$ satisfies the conditions of Lemma 5 with the labels $L_{2}=L\left(v_{q-1}\right) \times L\left(v_{q}\right)$ and $L_{3}=L\left(v_{r-1}\right) \times L\left(v_{r}\right)$ assigned to the edges $v_{q-1} v_{q}$ and $v_{r-1} v_{r}$, respectively. The result follows from Lemma 5.

This completes the proof of Theorem 1.
Corollary 1 Any k-colouring f of a cycle of length $l \leq 2 k-5$ such that $|F[1, l]| \leq$ $k-1$ is safe. There exists a k-colouring of a cycle of length $2 k-4$ that is not safe and uses $k-1$ distinct colours.

Proof: If $|F[1, l]| \leq k-3$ then f is good and the result follows from Theorem 1. If $|F[1, l]|=k-2$, we may assume $F[1, l]=\left\{c_{1}, \ldots, c_{k-2}\right\}$. Since $l \leq 2 k-5$, at least one colour occurs only once in the cycle. Without loss of generality, by relabeling vertices and permuting colours, we may assume v_{l} is the only vertex with colour c_{k-2}. Then f satisfies condition 2 in the definition of a good k-colouring, with $p=1, q=l$ and $A=\left\{c_{1}, \ldots, c_{k-4}\right\}$. If $|F[1, l]|=k-1$, there are at least three distinct colours that occur exactly once in the colouring of the cycle. Without loss of generality, we may assume these colours are $c_{k-3}, c_{k-2}, c_{k-1}$ and the colour c_{k} does not occur. Let $1<p^{\prime}<q^{\prime} \leq l$ be indices such that $f\left(v_{1}\right)=c_{k-3}, f\left(v_{p^{\prime}}\right)=c_{k-2}$ and $f\left(v_{q^{\prime}}\right)=c_{k-1}$. Then f satisfies condition 3 in the definition of a good colouring with $p=1, q=p^{\prime}, r=q^{\prime}$ and $A=\left\{c_{1}, \ldots, c_{k-4}\right\}$. Theorem 1 implies f is safe.

An example of a k-colouring f of a cycle of length $2 k-4$ that is not safe is given by $f\left(v_{i}\right)=f\left(v_{k-2+i}\right)=c_{i}$ for $1 \leq i \leq k-3, f\left(v_{k-2}\right)=c_{k-2}$ and $f\left(v_{2 k-4}\right)=c_{k-1}$. Note that this colouring satisfies condition 2 in Lemma 1, and is bad.

If Conjecture 1 is true, then every k-colouring of a cycle of length at most $3 k-10$ that uses at most $k-2$ distinct colours is safe. However, Theorem 1 does not prove this since the k-colouring of a cycle of length $2 k-4$ defined by $f\left(v_{i}\right)=f\left(v_{i+k-2}\right)=c_{i}$ for $1 \leq i \leq k-2$ is not good.

3 Remarks

In principle, it may be possible to extend this approach to prove the four colour theorem itself. However, it is not sufficient to use a set of 4 -colourings of a cycle defined by list-colourings. A more general way of defining sets of colourings is required. A set \mathcal{F} of 4 -colourings of a cycle C of length l is safe, if for every chordless near-triangulation G with C as the boundary, there exists a 4-colouring $f \in \mathcal{F}$ of C that can be extended to a 4 -colouring of G. While it would be nice to characterize exactly the safe sets of 4 -colorings, proving the four colour theorem only requires showing that any proper colouring of a triangle is safe. It may be possible to do this by finding a simpler sufficient condition that ensures safety of a set of colourings.

References

[1] M.O. Albertson, You can't paint yourself into a corner, J. Comb. Theory, Ser. B 73 (1998) 189-194.
[2] K. Appel, W. Haken, Every planar map is four colorable, Part I: discharging, Illinois J. Math. 21 (1977) 429-490.
[3] K. Appel, W. Haken, J. Koch, Every planar map is four colorable, Part II: reducibility, Illinois J. Math. 21 (1977) 491-567.
[4] I. Choi, J. Ekstein, P. Holub, B. Lidicky, 3-coloring triangle-free planar graphs with a precolored 9-cycle, Eur. J. Comb. 68 (2018) 38-65.
[5] Z. Dvorak, B. Lidicky, B. Mohar, L. Postle, 5-list-coloring planar graphs with distant precolored vertices, J. Comb. Theory, Ser. B 122 (2017) 311-352.
[6] Z. Dvorak, B. Lidicky, 3-coloring planar triangle-free graphs with a precolored 8-cycle, J. Graph Theory 80 (2015) 98-111.
[7] N. Robertson, D. Sanders, P. Seymour, R. Thomas, The four-colour theorem, J. Comb. Theory, Ser. B 70 (1997) 2-44.
[8] C. Thomassen, Every planar graph is 5 -choosable, J. Comb. Theory, Ser. B 62 (1994) 180-181.
[9] M. Voigt, List colourings of planar graphs, Discrete Math. 120 (1993) 215-219.
[10] X. Zhu, List 4-colouring of planar graphs, J. Comb. Theory, Ser. B 162 (2023) 1-12.

