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Abstract: We give a simple reformulation of the four color theorem as a problem on strings
over a four letter alphabet.

1 Introduction

The four color theorem is one of the cornerstones of graph theory. While there are several equiv-
alent statements and generalizations within graph theory, the theorem has also been shown to
be equivalent to statements involving mathematical objects other than graphs. Some exam-
ples of these include arithmetic and algebraic formulations [4, 5] and also in terms of formal
languages [1, 3]. We give a simple reformulation involving strings over a finite alphabet. We
show that the problem reduces to showing that there is no path between two specific states in
a specific finitely branching automaton with countably infinite states. While we do not know
any general techniques for doing this, we hope that this formulation involving only strings may
yield a simpler proof.

2 Formulation

Let A = {a,b,c,d} be the alphabet and let A∗ be the set of all finite length strings over A. A
subset L ⊂ A∗ is called an l-subset if every string in L has length exactly l. Let L denote the
collection of all l-subsets of A∗ for all l ≥ 0. Thus a subset X ⊆ A∗ is in L iff X is an l-subset
for some integer l ≥ 0. We construct an automaton whose set of states is L.

Let s = s1s2 . . . sl be a string of length l ≥ 3 over A. Let 1 ≤ i < j ≤ l be integers. Let
f(s, i, j) denote the set of all strings of the form s1 . . . sicsj . . . sl, where c ∈ A is any character
that does not occur in the substring si . . . sj . Note that f(s, i, j) may be empty if there is no
such character c. If L is an l-set and 1 ≤ i < j ≤ l, let

f(L, i, j) =
⋃
s∈L

f(s, i, j).

We say that the set L′ can be derived from the l-set L and denote it by L→ L′ if there exist
integers i, j, 1 ≤ i < j ≤ l such that L′ = f(L, i, j). In the automaton, there is a transition from
L to L′ labeled {i, j}. There are

( l
2

)
transitions from each l-set L, corresponding to all possible
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choices of i, j. L′ is defined for each choice, though different choices of i, j may yield the same
set L′, including possibly the empty set. Note that L′ is an (l + i+ 2− j)-set and we can derive
other sets from L′. Let ⇒ denote the transitive closure of →. Thus L ⇒ L′ iff there exists a
sequence of subsets of A∗ in L, L1, L2, . . . , Ln such that L = L1, L

′ = Ln and Li → Li+1, for
1 ≤ i < n.

Let S be the 3-set containing the string acb.
We can now state the equivalence with the four color theorem.

Theorem 1 Every planar graph is 4-colorable iff S 6⇒ ∅.

It is well-known that the four color theorem is true if it is true for 4-connected plane triangu-
lations. Whitney’s theorem [6] implies that such triangulations have a Hamiltonian cycle. Some
of the reformulations, as in [1, 5], are obtained by viewing such a triangulation as the union of
two maximal outerplanar graphs that have the edges of the Hamiltonian cycle in common.

Here, we view these differently. A near-triangulation is a planar 2-connected graph in which
every face except possibly the external face is a triangle. The following lemma gives a property
of 4-connected triangulations that we will use.

Lemma 1 The vertices of any 4-connected plane triangulation G can be ordered v1, v2, . . . , vn
such that the subgraph Gi of G induced by {v1, . . . , vi} and the subgraph Gi of G induced by
{vi+1, . . . , vn} are both near-triangulations, for all 3 ≤ i ≤ n − 3. Also v1, v2, vn can be chosen
to be the vertices in the external face of a plane embedding of G.

This property has been used elsewhere, for example in [2], but we include the proof for
completeness. Fix any plane embedding of the graph G and let v1v2 be any edge in the boundary
of the external face. Let vn be the third vertex in the external face of G. Let v3 be the
internal vertex such that v1, v2, v3 is a face of G. If there is a cutvertex v in G − {v1, v2, v3},
since G is 4-connected, v1, v2, v3 must be adjacent to at least one vertex in each component of
G− {v1, v2, v3, v}, contradicting the fact that v1, v2, v3 is a face of G. Thus G− {v1, v2, v3} is a
near-triangulation.

Assume that for some i, 3 ≤ i < n−3, we have found vertices v1, . . . , vi such that Gj and Gj

are near-triangulations for 3 ≤ j ≤ i. Let vn = w1, w2, . . . , wl be the vertices in the boundary of
the external face of Gi. If there is no chord in Gi joining two non-consecutive vertices wa, wb,
choose vi+1 to be any vertex w 6= vn in the external face of Gi that is adjacent to at least two
vertices in Gi. If there is a chord wawb, let a, b be such that a < b and b−a is minimum among all
possible choices. Let vi+1 be any vertex wj for a < j < b that is adjacent to at least two vertices
in Gi. There must exist at least one such vertex, otherwise wa and wb have a common neighbor
in Gi and G has a separating triangle. This process can be continued as long as i < n− 3. Once
vn−3 has been chosen we can choose vn−2 and vn−1 arbitrarily.

Note that at every step in this process, vi+1 is adjacent to at least 2 vertices in Gi and the
neighbors of vi+1 in Gi form a consecutive sequence of vertices in the boundary of the external
face of Gi.

The connection between 4-coloring and strings is now clear from this. For 3 ≤ i ≤ n, let
v1 = w1, w2, . . . , wl = v2 be the vertices in the external boundary of Gi. Let Li be the set of
all strings g(w1)g(w2) . . . g(wl), where g is any proper 4-coloring of Gi with colors {a, b, c, d}.
Without loss of generality, we can assume g(v1) = a, g(v2) = b, and g(v3) = c. So for i =
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3, the set L3 contains only the string acb and L3 = S. If vi+1 is adjacent to the vertices
wj , wj+1, . . . , wk, for 1 ≤ j < k ≤ l, then the external face of Gi+1 is w1, . . . , wj , vi+1, wk, . . . , wl.
The set Li+1 of strings obtained from proper 4-colorings of Gi+1 is exactly the set f(Li, j, k), by
definition. Thus if S 6⇒ ∅, there exists a proper 4-coloring of G. On the other hand, if S ⇒ ∅,
we can construct a near-triangulation that is not 4-colorable from a sequence of derivations
S = L3 → L4 → · · · → ∅, using the labels of the transitions from Li to Li+1.

A possible approach to proving this may be to identify some property of the sets L such that
S ⇒ L and show that the empty set does not satisfy it. One such property that follows from the
four color theorem is that any such L must contain a string in which either the character c or
d does not occur. However, to prove this by induction, we need to show that some other kinds
of strings also appear in each such set. Alternatively, characterize l-sets L such that L ⇒ ∅,
and show that S does not satisfy the property. A starting point may be to prove the five color
theorem using this approach with a five letter alphabet.
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