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Abstract

A ~P3-decomposition of a directed graph D is a partition of the arcs of D
into directed paths of length 2. We characterize symmetric digraphs that do
not admit a ~P3-decomposition. We show that the only 2-regular, connected
directed graphs that do not admit a ~P3-decomposition are obtained from
undirected odd cycles by replacing each edge by two oppositely directed arcs.
In both cases, we give a linear-time algorithm to find a ~P3-decomposition, if
it exists.

1. Introduction.

Let G be a graph and G1, G2, . . . , Gk be subgraphs of G. We say that the
collection of subgraphs G1, G2, . . . , Gk is a decomposition of the graph G, if
every edge in G is an edge in exactly one of the subgraphs. In other words,
the subgraphs Gi are pairwise edge-disjoint, and their union is the graph G.
If F = {F1, F2, . . . , Fr} is a family of graphs, an F -decomposition of G is
a decomposition of G into subgraphs, each of which is isomorphic to some
graph in F . If F contains a single graph H, an F -decomposition is called
an H-decomposition. In particular, a P3-decomposition of a graph G is a
partition of the edge set of G into paths of length 2.

The same notion of decomposition applies to directed graphs D as well,
where we require each arc in D to be contained in exactly one of the subgraphs
in the decomposition. A ~P3-decomposition of a directed graph is a partition
of the arc set of D into directed paths of length 2.

A classical result on graph decomposition, originally noted by Kotzig [3],
but now considered a simple exercise, is the following.
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Theorem 1. A graph G has a P3-decomposition iff every connected compo-
nent of G has an even number of edges.

However, no such characterization of directed graphs that admit a ~P3-
decomposition is known, and the problem does not appear to have been
studied much. This question is more difficult as even a simple directed graph
may contain cycles of length 2, and two adjacent arcs do not necessarily
form a ~P3. The problem of characterizing multigraphs that admit a P3-
decomposition was raised in [5], and some partial results were obtained in
[1, 2, 4]. However, even this does not appear to have been solved in general,
and we do not know of any such work for directed graphs.

It may be noted that all these problems can be solved in polynomial-time,
by a reduction to the perfect matching problem. Given a graph (multigraph,
directed graph), we construct a new graph whose vertices are the edges (arcs)
in the given graph, and two vertices are adjacent in the new graph iff the
corresponding edges (arcs) induce a path (directed path) of length 2 in the

original graph. A P3( ~P3)-decomposition of the given graph (directed graph)
then corresponds to a perfect matching in the new graph, and vice-versa.

While Tutte’s 1-factor theorem [6] gives a necessary and sufficient condi-
tion for a graph to have a perfect matching, we would like a simple condition
on the original graph (multigraph, directed graph) that guarantees a P3( ~P3)-
decomposition. Theorem 1 gives such a condition for graphs. Further, while
a perfect matching can be found in polynomial-time, we would like a simpler
algorithm to find a P3( ~P3)-decomposition. The proof of Theorem 1 also gives
a simple linear-time algorithm to find a P3-decomposition of graphs.

A directed graph is said to be symmetric if for every pair of distinct
vertices u, v, there is an arc from u to v iff there is an arc from v to u.
In other words, the directed graph is obtained by replacing each edge in
an undirected graph by two oppositely directed arcs. Our main result is
a characterization of symmetric directed graphs that do not admit a ~P3-
decomposition. The characterization is an explicit constructive characteriza-
tion that describes the structure of symmetric directed graphs that do not
admit a ~P3-decomposition. This also leads to a simple linear-time algorithm
to find a ~P3-decomposition of a symmetric directed graph, if it exists.

A directed graph is 2-regular if every vertex has indegree and outdegree
2. We show that the only 2-regular, connected directed graphs, not neces-
sarily symmetric, that do not admit a ~P3-decomposition, are obtained from
undirected odd cycles by replacing each edge by two oppositely directed arcs.

2



Again, we give a linear-time algorithm to find a ~P3-decomposition of all other
2-regular, connected directed graphs.

In this paper, for ease of using induction, we will consider graphs that
may have loops as well as multiple edges, and we will call them pseudo-graphs
to emphasize the fact. A simple graph will be referred to as a graph. We
assume that each edge in an undirected pseudo-graph has two ends, which
could be the same vertex, if the edge is a loop. An edge with ends u, v will
be denoted {u, v}. Similarly, every arc in a directed pseudo-graph will have
two ends, one of which is called the head, and the other the tail. An arc with
tail u and head v will be denoted (u, v).

We will consider decompositions of directed pseudo-graphs into subgraphs
with two arcs. Any subgraph in such a decomposition will be denoted simply
by the two arcs it contains. The family F of these directed pseudo-graphs is
defined below.

Definition 1. Let F be the family of all directed pseudo-graphs with 2 arcs
and no isolated vertices, such that the head of one of the arcs is the tail of the
other. Thus F contains the five directed pseudo-graphs with arcs (u, u), (u, u)
and (u, u), (u, v) and (u, v), (v, v) and (u, v), (v, u) and (u, v), (v, w).

All other definitions and notations are standard.

2. Symmetric Directed Graphs.

If G is a pseudo-graph, let D(G) denote the directed pseudo-graph ob-
tained from G by replacing each edge e = {u, v} in G, by two oppositely
directed arcs, (u, v) and (v, u). We will call one of these arcs e+ and the
other e− arbitrarily. Note that a loop in G is replaced by two loops in D(G).

Let G be any pseudo-graph. An F -decomposition of D(G) is said to be
compatible, if for every edge e in G, the arcs e+ and e− are contained in
different subgraphs in the decomposition of D(G).

Definition 2. Let G be the minimal set of pseudo-graphs that satisfies the
following properties.

1. The two connected pseudo-graphs with one edge, {u, u} and {u, v}, are
in G.
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2. If G is a pseudo-graph in G and e an edge in G, then the pseudo-graph
obtained by subdividing twice the edge e, is in G. In other words, if
e = {u, v}, then the pseudo-graph obtained from G by deleting the edge
e, adding two new vertices x, y, and the edges {u, x}, {x, y}, {y, v}, is
in G.

3. If G is a pseudo-graph in G and v a vertex in G, then the pseudo-graph
obtained from G by adding a new vertex x, and edges {x, v}, {x, x} is
in G.

4. If G is a pseudo-graph in G and v a vertex in G, then the pseudo-
graph obtained from G by adding two new vertices x, y, and edges
{x, v}, {x, y} is in G.

We are now ready to state the main result.

Theorem 2. For any connected pseudo-graph G, D(G) has a compatible F-
decomposition iff G 6∈ G.

We note the following corollary.

Corollary 1. For any connected graph G, D(G) has a ~P3-decomposition iff
G 6∈ G.

Proof. This follows from Theorem 2, since if G is a graph, then D(G) does
not have any loops, and any 2-cycle in D(G) contains arcs e+, e− for some
edge e in G. Therefore, any compatible F -decomposition of D(G) is in fact

a ~P3-decomposition, and vice-versa. �

Before proving Theorem 2, we prove a few Lemmas that are used in the
proof.

Lemma 1. If G is a connected pseudo-graph with an even number of edges,
then D(G) has a compatible F-decomposition.

Proof. The proof is by induction on the number of edges. If G has only two
edges, e and f , since G is connected, we may assume that in D(G), head(e+)
= tail(f−). Then the subgraphs of D(G) with arcs e+, f− and e−, f+, form
a compatible F -decomposition of D(G).

Suppose G has more than two edges. We will show that there exist two
edges e, f in G, incident with a vertex v, such that G − {e, f} has exactly
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one non-trivial component C. We may assume, without loss of generality,
that head(e+) = tail(f−) = v. By induction, D(C) has a compatible F -
decomposition, which together with the subgraphs having arcs e+, f− and
e−, f+, gives a compatible F -decomposition of D(G).

Consider a depth-first-search tree T in G, and let v be the deepest vertex
with degree at most one in T , and subject to this condition, has the largest
degree in G. If there are two edges e, f not in T incident with v, then
G − {e, f} is connected, and we get the two required edges. If there is
exactly one edge e not in T that is incident with v in G, then G must have
at least two vertices and there exists an edge f in T incident with v. Again
G− {e, f} has two components, one of which is the isolated vertex v.

Suppose there is only an edge e that is incident with v. Then e must
be in T and let u be the other end of e. If there exists an edge f not in T
that is incident with u, then G − {e, f} has two components, one of which
is the isolated vertex v, and we get the two required edges. If u has a child
w 6= v in T , the choice of v implies that w also has degree one in G. Then
G−{{u, v}, {u, w}} has exactly one non-trivial component, and two isolated
vertices v, w. Finally, if u has no child other than v in T , and no edge not in T
incident with it, then it must have a parent w in T . Now G−{{u, v}, {u, w}}
has exactly one non-trivial component, and two isolated vertices u, v. �

Lemma 2. Let G′ be a pseudo-graph obtained from a pseudo-graph G by
subdividing an edge twice. Then D(G′) has a compatible F-decomposition iff
D(G) has one.

Proof. Let e = {u, v} be the subdivided edge in G. Without loss of gener-
ality, we can assume that head(e+) = v in D(G). Let x, y be the new vertices
added in G′. Suppose D(G′) has a compatible F -decomposition. The sub-
graph containing the arc (x, y) in this decomposition must contain either the
arc (u, x) or (y, v). Similarly, the subgraph containing (y, x) must contain
either (x, u) or (v, y).

Suppose the subgraph containing (x, y) contains (y, v) and the subgraph
containing (y, x) contains (v, y). Then by replacing the arc (u, x) by the
arc e+ and the arc (x, u) by e− in the subgraphs containing them, and
deleting the subgraphs (x, y), (y, v) and (y, x), (v, y), we get a compatible
F -decomposition of D(G). Note that (u, x) and (x, u) must be in different
subgraphs, due to the compatibility of the decomposition. A symmetrical
argument holds if the subgraph containing (x, y) contains (u, x) and the sub-
graph containing (y, x) contains (x, u).

5



Suppose the subgraph containing (x, y) contains (y, v) and that containing
(y, x) contains (x, u). Then replacing the arcs (u, x) by e+ and (v, y) by e− in
the subgraphs containing them, and deleting the subgraphs (x, y), (y, v) and
(y, x), (x, u), gives a compatible F -decomposition of G. Note that (u, x) and
(v, y) cannot be contained in the same subgraph as head((u, x)) 6= tail((v, y))
and head((v, y)) 6= tail((u, x)). A symmetrical argument holds if the sub-
graph containing (x, y) contains (u, x) and the subgraph containing (y, x)
contains (v, y). Thus in all cases, we get a compatible F -decomposition of
D(G).

Conversely suppose D(G) has a compatible F -decomposition. Then the
subgraph containing the arc e+ must contain an arc f such that either
head(f) = u or tail(f) = v. Note that f 6= e− due to compatibility of the
decomposition. Suppose head(f) = u. Replace the arc e+ in this subgraph
by the arc (u, x) and add the subgraph containing the arcs (x, y), (y, v). If
tail(f) = v, replace e+ by (y, v) and add the subgraph with arcs (u, x), (x, y).
A similar replacement for the arc e−, gives a compatible F -decomposition of
D(G′). �

Lemma 3. Let G be a pseudo-graph and v a vertex in G. Let G′ be obtained
from G by adding a new vertex x and edges {v, x}, {x, x}. Then D(G′) has
a compatible F-decomposition iff D(G) has one.

Proof. Suppose D(G′) has a compatible F -decomposition. There are two
loops in D(G′) at the vertex x, and they cannot be contained in the same sub-
graph in a compatible F -decomposition, since they come from the same edge
{x, x} in G′. Therefore the subgraph containing one of the loops must con-
tain the arc (v, x) and the subgraph containing the other loop must contain
the arc (x, v). The remaining subgraphs form a compatible F -decomposition
of D(G).

Conversely, if D(G) has a compatible F -decomposition, adding the sub-
graphs with arcs (v, x), (x, x) and (x, v), (x, x) gives the required decomposi-
tion of D(G′). �

Lemma 4. Let G be a pseudo-graph and v a vertex in G. Let G′ be obtained
from G by adding two new vertices x, y and edges {v, x}, {x, y}. Then D(G′)
has a compatible F-decomposition iff D(G) has one.

Proof. Any compatible F -decomposition of D(G′) must include the sub-
graphs with arcs (v, x), (x, y) and (y, x), (x, v). The remaining subgraphs
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form a compatible F -decomposition of D(G). Conversely, adding these sub-
graphs to a compatible F -decomposition of D(G) gives the required decom-
position of D(G′). �

Proof (Theorem 1). We first show that if G ∈ G then D(G) does not have
a compatible F -decomposition. The proof is by induction on the number of
edges in G. This is clear if G contains only one edge. Otherwise, G is obtained
from some pseudo-graph G′ ∈ G by either subdividing an edge twice, or by
adding one or two new vertices and two edges. By induction, G′ does not
have a compatible F -decomposition, and Lemmas 2, 3, 4 imply that G also
does not have a compatible F -decomposition.

To prove the converse, suppose there exists a pseudo-graph G 6∈ G that
does not have a compatible F -decomposition. Consider such a counterexam-
ple G with minimum number of edges. Lemma 1 implies that G has an odd
number of edges greater than one.

Suppose there exist 3 edges e, f, g that are incident with a vertex v, and
G − {e, f, g} has no component with odd number of edges. Then for every
component C of G−{e, f, g}, Lemma 1 implies that D(C) has a compatible
F -decomposition. We may assume, without loss of generality, that v is the
tail of the arcs e+, f+, and g+. Then the subgraphs with arcs e+, f− and
f+, g− and g+, e−, together with the decompositions of the components of
G− {e, f, g}, give a compatible F -decomposition of D(G), a contradiction.

Suppose there are no such edges. We will show that G is obtained from a
pseudo-graph G′ using one of the operations in Definition 2. Then Lemmas
2, 3, 4 imply that G′ does not have a compatible F -decomposition, and by
Definition 2, G′ 6∈ G. This contradicts the choice of G.

Again, consider a depth-first-search tree T in G, and let v be the deepest
vertex in T that has degree at most one in T , and subject to this condition,
has the largest degree in G. If there are 3 or more edges incident with v in G,
we can find 3 edges e, f, g such that G−{e, f, g} has at most one non-trivial
component, a contradiction.

Suppose there are two edges e, f incident with v. We may assume e is
not in T and f is in T . Let u be the other end of f .

If e is a loop, then G is obtained from G− v by adding the vertex v and
the edges {v, u}, {v, v}. Then G − v is the required graph G′. So we may
assume e is not a loop.

Suppose the other end of e is also u. If there is an edge g not in T incident
with u, then G − {e, f, g} has at most one non-trivial component. If u has
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another child w in T , then the choice of v implies that w also has degree
one in T , and degree at most two in G. By the same argument as applied
to v, we may assume there is no loop incident with w. Then e, f and {u, w}
are 3 edges such that deleting them gives only one non-trivial component, a
contradiction. If u has no other child, and no edge not in T incident with it,
then u must have a parent w in T , and again deleting the edges e, f, {u, w}
gives only one non-trivial component.

Suppose the other end of e is a vertex different from u, v. If u has an
edge not in T incident with it, then deleting it leaves G connected. If u has
another child w, we may assume that w has degree one in T , and degree at
most two in G. Further, if there is any edge not in T that is incident with
w, its other end is different from u, w. Thus deleting the edge {u, w} can
give at most one non-trivial component. Note that u must have a parent in
T . Thus if u has 4 or more edges incident with it, deleting any 3 of them,
other than the edge joining u to its parent in T , will result in a pseudo-graph
with at most one non-trivial component. If there are 3 edges incident with u,
then deleting all the 3 of them will give at most one non-trivial component.
The only other possibility is that u has exactly 2 edges incident with it, f
and the edge joining u to its parent in T . In this case, let G′ be the graph
obtained from G−{u, v}, by adding an edge with ends the parent of u in T ,
and the end of e other than v. Then G is obtained from G′ by subdividing
this added edge twice.

Finally, suppose v has degree one in G. If u has any other child in T ,
the choice of v implies it has degree one in G. Thus if u has 3 or more edges
incident with it, we can find 3 whose deletion gives at most one non-trivial
component. The only other possibility is that u has 2 edges incident with it
in G, and must have degree 2 in G. Let G′ be the graph G − {u, v}. Then
G is obtained from G′ by adding two vertices and two edges. This gives the
required graph G′, and completes the proof of Theorem 2. �

Note that it is straightforward to modify the proof of Theorem 2 to get
a linear-time algorithm to find a compatible F -decomposition of D(G), if it
exists. This simply requires a post-order traversal on the depth-first-search
tree, and applying a suitable reduction to the pseudo-graph, if necessary. The
depth-first-search tree is also reduced to find a depth-first-search tree in the
reduced pseudo-graph. Each reduction step can be done in constant time.
This process will stop, when we either reach a pseudo-graph with one edge, in
which case no compatible F -decomposition exists, or we get a pseudo-graph
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with an even number of edges. The proof of Lemma 1 gives a linear-time
algorithm for finding a compatible F -decomposition of D(G) when G has
an even number of edges. The decomposition of the reduced pseudo-graph
can then be extended to get a decomposition of the original pseudo-graph in
linear-time.

While Theorem 2 gives a constructive characterization of pseudo-graphs
G for which D(G) does not have a compatible F -decomposition, we can also
give a direct structural characterization of pseudo-graphs G for which D(G)
has such a decomposition.

Theorem 3. Let G be a connected pseudo-graph. Then D(G) has a com-
patible F-decomposition iff either G has an even number of edges, or there
exist 3 edges incident with a common vertex, such that deleting them gives a
pseudo-graph with no component having an odd number of edges.

Proof. The sufficiency follows from Lemma 1. To prove the necessity, it is
sufficient to observe that if G is a pseudo-graph obtained from G′ using one
of the operations in Definition 2, then G has 3 edges incident with a common
vertex, such that deleting them gives no component with odd number of
edges, iff G′ has such edges. �

3. 2-regular Directed Graphs

In this section, we characterize 2-regular directed graphs that admit a ~P3-
decomposition. We show that the only connected, 2-regular directed graphs
that do not have a ~P3-decomposition are the symmetric directed graphs
D(C2n+1), for n ≥ 1, where Cl denotes the undirected cycle of length l.

As in section 2, we need to extend the definitions to directed pseudo-
graphs. Let D be a directed pseudo-graph and let C be a collection of arc-
disjoint 2-cycles in D. Let F be the family of directed pseudo-graphs defined
in Definition 1. An F -decomposition of D is said to be C-compatible if no
2-cycle in C is a subgraph in the decomposition. Note that a compatible F -
decomposition of a symmetric directed pseudo-graph D(G) is a C-compatible
F -decomposition, where C is the collection of 2-cycles with arcs e+, e− for
each edge e in G.

Theorem 4. Let D be a connected, 2-regular directed pseudo-graph and let
C be a collection of arc-disjoint 2-cycles in D. Then D has a C-compatible
F-decomposition unless D is D(C2n+1) for some n ≥ 1, and C contains all
2-cycles in D.
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We note the following corollary of Theorem 4.

Corollary 2. Let D be a connected, 2-regular directed graph. Then D has a
~P3-decomposition unless D is D(C2n+1) for some n ≥ 1.

Proof. This follows from Theorem 4 by taking C to be the set of all 2-
cycles in D. If D is a directed graph, then the 2-cycles in D are arc-disjoint,
and since D has no loops, any C-compatible F -decomposition must be a
~P3-decomposition of D, and vive versa. �

Proof (Theorem 4). The proof is by induction on the number of vertices
in D. If D has only one vertex, then there are no 2-cycles in D and C is
empty, and D itself forms a C-compatible F -decomposition of D. If D has
2 vertices u and v, then the arcs in D are either (u, u), (u, v), (v, u), (v, v) or
(u, v), (v, u), (u, v), (v, u). In the first case, the subgraphs with arcs (u, u), (u, v)
and (v, u), (v, v) give a C-compatible F -decomposition of D. In the second
case, since the 2-cycles in C are arc-disjoint, there are at most two 2-cycles
in C. We can then choose two different 2-cycles to partition the arc set of D,
and get a C-compatible F -decomposition of D.

Suppose D has 3 or more vertices. If C is empty, we find an arbitrary
Euler tour in D, and partition the arc set into consecutive pairs of arcs in
the tour. Since any two consecutive arcs in the tour form a subgraph in F ,
this gives a C-compatible F -decomposition of D.

Suppose C contains a 2-cycle with arcs e = (u, v) and f = (v, u). We
consider all possible configurations of the other arcs incident with u and v.

Case 1. Suppose there is a loop incident with either u or v. Note that since
D is 2-regular, connected and has at least 3 vertices, there cannot be a loop
at both u and v. Without loss of generality, assume there is a loop at v. Let
(a, u), (u, b) be the other arcs incident with u, where a, b 6∈ {u, v} are not
necessarily distinct vertices.

Let D′ be the pseudo-graph obtained from D − {u, v} by adding an arc
g = (a, b). Let C ′ be the collection of 2-cycles in C that do not contain either
u or v. Since D′ is a 2-regular, connected pseudo-graph, and the arc g in D′

is not contained in any 2-cycle in C ′, by induction, D′ has a C ′-compatible
F -decomposition. The subgraph containing the arc g in this decomposition
must contain another arc g′, such that either head(g′) = a, or tail(g′) = b.
If head(g′) = a, replace this subgraph by the subgraph with arcs g′, (a, u)
and add the subgraphs with arcs f, (u, b) and e, (v, v) to get a C-compatible
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F -decomposition of D. If tail(g′) = b, replace the subgraph with arcs g, g′ by
one with arcs g′, (u, b) and add the subgraphs with arcs (a, u), e and f, (v, v)
to get a C-compatible F -decomposition of D.

Case 2. Suppose there is another arc g in D with ends u and v. Without
loss of generality, g = (u, v). Then D must contain arcs (a, u) and (v, b)
where a, b 6∈ {u, v} are not necessarily distinct vertices. Note that since the
2-cycles in C are arc-disjoint, g cannot be contained in any 2-cycle in C.

Let D′ be the pseudo-graph obtained from D − {u, v} by adding an arc
h = (a, b). Let C ′ be the collection of 2-cycles in C that do not contain either
u or v. Since D′ is a 2-regular, connected pseudo-graph, and the arc h in D′

is not contained in any 2-cycle in C ′, by induction, D′ has a C ′-compatible
F -decomposition. The subgraph containing the arc h in this decomposition
must contain another arc h′, such that either head(h′) = a, or tail(h′) = b.
If head(h′) = a, replace this subgraph by the subgraph with arcs h′, (a, u)
and add the subgraphs with arcs e, (v, b) and f, g to get a C-compatible F -
decomposition of D. If tail(h′) = b, replace the subgraph with arcs h, h′ by
one with arcs h′, (v, b) and add the subgraphs with arcs (a, u), e and f, g to
get a C-compatible F -decomposition of D.

Case 3. Suppose there are 4 distinct arcs apart from e, f incident with
{u, v}. Let these arcs be (a, u), (u, b), (c, v), (v, d) for some, not necessarily
distinct, vertices a, b, c, d. The distinctness of the arcs implies that a, b, c, d 6∈
{u, v}. We consider all possibilities for the vertices a, b, c, d, taking into ac-
count the symmetry between vertices u and v, and also, if necessary, reversing
the directions of all arcs in D.

Case 3.1. Suppose a = b = c = d. In this case, D must be the graph
D(C3). If C contains all 2-cycles in D(C3), no C-compatible F -decomposition
of D(C3) is possible. If at least one 2-cycle is not in C, we can choose it as

one of the subgraphs along with two ~P3 subgraphs, to get a C-compatible
F -decomposition of D(C3).

Case 3.2. Suppose a = b = c and a 6= d. Consider the directed pseudo-
graph D′ obtained from D − {u, v} by adding a loop g at a, and an arc
h = (a, d). Again, let C ′ be the set of 2-cycles in C that do not contain u
or v. Since D′ is 2-regular, connected and not isomorphic to D(C2n+1) for
n ≥ 1, by induction, D′ has a C ′-compatible F -decomposition. If g, h is a
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subgraph in this decomposition, we delete it, and add the subgraphs (a, u), e
and f, (u, a) and (a, v), (v, d) to get a C-compatible F -decomposition of D.
Otherwise, the subgraph containing the arc g must contain another arc g′

such that either the head or tail of g′ is a. Similarly, the subgraph containing
h must contain an arc h′ such that either head(h′) = a or tail(h′) = d.

Suppose head(g′) = head(h′) = a. Replace the subgraphs g, g′ and h, h′

by the subgraphs g′, (a, u) and h′, (a, v) and add the subgraphs f, (u, a) and
e, (v, d) to get a C-compatible F -decomposition of D.

If head(g′) = a and tail(h′) = d, replace g, g′ by g′, (a, v) and h, h′ by
(v, d), h′ and add the subgraphs (a, u), e and f, (u, a).

If tail(g′) = a and head(h′) = a, replace g, g′ by (u, a), g′ and h, h′ by
(a, u), h′, and add the subgraphs (a, v), f and e, (v, d).

If tail(g′) = a and tail(h′) = d, replace g, g′ by (u, a), g′ and h, h′ by
(v, d), h′ and add the subgraphs (a, u), e and (a, v), f .

In all cases, these replacements give a C-compatible F -decomposition of
D.

Case 3.3. a = b and c = d, but a 6= c. Let D′ be the 2-regular, connected
directed pseudo-graph obtained from D − {u, v} by adding an arc g = (a, c)
and an arc h = (c, a). Let C ′ contain all 2-cycles in C that do not contain u
or v, along with the 2-cycle g, h. If D′ is isomorphic to D(C2n+1) for some
n ≥ 1, then D is isomorphic to D(C2(n+1)+1). If C contains all 2-cycles in
D, then no C-compatible F -decomposition of D(C2n+3) is possible. If at
least one 2-cycle in D(C2n+3) is not in C, we can choose that as one of the
subgraphs, and decompose the rest of the graph into directed paths of length
2.

We may therefore assume that D′ is not isomorphic to D(C2n+1) for any
n ≥ 1. By induction, D′ has a C ′-compatible F -decomposition. The subgraph
containing the edge g in this decomposition must contain an edge g′ such that
head(g′) = a or tail(g′) = c. Note that since the 2-cycle g, h is in C ′, the arc
g′ must be distinct from h. Similarly, the subgraph containing h contains an
arc h′ such that head(h′) = c or tail(h′) = a, and h′ 6= g.

If head(g′) = a and head(h′) = c, replace g, g′ by g′, (a, u) and h, h′ by
h′, (c, v) and add the subgraphs f, (u, a) and e, (v, c).

If head(g′) = a and tail(h′) = a, replace g, g′ by g′, (a, u) and h, h′ by
(u, a), h′ and add the subgraphs e, (v, c) and (c, v), f .

The other cases can be argued symmetrically. This gives a C-compatible
F -decomposition of D, unless D is isomorphic to D(C2n+3) and all 2-cycles
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in D are contained in C.

Case 3.4. a = c and b = d but a 6= b. Let D′ be the directed pseudo-graph
obtained from D − {u, v} by adding two arcs g = (a, b) and h = (a, b). Let
C ′ be the collection of 2-cycles in C that do not contain u or v. Since D′

is 2-regular, connected and not isomorphic to D(C2n+1) for any n ≥ 1, D′

has a C ′-compatible F -decomposition. The subgraph containing the arc g in
this decomposition contains an arc g′ such that head(g′) = a or tail(g′) = b.
Similarly, h, h′ is a subgraph for an arc h′ such that head(h′) = a or tail(h′)
= b.

If head(g′) = a and head(h′) = a, replace g, g′ by g′, (a, u) and h, h′ by
h′, (a, v) and add the subgraphs e, (v, b) and f, (u, b).

If head(g′) = a and tail(h′) = b, replace g, g′ by g′, (a, u) and h, h′ by
(u, b), h′ and add the subgraphs (a, v), f and e, (v, b).

The other cases can be handled symmetrically. Thus in all cases, we get
a C-compatible F -decomposition of D.

Case 3.5. a = d and b = c but a 6= b. Let D′ be the pseudo-graph obtained
from D − {u, v} by adding a loop g = (a, a) and a loop h = (b, b). Let C ′ be
the set of 2-cycles in C that do not contain u or v. Note that in this case,
D′ may not be connected, but each connected component of D′ is 2-regular,
and not isomorphic to D(C2n+1) for any n ≥ 1. Applying induction to each
component of D′, we get a C ′-compatible F -decomposition of D′. If g, g′ is a
subgraph in this decomposition then head(g′) = a or tail(g′) = a. Similarly,
if h, h′ is a subgraph in the decomposition, then head(h′) = b or tail(h′) = b.

If head(g′) = a and head(h′) = b, replace g, g′ by g′, (a, u) and h, h′ by
h′, (b, v) and add the subgraphs e, (v, a) and f, (u, b).

If head(g′) = a and tail(h′) = b, replace g, g′ by g′, (a, u) and h, h′ by
(u, b), h′ and add the subgraphs e, (v, a) and f, (b, v).

The other cases can be argued symmetrically. Thus in all cases, we get a
C-compatible F -decomposition of D.

Case 3.6. a = b but all other vertices are distinct. Let D′ be the pseudo-
graph obtained from D−{u, v} by adding arcs g = (c, a) and h = (a, d). Let
C ′ be the set of 2-cycles in C that do not contain u or v. Then D′ is a 2-
regular, connected pseudo-graph and at least one arc in D′ is not contained in
any 2-cycle in C ′. By induction, D′ has a C ′-compatible F -decomposition. If
g, h is a subgraph in this decomposition, we delete it, and add the subgraphs

13



(a, u), e and f, (u, a) and (c, v), (v, d). Otherwise, if g, g′ is a subgraph in this
decomposition, then head(g′) = c or tail(g′) = a. If h, h′ is a subgraph in the
decomposition of D′, then head(h′) = a or tail(h′) = d.

If head(g′) = c and head(h′) = a, replace g, g′ by g′, (c, v) and h, h′ by
h′, (a, u) and add the subgraphs e, (v, d) and f, (u, a).

If head(g′) = c and tail(h′) = d, replace g, g′ by g′, (c, v) and h, h′ by
h′, (v, d) and add the subgraphs (a, u), e and f, (u, a).

If tail(g′) = a and head(h′) = a, replace g, g′ by g′, (u, a) and h, h′ by
h′, (a, u) and add the subgraphs e, (v, d) and (c, v), f .

The remaining case is symmetrical. Again, we get a C-compatible F -
decomposition of D in all cases.

Case 3.7. a = c and all other vertices are distinct. Let D′ be the pseudo-
graph obtained from D−{u, v} by adding arcs g = (a, b) and h = (a, d). Let
C ′ be the collection of 2-cycles in C that do not contain u or v. By similar
arguments as in previous cases, D′ has a C ′-compatible F -decomposition. If
g, g′ is a subgraph in this decomposition, then head(g′) = a or tail(g′) = b. If
h, h′ is a subgraph in the decomposition of D′, then head(h′) = a or tail(h′)
= d.

If head(g′) = a and head(h′) = a, replace g, g′ by g′, (a, u) and h, h′ by
h′, (a, v) and add the subgraphs e, (v, d) and f, (u, b).

If head(g′) = a and tail(h′) = d, replace g, g′ by g′, (a, v) and h, h′ by
h′, (v, d) and add the subgraphs (a, u), e and f, (u, b).

If tail(g′) = b and tail(h′) = d, then replace g, g′ by (u, b), g′ and h, h′ by
(v, d), h′ and add the subgraphs (a, u), e and (a, v), f .

The remaining case can be handled by symmetrical arguments. This gives
a C-compatible F -decomposition of D in all cases.

Case 3.8. a = d and all other vertices are distinct. Let D′ be the pseudo-
graph obtained from D − {u, v} by adding a loop g = (a, a) and an arc
h = (c, b). Let C ′ be the collection of 2-cycles in C that do not contain u or v.
Again, in this case, D′ may not be connected, but each component of D′ is
2-regular. By similar arguments as in previous cases, each component of D′,
and hence D′ has a C ′-compatible F -decomposition. If g, g′ is a subgraph in
this decomposition, then head(g′) = a or tail(g′) = a. If h, h′ is a subgraph
in the decomposition of D′, then head(h′) = c or tail(h′) = b.

If head(g′) = a and head(h′) = c, replace g, g′ by g′, (a, u) and h, h′ by
h′, (c, v) and add the subgraphs e, (v, a) and f, (u, b).
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If head(g′) = a and tail(h′) = b, replace g, g′ by g′, (a, u) and h, h′ by
h′, (u, b) and add the subgraphs e, (v, a) and (c, v), f .

The other cases can be argued by symmetrical arguments.

Case 3.9. All 4 vertices a, b, c, d are distinct. Let D′ be the pseudo-graph
obtained from D− {u, v} by adding arcs g = (a, d) and h = (c, b). Let C ′ be
the collection of 2-cycles in C that do not contain u or v. Again, in this case,
D′ may not be connected, but each component of D′ is 2-regular. By similar
arguments as in previous cases, each component of D′, and hence D′ has a
C ′-compatible F -decomposition. If g, g′ is a subgraph in this decomposition,
then head(g′) = a or tail(g′) = d. If h, h′ is a subgraph in the decomposition
of D′, then head(h′) = c or tail(h′) = b.

If head(g′) = a and head(h′) = c, replace g, g′ by g′, (a, u) and h, h′ by
h′, (c, v) and add the subgraphs e, (v, d) and f, (u, b).

If head(g′) = a and tail(h′) = b, replace g, g′ by g′, (a, u) and h, h′ by
h′, (u, b) and add the subgraphs e, (v, d) and (c, v), f .

The other cases can be argued by symmetrical arguments.

This completes all possible cases and hence the proof of Theorem 4. �

We note briefly that the proof of Theorem 4 also gives a linear-time al-
gorithm to find a ~P3-decomposition of a 2-regular directed graph, if it exists.
The reduction at each step can be applied in constant time, until C be-
comes empty. Then a decomposition can be found for each component of the
reduced graph, by finding an Euler tour in each component. Finally, the de-
composition of the reduced graph can be modified to get the decomposition
of the original graph. Again, this modification can be done in constant time
for each reduction.

4. Remarks

It would be interesting to see if a characterization of ~P3-decomposable
directed graphs can be obtained for general directed graphs, or other classes
of directed graphs, such as tournaments. In particular, it would be interesting
to find a faster algorithm to decide the existence of such a decomposition,
without resorting to perfect matchings.
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