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Abstract

We prove that in every simple graph G with minimum degree d ≥ 2, there are edges {uv, vw}

such that G contains b3d/2c edge-disjoint {u, v, w}-paths. If d is even, the paths can be chosen

such that each pair of vertices in {u, v, w} is joined by d/2 paths. If d is odd, any specified pair

of vertices in {u, v, w} can be joined by (d + 1)/2 of these paths and the other two pairs by

(d − 1)/2 paths. This is not true for multigraphs with minimum degree d in general. We show

that in every multigraph H of order at least k and minimum degree d, there is a set A of k

vertices, such that H contains a collection of bdk/2c edge-disjoint A-paths and A-cycles, where

an A-cycle is a cycle containing exactly one vertex in A.

1 Introduction

A well-known theorem of Mader [3, 4] gives a min-max relation for the maximum number of edge-

disjoint (or vertex-disjoint) paths in a graph, whose endpoints are contained in a given set A of

vertices, called terminals, and whose internal vertices are not in A. Such paths are called A-paths.

A short proof of Mader’s theorem is given in [5]. We consider a variation of this problem, where

only the number k of terminals is specified, and a set A of k terminals is to be chosen to maximize

the number of edge-disjoint A-paths.

The motivation for this problem is another theorem of Mader [1] that every multigraph with

minimum degree d ≥ 1 contains an edge uv such that there are d edge-disjoint paths between

u and v. Subsequently, Mader [2] showed that the paths can in fact be chosen to be internally

vertex-disjoint, if the graph is simple. We consider the analogous problem for A-paths, when |A| is

specified.

In particular, we consider the case when the number of terminals is three. We show that in

every simple graph G with minimum degree d ≥ 2, there are two edges {uv, vw} such that there

are b3d/2c edge-disjoint {u, v, w}-paths in G. If d is even, the paths can be chosen such that there

are d/2 paths between each pair of vertices in {u, v, w}. If d is odd, the paths can be chosen such

that any specified pair of vertices in {u, v, w} is joined by (d + 1)/2 paths and the other two pairs

by (d − 1)/2 paths. However, unlike the two terminal case, this does not hold for multigraphs.
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If G is a d-regular multigraph, the maximum possible number of edge-disjoint paths with k

terminals is bdk/2c, since every path contributes two to the sum of degrees of terminal vertices.

Mader’s theorem shows that this bound is achieved in every multigraph with minimum degree d,

when k = 2. However, this is not the case when k > 2.

We show that in every multigraph G of order at least k and minimum degree d, there is a set

A of k vertices, such that G contains a collection of bdk/2c edge-disjoint A-paths and A-cycles. An

A-cycle is a cycle that contains exactly one vertex in A. Equivalently, an A-cycle may be considered

to be an A-path whose endpoints are the same.

We note that if A and B are disjoint subsets of vertices, an A–B path is a path with one

endpoint in A and the other in B and all internal vertices are not in A ∪ B. All notation and

terminology used is standard or defined as and when needed.

2 Three terminals

Theorem 1 In every simple graph G with minimum degree d ≥ 2, there are edges uv and vw such

that G contains b3d/2c edge-disjoint {u, v, w}-paths. If d is even, the paths can be chosen such that

there are d/2 paths between each pair of vertices in {u, v, w}. If d is odd, the paths can be chosen

such that there are (d + 1)/2 paths between any specified pair of vertices in {u, v, w} and (d − 1)/2

paths between the other two pairs.

The proof of Theorem 1 is based on the technique used by Mader in [2]. We introduce a few

definitions in order to describe this technique.

Definition 2 A sequence of distinct vertices (u1, u2, u3) is said to be (a, b, c) edge-connected in

a graph G if there are a + b + c edge-disjoint {u1, u2, u3}-paths in G, a of which have endpoints

{u1, u2}, b have endpoints {u1, u3} and c have endpoints {u2, u3}.

An ordered clique K in a graph G is a complete subgraph of G with an ordering imposed on

the vertices of K. We will be considering ordered pairs of the form (G,K), where K is an ordered

clique in a graph G.

Definition 3 Let (G,K) be any pair with K an ordered clique in a graph G. Let (v1, v2, . . . , vk)

be the ordering of vertices in K. If K is a proper subgraph of G, the reduction α(G,K) of the pair

(G,K) is the pair (G′,K ′) defined as follows:

1. If there is a vertex v ∈ V (G) \ V (K) that is adjacent to all vertices in V (K), then G ′ = G

and V (K ′) = V (K) ∪ {v} with the ordering (v1, v2, . . . , vk, v) of vertices in K ′. If there is

more than one such vertex, choose any one arbitrarily.

2. Suppose no vertex in V (G) \ V (K) is adjacent to all vertices in V (K). For every vertex

u ∈ V (G) \ V (K), let π(u) be the smallest index i such that u is not adjacent to vi ∈ V (K).

Then G′ = (G − v1) ∪ {uvπ(u) | u ∈ V (G) \ V (K), π(u) > 1}, and K ′ = K − v1.
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The reduction step can be applied repeatedly to a pair (G,K), until G − K is empty. Define

α0(G,K) = (G,K), and αi(G,K) = α(αi−1(G,K)) for i ≥ 1.

Some obvious properties of this reduction are noted in Lemma 4.

Lemma 4 Let (G,K) be any pair and let (G′,K ′) = αi(G,K), for some i ≥ 0. Then the following

statements are true.

1. G′ − K ′ is an induced subgraph of G − K.

2. If every vertex in G − K has degree at least d in G then every vertex in G′ − K ′ has degree

at least d in G′.

3. For any set S of edges in G′ − K ′, (G′ − S,K ′) = αi(G − S,K). 2

Definition 5 Let (G,K) be any pair with K a proper subgraph of G. A sequence of distinct vertices

(u1, u2, . . . , um) in G − K is said to be (c1, c2, . . . , cm)-joined to K in G, if there are
∑m

i=1 ci edge-

disjoint {u1, u2, . . . , um}–V (K) paths in G such that exactly ci paths have ui as an endpoint and

no two paths have the same pair of endpoints.

Lemma 6 Let G be any graph and K an ordered clique in G that is a proper subgraph of G. Let

(Gi,Ki) = αi(G,K) and (Gi−1,Ki−1) = αi−1(G,K), for some i ≥ 1. Suppose a sequence of distinct

vertices (u1, u2, . . . , um) in Gi −Ki is (c1, c2, . . . , cm)-joined to Ki in Gi. If (Gi,Ki) is obtained by

applying step 2 of the reduction to (Gi−1,Ki−1), then (u1, u2, . . . , um) is (c1, c2, . . . , cm)-joined to

Ki−1 in Gi−1.

Proof: Let P0 be the set of
∑m

j=1 cj edge-disjoint {u1, u2, . . . , um}–V (Ki) paths in Gi such that

exactly cj paths have uj as an endpoint and no two paths have the same pair of endpoints. Since

(Gi,Ki) is obtained by applying step 2 of the reduction to (Gi−1,Ki−1), V (Ki−1) = V (Ki)∪ {v1},

V (Gi−1) = V (Gi)∪{v1} and for some subset X ⊆ V (Gi)\V (Ki), E(Gi−1) = (E(Gi)∪{uv1|u ∈ X})

\ {uvπ(u)|u ∈ X}). We call the edges in B0 = {uvπ(u)|u ∈ X} bad edges. If none of the paths in P0

contain a bad edge, then P0 is the required set of paths in Gi−1. Let l0 be the largest index such

that some edge in B0 is incident with vl0 ∈ V (Ki). To prove the Lemma, we show that the paths

in P0 can be modified so that none of the paths contain a bad edge. This modification is done in

a sequence of steps. At each step we maintain a triple (P, B, l) satisfying the following properties:

1. B is a set of edges, called bad edges, joining vertices in V (Gi) \ V (Ki) to vertices in V (Ki).

Any vertex u ∈ V (Gi) \ V (Ki) is incident with at most one edge in B. If uvp, for some

u ∈ V (Gi) \ V (Ki) and vp ∈ V (Ki), is an edge in B then uvq is an edge in Gi−1 for all

1 ≤ q < p. The largest index j ≥ 2 such that some edge in B is incident with vj ∈ V (Ki) is

denoted by l. Note that an edge in B may be parallel to an edge in Gi−1 and we consider

Gi−1 ∪ B to be a multigraph.

2. P is a set of
∑m

j=1 cj edge-disjoint {u1, u2, . . . , um}–V (Ki) paths in Gi−1∪B such that exactly

cj paths have uj as an endpoint. If two paths in P have the same pair of endpoints, then one

of the common endpoints must be vl, and one of the two paths terminates at vl with an edge

in B while the other terminates with an edge not in B.

3



Note that (P0, B0, l0) satisfies the two properties. Suppose (P, B, l) is a triple satisfying these

properties with l = 2. If any path in P contains an edge uv2 ∈ B, for some u ∈ V (Gi) \ V (Ki),

replace that edge by the edge uv1 in Gi−1. This gives a new set of paths that are contained in Gi−1.

Two paths terminating at v1 cannot have their other endpoint common, as two paths in P, having

both endpoints common, cannot both terminate with a bad edge at v2. This gives the required set

of paths in Gi−1.

Suppose l > 2. We show that we can find a new triple with a smaller value of l. We may assume

that every edge in B that is incident with vl is contained in some path in P, otherwise just delete

the edge from B. Any two paths in P that terminate in vl with a bad edge must have their other

endpoints distinct. Let S be the set of indices j such that some path in P has {uj , vl} as endpoints

and contains a bad edge. We colour the bad edge in this path j. Thus all bad edges incident with

vl get distinct colours.

Define a subset S ′ ⊆ S as the smallest subset of S satisfying the following:

1. If for some j ∈ S, there exists a path in P with endpoints {uj , vl−1} that terminates in a bad

edge incident with vl−1 then j ∈ S′.

2. Suppose t ∈ S ′ and uvl is the bad edge coloured t incident with vl. If the edge uvl−1, which

is an edge in Gi−1, is contained in some path in P having uj as an endpoint, and j ∈ S, then

j ∈ S′.

Now for every bad edge uvl incident with vl, we do the following. If the edge uvl is coloured j

and j ∈ S′ then replace the edge uvl by the good edge uvl−1 in the path in P that contains uvl.

If the edge uvl−1 was contained in some path in P, add a new bad edge parallel to it, and replace

uvl−1 by the bad edge that is parallel to it, in this path. If j 6∈ S ′, add a new bad edge uvl−1

parallel to the good edge uvl−1, and replace the edge uvl by the new bad edge uvl−1 in the path in

P that contains uvl. Finally, delete the edge uvl from B and add any newly added bad edge to B.

We claim that the new set of paths P ′ and the new set of bad edges B ′ satisfy the required

properties. This gives a triple with a smaller value of l.

Since any new bad edge is obtained by replacing a bad edge of the form uvl by uvl−1, it is clear

that the new set of bad edges satisfies the required property.

It remains to show that P ′ also satisfies the required property. From the construction, it can be

seen that paths in P that terminate at vl with a bad edge are replaced in P ′ by paths terminating

at vl−1, while all other paths have the same pair of endpoints. Hence vl−1 is the only vertex at

which more than one path from some vertex uj can terminate, and there can be at most two such

paths.

Suppose there are two paths is P ′ with endpoints {uj , vl−1} for some j ∈ {1, 2 . . . ,m}. Then

one of the paths, say P1, is obtained by replacing a bad edge uvl of colour j, contained in some

path in P, either by the good edge uvl−1 or by a newly added bad edge uvl−1. Hence j ∈ S. If

j ∈ S′ then P1 terminates with a good edge. By the definition of S ′, either the path in P with

endpoints {uj , vl−1} terminates with a bad edge, or if it terminates with a good edge, the good

edge is replaced by a bad edge parallel to it. In either case, the second path in P ′ with endpoints

{uj , vl−1} terminates with a bad edge. If j 6∈ S ′, P1 terminates with a bad edge, and the other
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path in P ′ with endpoints {uj , vl−1} is a path in P. It must terminate with a good edge, by the

definition of S ′. Hence (P ′, B′, l − 1) is a triple satisfying the required properties. 2

Lemma 7 Let G be any graph and K an ordered clique in G that is a proper subgraph of G. Let

(Gi,Ki) = αi(G,K) and (Gi−1,Ki−1) = αi−1(G,K), for some i ≥ 1. Suppose a sequence of distinct

vertices (u1, u2, . . . , um) in Gi − Ki is (c1, c2, . . . , cm)-joined to Ki in Gi, and (Gi,Ki) is obtained

by applying step 1 of the reduction to (Gi−1,Ki−1). Then there exists a vertex v ∈ V (Ki) and a

subset S ⊆ {1, 2, . . . ,m} such that the following statements are true.

1. Gi−1 = Gi and Ki−1 = Ki − v.

2. v is adjacent to all vertices in Ki−1.

3. cj > 0 for all j ∈ S.

4. There are |S| edge-disjoint {v}–{u1, u2, . . . , um} paths {Qj |j ∈ S} in Gi−1 − Ki−1 such that

Qj has endpoints {uj , v}, for all j ∈ S.

5. The sequence of vertices (u1, u2, . . . , um, v) is (d1, d2, . . . , dm, d)-joined to Ki−1 in Gi−1 −

(
⋃

j∈S E(Qj)), where dj = cj if j 6∈ S, dj = cj − 1 if j ∈ S and d = max(d1, d2, . . . , dm).

Proof: Let P be the set of
∑m

j=1 cj edge-disjoint {u1, u2, . . . , um}–V (Ki) paths such that exactly

cj paths have uj as an endpoint, and no two paths have the same pair of endpoints. Since (Gi,Ki)

is obtained from (Gi−1,Ki−1) using step 1 of the reduction, Gi = Gi−1 and V (Ki) = V (Ki−1)∪{v},

for some vertex v in Gi−1 − Ki−1 that is adjacent to all vertices in Ki−1. This proves the first two

statements in Lemma 7. Let S ⊆ {1, 2, . . . ,m} be the subset of indices j such that some path in P

has endpoints {uj , v}. There can be at most one such path for each j and we denote these paths

{Qj |j ∈ S}. Clearly these paths are {v}–{u1, u2, . . . , um} paths contained in Gi−1 − Ki−1. This

proves the third and fourth statements in Lemma 7. Finally, P ′ = P \ {Qj |j ∈ S} is a collection of
∑m

j=1 dj edge-disjoint {u1, u2, . . . , um}–V (Ki−1) paths in Gi−1 − (
⋃

j∈S E(Qj)) such that exactly dj

paths have uj as an endpoint and no two paths have both endpoints the same. This implies that

|Ki−1| ≥ d = max(d1, d2, . . . , dm). Therefore, P ′ ∪ {vvj |vj ∈ V (Ki−1), 1 ≤ j ≤ d} is a collection of
∑m

j=1 dj + d edge-disjoint {u1, u2, . . . , um, v}–V (Ki−1) paths such that exactly dj paths have uj as

an endpoint and no two paths have both endpoints the same. This completes the proof of Lemma

7. 2

Lemma 8 Let G be any graph, let K be an ordered clique in G and let (u1, u2, . . . , um, v) be a

sequence of distinct vertices in G−K. Suppose for some subset S ′ ⊆ {1, 2, . . . ,m}, G−K contains

|S′| edge-disjoint {v}–{u1, u2, . . . , um} paths {Qi|i ∈ S′}, with Qi having endpoints {ui, v} for all

i ∈ S′, such that (u1, u2, . . . , um, v) is (c1, c2, . . . , cm, c)-joined to K in G − (
⋃

i∈S′ E(Qi)). Let

S′

k = {i|i ∈ S′, ci ≥ c− k}. If |S ′

k| ≤ k for all 0 ≤ k ≤ |S ′|, then (u1, u2, . . . , um) is (d1, d2, . . . , dm)-

joined to K in G, where di = ci if i 6∈ S′ and di = ci + 1 if i ∈ S′.

Proof: Let P be the set of
∑m

i=1 ci + c edge-disjoint {u1, u2, . . . , um, v}–V (K) paths in G −

(
⋃

i∈S′ E(Qi)) such that exactly ci paths have endpoint ui and no two paths have the same pair of
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endpoints. Let Vi be the subset of vertices in V (K) that are endpoints of paths is P having ui as

one endpoint, for 1 ≤ i ≤ m. Similarly, let V be the set of endpoints in V (K) of paths in P that

have v as an endpoint. Note that |Vi| = ci and |V | = c.

Let the vertices {ui|i ∈ S′} be ordered (ui1 , ui2 , . . . , uir) such that ci1 ≥ ci2 ≥ · · · ≥ cir . Since

|S′

k| ≤ k for all 0 ≤ k ≤ r, cik ≤ c − k for 1 ≤ k ≤ r. Hence, there exist distinct vertices

(vi1 , vi2 , . . . , vir) such that vik ∈ V and vik 6∈ Vik , for 1 ≤ k ≤ r. Let Q′

ik
be the path in P

with endpoints {v, vik}, and let Pik be a path with endpoints {uik , vik} contained in Qik ∪ Q′

ik

for 1 ≤ k ≤ r. Then (P ∪ {Pik |1 ≤ k ≤ r}) \ {Q′

ik
|1 ≤ k ≤ r} contains a collection of

∑m
i=1 di

edge-disjoint {u1, u2, . . . , um}–V (K) paths such that exactly di paths have endpoint ui and no two

of the paths have the same pair of endpoints, where di = ci if i 6∈ S′ and di = ci + 1 if i ∈ S′. 2

If Lemma 8 holds for some subset S ′ and paths {Qi|i ∈ S′}, we say the paths {Qi|i ∈ S′} can

be extended to the clique K in G.

Lemma 9 Let (Gi,Ki) = αi(G, ∅) for some i ≥ 0 and let (u1, u2, u3) be a sequence of distinct

vertices in Gi − Ki. Then the following statements are true for all integers k ≥ 1.

1. If (u1, u2, u3) is (2k, 2k, 2k)-joined to Ki in Gi, then (u1, u2, u3) is (k, k, k) edge-connected in

G.

2. If (u1, u2, u3) is (2k − 1, 2k − 1, 2k − 2)-joined to Ki in Gi, then (u1, u2, u3) is (k, k − 1, k − 1)

edge-connected in G.

3. If (u1, u2, u3) is (2k, 2k, 2k − 1)-joined to Ki in Gi, then (u1, u2, u3) is (k + 1, k − 1, k − 1)

edge-connected in G, and also (k, k, k − 1) edge-connected in G.

4. If Gi −Ki contains a vertex u4 6∈ {u1, u2, u3} and edge-disjoint {u4}–{u1, u2, u3} paths P2, P3

with endpoints {u2, u4} and {u3, u4} respectively, such that (u1, u2, u3, u4) is (2k, 2k − 1, 2k −

1, 2k)-joined to Ki in Gi − (E(P2)∪E(P3)), then (u1, u2, u3) is (k, k, k) edge-connected in G.

5. If Gi − Ki contains a vertex u4 6∈ {u1, u2, u3} and edge-disjoint {u4}–{u1, u2, u3} paths

P1, P2, P3 with endpoints {u1, u4}, {u2, u4} and {u3, u4} respectively, such that (u1, u2, u3, u4)

is (2k−1, 2k−1, 2k−1, 2k−1)-joined to Ki in Gi−(E(P1)∪E(P2)∪E(P3)), then (u1, u2, u3)

is (k, k, k) edge-connected in G.

6. If Gi − Ki contains a vertex u4 6∈ {u1, u2, u3} and edge-disjoint {u4}–{u1, u2, u3} paths

P2, P
′

2, P3 with endpoints {u2, u4}, {u2, u4} and {u3, u4} respectively, such that (u1, u2, u3, u4)

is (2k, 2k − 2, 2k − 1, 2k)-joined to Ki in Gi − (E(P2) ∪ E(P ′

2) ∪ E(P3)), then (u1, u2, u3) is

(k, k, k) edge-connected in G.

Proof: The proof is by induction on i, the number of steps in the reduction. If i = 0, then Gi = G

and Ki is empty, and the Lemma is trivially true, since no vertex in Gi−Ki can be joined by a path

to Ki, and there do not exist vertices (u1, u2, u3) satisfying the hypothesis of any of the statements

in Lemma 9.

Suppose i > 0 and let (Gi−1,Ki−1) = αi−1(G, ∅). Then (Gi,Ki) is obtained by applying either

step 1 or step 2 of the reduction, defined in Definition 3, to (Gi−1,Ki−1).
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Suppose (Gi,Ki) is obtained from (Gi−1,Ki−1) by applying step 2 of the reduction. By Lemma

6, if a sequence of vertices (u1, u2, u3) in Gi − Ki satisfies the hypothesis of any of the statements

in Lemma 9 in Gi, then (u1, u2, u3) satisfies the same hypothesis in Gi−1. Hence, by induction,

(u1, u2, u3) satisfies the corresponding conclusion in G, and each of the statements in the Lemma

is true.

Suppose (Gi,Ki) is obtained from (Gi−1,Ki−1) by applying step 1 of the reduction. Then

Gi−1 = Gi and Ki−1 = Ki − v for some vertex v that satisfies the statements in Lemma 7. Let

S ⊆ {1, 2, 3, 4} be the subset that satisfies the statements in Lemma 7 and let {Qj |j ∈ S} be

the corresponding paths. If S is empty, by statement 5 in Lemma 7, if (u1, u2, u3) satisfies the

hypothesis of any statement in Lemma 9 in Gi, it satisfies the same hypothesis in Gi−1, and we

can apply induction. We may therefore assume S is not empty.

We consider each statement in Lemma 9 separately.

Case 1. Suppose (u1, u2, u3) is (2k, 2k, 2k)-joined to Ki in Gi.

If |S| = 1, by Lemmas 7 and 8, with S ′ = S, we can extend the path {Qj |j ∈ S} to the clique

Ki−1 in Gi−1. Hence, (u1, u2, u3) is (2k, 2k, 2k)-joined to Ki−1 in Gi−1, and by induction, using

statement 1 in Lemma 9, it is (k, k, k) edge-connected in G.

Suppose |S| = 2 and without loss of generality, S = {2, 3}. Considering v to be the vertex

u4 and Q2, Q3 to be the paths P2, P3, (u1, u2, u3, u4) is (2k, 2k − 1, 2k − 1, 2k)-joined to Ki−1 in

Gi−1 − (E(P2)∪E(P3)), by Lemma 7. By induction, using statement 4 in Lemma 9, (u1, u2, u3) is

(k, k, k) edge-connected in G. It is worth noting that in this case, (u1, u2, u3) is (2k, 2k − 1, 2k− 1)-

joined to Ki−1 in Gi−1 − (E(Q2) ∪ E(Q3)). Unfortunately, this does not imply it is (k, k, k − 1)

edge-connected in G − (E(Q2) ∪ E(Q3)).

If S = {1, 2, 3} then considering v to be the vertex u4, and the paths Q1, Q2, Q3 to be the

paths P1, P2, P3 respectively, (u1, u2, u3, u4) is (2k − 1, 2k − 1, 2k − 1, 2k − 1)-joined to Ki−1 in

Gi−1 − (E(P1) ∪ E(P2) ∪ E(P3)), by Lemma 7. By induction, using statement 5 in Lemma 9,

(u1, u2, u3) is (k, k, k) edge-connected in G.

Case 2. Suppose (u1, u2, u3) is (2k − 1, 2k − 1, 2k − 2)-joined to Ki in Gi.

If |S| ≤ 2 and S 6= {1, 2}, then by Lemma 8 with S ′ = S, we can extend the paths {Qj |j ∈ S} to

Ki−1 in Gi−1, and hence (u1, u2, u3) is (2k−1, 2k−1, 2k−2)-joined to Ki−1 in Gi−1. By induction,

using statement 2 in Lemma 9, (u1, u2, u3) is (k, k − 1, k − 1) edge-connected in G.

If S = {1, 2}, let Q be a path with endpoints {u1, u2} contained in Q1 ∪ Q2. Then, by Lemma

7, (u1, u2, u3) is (2k − 2, 2k − 2, 2k − 2)-joined to Ki−1 in Gi−1 − E(Q). If k = 1 then Q is the

required path in G with endpoints {u1, u2}. If k > 1, by induction, using statement 1 in Lemma

9, (u1, u2, u3) is (k − 1, k − 1, k − 1) edge-connected in G − E(Q), and hence (k, k − 1, k − 1) edge-

connected in G. If S = {1, 2, 3}, the same argument holds, as by Lemma 8 with S ′ = {3}, we can

extend the path Q3 to Ki−1 in Gi−1 −E(Q), and hence (u1, u2, u3) is (2k − 2, 2k − 2, 2k − 2)-joined

to Ki−1 in Gi−1 − E(Q).

Case 3. Suppose (u1, u2, u3) is (2k, 2k, 2k − 1)-joined to Ki in Gi.

If {1, 2} 6⊆ S then by Lemma 8 with S ′ = S, we can extend the paths {Qj |j ∈ S} to the clique

Ki−1 in Gi−1, and hence (u1, u2, u3) is (2k, 2k, 2k − 1)-joined to Ki−1 in Gi−1. By induction, using

statement 3 in Lemma 9, (u1, u2, u3) is (k+1, k−1, k−1) edge-connected in G, and also (k, k, k−1)

edge-connected in G.
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If S = {1, 2}, let Q be a path with endpoints {u1, u2} contained in Q1∪Q2. Then (u1, u2, u3) is

(2k−1, 2k−1, 2k−1)-joined to Ki−1 in Gi−1−E(Q). By induction, using statement 2 in Lemma 9,

(u1, u2, u3) is (k, k − 1, k− 1) edge-connected in G−E(Q), and also (k− 1, k, k− 1) edge-connected

in G − E(Q). Hence (u1, u2, u3) is (k + 1, k − 1, k − 1) edge-connected in G, and also (k, k, k − 1)

edge-connected in G. The same argument can be used if S = {1, 2, 3}, as by applying Lemma 8

with S′ = {3}, we can extend the path Q3 to the clique Ki−1 in Gi−1−E(Q), and hence (u1, u2, u3)

is (2k − 1, 2k − 1, 2k − 1)-joined to Ki−1 in Gi−1 − E(Q).

Case 4. Suppose Gi−Ki contains a vertex u4 6∈ {u1, u2, u3} and edge-disjoint {u4}–{u1, u2, u3}

paths P2, P3 with endpoints {u2, u4}, {u3, u4} respectively, such that (u1, u2, u3, u4) is (2k, 2k −

1, 2k − 1, 2k)-joined to Ki in Gi − (E(P2) ∪ E(P3)).

If |S| ≤ 2 and S 6= {1, 4} then by Lemma 8 with S ′ = S, we can extend the paths {Qj |j ∈ S} to

the clique Ki−1 in Gi−1−(E(P2)∪E(P3)), and hence (u1, u2, u3, u4) is (2k, 2k−1, 2k−1, 2k)-joined

to Ki−1 in Gi−1 − (E(P2) ∪ E(P3)). By induction, using statement 4 in Lemma 9, (u1, u2, u3) is

(k, k, k) edge-connected in G.

If S = {1, 4}, let P1 be a path with endpoints {u1, u4} contained in Q1∪Q4. Then (u1, u2, u3, u4)

is (2k − 1, 2k − 1, 2k − 1, 2k − 1)-joined to Ki−1 in Gi−1 − (E(P1)∪E(P2)∪E(P3)). By induction,

using statement 5 in Lemma 9, (u1, u2, u3) is (k, k, k) edge-connected in G. The same argument

holds if S = {1, 2, 4} or S = {1, 3, 4}, as by Lemma 8 with S ′ = {2} or S′ = {3} respectively, we

can extend the path Q2 or Q3 to Ki−1 in Gi−1− (E(P1)∪E(P2)∪E(P3)), and hence (u1, u2, u3, u4)

is (2k − 1, 2k − 1, 2k − 1, 2k − 1)-joined to Ki−1 in Gi−1 − (E(P1) ∪ E(P2) ∪ E(P3)).

If S = {1, 2, 3} then by Lemma 7, (u1, u2, u3, u4, v) is (2k − 1, 2k − 2, 2k − 2, 2k, 2k)-joined to

Ki−1 in Gi−1− (E(P2)∪E(P3)∪E(Q1)∪E(Q2)∪E(Q3)). Applying Lemma 8 with S ′ = {2, 3}, we

can extend the paths {P2, P3} to Ki−1 in Gi−1 − (E(Q1) ∪ E(Q2) ∪ E(Q3)). Hence Q1, Q2, Q3 are

edge-disjoint {v}–{u1, u2, u3} paths in Gi−1−Ki−1 with endpoints {u1, v}, {u2, v} and {u3, v}, such

that (u1, u2, u3, v) is (2k−1, 2k−1, 2k−1, 2k−1)-joined to Ki−1 in Gi−1−(E(Q1)∪E(Q2)∪E(Q3)).

By induction, considering v to be the vertex u4 in statement 5 in Lemma 9, (u1, u2, u3) is (k, k, k)

edge-connected in G.

If S = {2, 3, 4} then (u1, u2, u3, u4, v) is (2k, 2k − 2, 2k − 2, 2k − 1, 2k)-joined to Ki−1 in Gi−1 −

(E(P2) ∪ E(P3) ∪ E(Q2) ∪ E(Q3) ∪ E(Q4)). Let P ′

2 be a path with endpoints {u2, v} contained in

P2 ∪Q4. Applying Lemma 8 with S ′ = {3}, we can extend the path P3 to Ki−1 in Gi−1 − (E(P ′

2)∪

E(Q2)∪E(Q3)), and hence P ′

2, Q2, Q3 are edge-disjoint {v}–{u1, u2, u3} paths in Gi−1 −Ki−1 with

endpoints {u2, v}, {u2, v} and {u3, v} respectively, such that (u1, u2, u3, v) is (2k, 2k−2, 2k−1, 2k)-

joined to Ki−1 in Gi−1 − (E(P ′

2) ∪ E(Q2) ∪ E(Q3)). By induction, considering v to be the vertex

u4 in statement 6 in Lemma 9, (u1, u2, u3) is (k, k, k) edge-connected in G.

Finally, suppose S = {1, 2, 3, 4}. Let Q be a path with endpoints {u1, u3} contained in Q1 ∪Q3

and Q′ a path with endpoints {u2, u3} contained in P2 ∪P3. Applying Lemma 8 with S ′ = {2}, we

can extend the path Q2 to Ki−1 in Gi−1−(E(Q)∪E(Q′)), hence (u1, u2, u3) is (2k−1, 2k−1, 2k−2)-

joined to Ki−1 in Gi−1 − (E(Q)∪E(Q′)). By induction, using statement 2 in Lemma 9, (u1, u2, u3)

is (k, k − 1, k − 1) edge-connected in G − (E(Q) ∪ E(Q′)) and hence (k, k, k) edge-connected in G.

Case 5. Suppose Gi−Ki contains a vertex u4 6∈ {u1, u2, u3} and edge-disjoint {u4}–{u1, u2, u3}

paths P1, P2, P3 with endpoints {u1, u4}, {u2, u4} and {u3, u4} respectively, such that (u1, u2, u3, u4)

is (2k − 1, 2k − 1, 2k − 1, 2k − 1)-joined to Ki in Gi − (E(P1) ∪ E(P2) ∪ E(P3)).
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If |S| = 1, by Lemma 8 with S ′ = S, we can extend the path {Qj , j ∈ S} to Ki−1 in Gi−1 −

(E(P1) ∪ E(P2) ∪ E(P3)), hence (u1, u2, u3, u4) is (2k − 1, 2k − 1, 2k − 1, 2k − 1)-joined to Ki−1

in Gi−1 − (E(P1) ∪ E(P2) ∪ E(P3)). By induction, using statement 5 in Lemma 9, (u1, u2, u3) is

(k, k, k) edge-connected in G.

Suppose S = {1, 2}. Let Q be a path with endpoints {u1, u2} contained in Q1 ∪ Q2 and let Q′

be a path with endpoints {u2, u3} contained in P2 ∪P3. Applying Lemma 8 with S ′ = {1}, we can

extend the path P1 to Ki−1 in Gi−1 − (E(Q)∪E(Q′)). Hence, (u1, u2, u3) is (2k−1, 2k−2, 2k−1)-

joined to Ki−1 in Gi−1− (E(Q)∪E(Q′)). By induction, using statement 2 in Lemma 9, (u1, u2, u3}

is (k − 1, k, k − 1) edge-connected in G − (E(Q) ∪ E(Q′)) and hence (k, k, k) edge-connected in G.

A similar argument holds if S = {1, 3} or S = {2, 3}, by symmetry. If S = {1, 2, 3}, apply Lemma

8 twice, with S ′ = {1} and extend the path P1 to Ki−1 in Gi−1 − (E(Q) ∪ E(Q′) ∪ E(Q3)), and

again with S ′ = {3}, extend the path Q3 to Ki−1 in Gi−1 − (E(Q) ∪ E(Q′)). Hence (u1, u2, u3) is

(2k − 1, 2k − 2, 2k − 1)-joined to Ki−1 in Gi−1 − (E(Q) ∪E(Q′)) and the previous argument holds.

Suppose S = {1, 4}. Let Q be a path with endpoints {u1, u2} contained in Q1∪Q4∪P2 and Q′ a

path with endpoints {u1, u3} contained in P1∪P3. Then (u1, u2, u3) is (2k−2, 2k−1, 2k−1)-joined

to Ki−1 in Gi−1 − (E(Q) ∪E(Q′)) and by induction, using statement 2 in Lemma 9, (u1, u2, u3) is

(k−1, k−1, k) edge-connected in G− (E(Q)∪E(Q′)). Hence (u1, u2, u3) is (k, k, k) edge-connected

in G. A similar argument holds if S = {2, 4} or S = {3, 4}, by symmetry. Further, if S = {1, 2, 4},

applying Lemma 8 with S ′ = {2}, we can extend the path Q2 to Ki−1 in Gi−1 − (E(Q) ∪ E(Q′)),

hence (u1, u2, u3) is (2k − 2, 2k − 1, 2k − 1)-joined to Ki−1 in Gi−1 − (E(Q) ∪ E(Q′)). The same

argument holds if S = {1, 3, 4} or S = {2, 3, 4}, by symmetry.

Finally, suppose S = {1, 2, 3, 4}. Let Q be a path with endpoints {u1, u2} contained in Q1 ∪

Q4 ∪ P2, let Q′ be a path with endpoints {u1, u3} contained in P1 ∪ P3, and Q′′ a path with

endpoints {u2, u3} contained in Q2 ∪Q3. Then (u1, u2, u3) is (2k − 2, 2k − 2, 2k − 2)-joined to Ki−1

in Gi−1 − (E(Q) ∪ E(Q′) ∪ E(Q′′)). If k = 1, Q,Q′ and Q′′ are the required paths in G. If k > 1,

by induction, using statement 1 in Lemma 9, (u1, u2, u3) is (k − 1, k − 1, k − 1) edge-connected in

G − (E(Q) ∪ E(Q′) ∪ E(Q′′)) and hence is (k, k, k) edge-connected in G.

Case 6. Suppose Gi−Ki contains a vertex u4 6∈ {u1, u2, u3} and edge-disjoint {u4}–{u1, u2, u3}

paths P2, P
′

2, P3 with endpoints {u2, u4}, {u2, u4} and {u3, u4} respectively, such that (u1, u2, u3, u4)

is (2k, 2k − 2, 2k − 1, 2k)-joined to Ki in Gi − (E(P2) ∪ E(P ′

2) ∪ E(P3)).

If {1, 4} 6⊆ S, applying Lemma 8 with S ′ = S and extending the paths {Qj |j ∈ S} to Ki−1 in

Gi−1 − (E(P2)∪E(P ′

2)∪E(P3)), we see that (u1, u2, u3, u4) is (2k, 2k−2, 2k−1, 2k)-joined to Ki−1

in Gi−1 − (E(P2) ∪ E(P ′

2) ∪ E(P3)). By induction, using statement 6 in Lemma 9, (u1, u2, u3) is

(k, k, k) edge-connected in G.

Suppose S = {1, 4}. Let Q be a path with endpoints {u1, u2} contained in Q1 ∪Q4 ∪P2 and let

Q′ be a path with endpoints {u2, u3} contained in P ′

2∪P3. Then (u1, u2, u3) is (2k−1, 2k−2, 2k−1)-

joined to Ki−1 in Gi−1 − (E(Q)∪E(Q′)). By induction, using statement 2 in Lemma 9, (u1, u2, u3)

is (k − 1, k, k − 1) edge-connected in G − (E(Q) ∪ E(Q′)), and hence is (k, k, k) edge-connected in

G. The same argument holds for any set S such that {1, 4} ⊆ S, as we can apply Lemma 8 with

S′ = S ∩ {2, 3} and extend the paths {Qj |j ∈ S′} to Ki−1 in Gi−1 − (E(Q) ∪ E(Q′)), and get that

(u1, u2, u3) is (2k − 1, 2k − 2, 2k − 1)-joined to Ki−1 in Gi−1 − (E(Q) ∪ E(Q′)). 2
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Lemma 10 Let G be a graph with minimum degree d ≥ 2. Then there exists a pair (Gi,Ki) =

αi(G, ∅) such that one of the following is true.

1. Gi −Ki contains two edges {uv, vw} such that (u, v, w) is (d− 1, d− 2, d− 1)-joined to Ki in

Gi − {uv, vw}.

2. Gi − Ki contains three edges {uv, uw, vw} such that (u, v, w) is (d − 2, d − 2, d − 2)-joined to

Ki in Gi − {uv, uw, vw}.

Proof: Let i + 1 be the smallest integer such that Gi+1 − Ki+1 has maximum degree 1, that is,

each component of Gi+1−Ki+1 is either K1 or K2. Since G0−K0 is G, which has minimum degree

at least 2, and the reduction terminates when Gi − Ki is empty, there exists such an i ≥ 0. We

must have Gi = Gi+1 and Ki = Ki+1 − v for some vertex v, by the minimality of i. Every vertex

in Gi+1 − Ki+1 has degree at most two in Gi − Ki and hence |Ki| ≥ d − 2. Further, v is adjacent

to every vertex in Ki, by Lemma 7.

Suppose v is adjacent to both endpoints of an edge uw in Gi+1 −Ki+1. Then {uv, uw, vw} are

edges in Gi − Ki such that (u, v, w) is (d − 2, d − 2, d − 2)-joined to Ki in Gi − {uv, uw, vw}.

Suppose v is adjacent to a vertex u that is an endpoint of an edge uw in Gi+1 − Ki+1, but is

not adjacent to w. Then w has at least d− 1 neighbours in Ki and hence so does v. Thus {uv, uw}

are edges in Gi − Ki such that (v, u, w) is (d − 1, d − 2, d − 1)-joined to Ki in Gi − {uv, uw}.

The only other possibility is that v is the only vertex of degree at least two in Gi − Ki, and is

adjacent to vertices u,w that are isolated in Gi+1 −Ki+1. Then {uv, vw} are edges in Gi −Ki such

that (u, v, w) is (d − 1, d − 2, d − 1)-joined to Ki in Gi − {uv, vw}. 2

Proof: (Theorem 1) Suppose d = 2k is even. By Lemma 10, there exists an i ≥ 0 such that

(Gi,Ki) = αi(G, ∅) satisfies one of the statements in Lemma 10.

Suppose there exist edges {uv, vw} in Gi−Ki such that (u, v, w) is (2k−1, 2k−2, 2k−1)-joined

to Ki in Gi − {uv, vw}. By Lemma 9, statement 2, (u, v, w) is (k − 1, k, k − 1) edge-connected in

G − {uv, vw} and hence (k, k, k) edge-connected in G.

Suppose there exist edges {uv, vw, uw} in Gi −Ki such that (u, v, w) is (2k − 2, 2k − 2, 2k − 2)-

joined to Ki in Gi − {uv, vw, uw}. If k = 1, the three edges form the required paths. If k > 1,

by Lemma 9, statement 1, (u, v, w) is (k − 1, k − 1, k − 1) edge-connected in G − {uv, vw, uw} and

hence (k, k, k) edge-connected in G.

A similar argument holds if d = 2k + 1 is odd. Suppose there exist edges {uv, vw} in Gi − Ki

such that (u, v, w) is (2k, 2k − 1, 2k)-joined to Ki in Gi − {uv, vw}. By Lemma 9, statement 3,

(u, v, w) is (k−1, k+1, k−1) edge-connected in G−{uv, vw}, as well as (k, k, k−1) edge-connected

in G − {uv, vw}. Hence (u, v, w) is (k, k + 1, k) edge-connected in G, as well as (k + 1, k, k) edge-

connected in G.

Suppose there exist edges {uv, vw, uw} in Gi −Ki such that (u, v, w) is (2k − 1, 2k − 1, 2k − 1)-

joined to Ki in Gi − {uv, vw, uw}. By Lemma 9, statement 2, (u, v, w) is (k − 1, k, k − 1) and

also (k, k − 1, k − 1) edge-connected in G − {uv, vw, uw}. Hence (u, v, w) is (k, k + 1, k) as well as

(k + 1, k, k) edge-connected in G. 2
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3 Multigraphs

Theorem 11 Let k, d be positive integers and G a multigraph of order at least k and minimum

degree at least d. Then there exists a set A of k vertices such that G contains bdk/2c edge-disjoint

[A]-paths, where an [A]-path is either an A-path or an A-cycle.

Proof: It is sufficient to consider the case when G is connected. If not, let C1, C2, . . . , Cm be the

connected components of G. Let i be the smallest integer such that |C1| + |C2| + · · · + |Ci| ≥ k. If

i = 1, we consider only the component C1. If i > 1, choose A to be V (C1) ∪ · · · ∪ V (Ci−1) ∪ A′,

where A′ is a set of k− (|C1|+ · · ·+ |Ci−1|) vertices in Ci such that there are bd|A′|/2c edge-disjoint

[A′]-paths in Ci. Then the total number of [A]-paths in G is

≥ dd|C1|/2e + · · · + dd|Ci−1|/2e + bd(k − (|C1| + · · · + |Ci−1|))/2c

≥ bdk/2c.

Suppose G is connected and has order n ≥ k. If n = k then the edges in G are the required

paths, so we may assume n > k. Order the vertices in G (v1, v2, . . . , vn) such that vi is adjacent to

at least one vertex vj with j > i for 1 ≤ i < n. Let Ai be the set of vertices {v1, v2, . . . , vi} and

Bi = V (G) \ Ai. We claim that there are bdk/2c edge-disjoint [Ak]-paths in G.

To prove this, we show that for each i, k ≤ i < n, G contains a set of [Ak]-paths Pi, and a set

of Ak–Bi paths Qi, such that the paths in Pi ∪Qi are edge-disjoint, and |Qi| ≥ dk − 2|Pi|.

For i = k, let Pk be the set of edges with both endpoints in Ak and let Qk be the set of edges

that join a vertex in Ak to a vertex in Bk.

Suppose for some i, k ≤ i < n− 1, we have the sets of paths Pi and Qi. Let Q be the subset of

paths in Qi that terminate in vi+1. Let {P1, P2, . . . , Pm} be the paths in Q. Let Qj be a [Ak]-path

that is contained in P2j−1 ∪ P2j , for 1 ≤ j ≤ bm/2c. Let Pi+1 = Pi ∪ {Qj|1 ≤ j ≤ bm/2c}. If m

is even, let Qi+1 = Qi \ Q. If m is odd, let Q be the Ak–Bi+1 path contained in Pm ∪ {vi+1vl},

where vl is a vertex adjacent to vi+1 with l > i + 1. Now let Qi+1 = (Qi \ Q) ∪ {Q}. Then

|Pi+1| = |Pi| + bm/2c and |Qi+1| = |Qi| − 2bm/2c. By induction, |Qi+1| ≥ dk − 2|Pi+1|.

Applying the same argument to paths in Qn−1, which must terminate in vn, we get |Pn−1| +

b|Qn−1|/2c edge-disjoint [Ak]-paths in G. Since |Qn−1| ≥ dk − 2|Pn−1|, there are at least bdk/2c

edge-disjoint [Ak]-paths in G. 2
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