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Abstract

We prove that in every simple graph G with minimum degree d > 2, there are edges {uv, vw}
such that G contains |3d/2] edge-disjoint {u, v, w}-paths. If d is even, the paths can be chosen
such that each pair of vertices in {u, v, w} is joined by d/2 paths. If d is odd, any specified pair
of vertices in {u,v,w} can be joined by (d + 1)/2 of these paths and the other two pairs by
(d — 1)/2 paths. This is not true for multigraphs with minimum degree d in general. We show
that in every multigraph H of order at least £ and minimum degree d, there is a set A of k
vertices, such that H contains a collection of |dk/2| edge-disjoint A-paths and A-cycles, where
an A-cycle is a cycle containing exactly one vertex in A.

1 Introduction

A well-known theorem of Mader [3, 4] gives a min-max relation for the maximum number of edge-
disjoint (or vertex-disjoint) paths in a graph, whose endpoints are contained in a given set A of
vertices, called terminals, and whose internal vertices are not in A. Such paths are called A-paths.
A short proof of Mader’s theorem is given in [5]. We consider a variation of this problem, where
only the number k of terminals is specified, and a set A of k terminals is to be chosen to maximize
the number of edge-disjoint A-paths.

The motivation for this problem is another theorem of Mader [1] that every multigraph with
minimum degree d > 1 contains an edge wv such that there are d edge-disjoint paths between
u and v. Subsequently, Mader [2] showed that the paths can in fact be chosen to be internally
vertex-disjoint, if the graph is simple. We consider the analogous problem for A-paths, when |A] is
specified.

In particular, we consider the case when the number of terminals is three. We show that in
every simple graph G with minimum degree d > 2, there are two edges {uv,vw} such that there
are |3d/2| edge-disjoint {u, v, w}-paths in G. If d is even, the paths can be chosen such that there
are d/2 paths between each pair of vertices in {u,v,w}. If d is odd, the paths can be chosen such
that any specified pair of vertices in {u,v,w} is joined by (d + 1)/2 paths and the other two pairs
by (d — 1)/2 paths. However, unlike the two terminal case, this does not hold for multigraphs.



If G is a d-regular multigraph, the maximum possible number of edge-disjoint paths with &
terminals is |dk/2], since every path contributes two to the sum of degrees of terminal vertices.
Mader’s theorem shows that this bound is achieved in every multigraph with minimum degree d,
when k£ = 2. However, this is not the case when k > 2.

We show that in every multigraph G of order at least £ and minimum degree d, there is a set
A of k vertices, such that G contains a collection of |dk/2| edge-disjoint A-paths and A-cycles. An
A-cycle is a cycle that contains exactly one vertex in A. Equivalently, an A-cycle may be considered
to be an A-path whose endpoints are the same.

We note that if A and B are disjoint subsets of vertices, an A-B path is a path with one
endpoint in A and the other in B and all internal vertices are not in A U B. All notation and
terminology used is standard or defined as and when needed.

2 Three terminals

Theorem 1 In every simple graph G with minimum degree d > 2, there are edges uv and vw such
that G contains |3d/2| edge-disjoint {u,v,w}-paths. If d is even, the paths can be chosen such that
there are d/2 paths between each pair of vertices in {u,v,w}. If d is odd, the paths can be chosen
such that there are (d+1)/2 paths between any specified pair of vertices in {u,v,w} and (d —1)/2
paths between the other two pairs.

The proof of Theorem 1 is based on the technique used by Mader in [2]. We introduce a few
definitions in order to describe this technique.

Definition 2 A sequence of distinct vertices (u1,u2,ug) is said to be (a,b,c) edge-connected in
a graph G if there are a + b + ¢ edge-disjoint {uy,ua,us}-paths in G, a of which have endpoints
{u1,u2}, b have endpoints {ui,us} and ¢ have endpoints {uz,us}.

An ordered clique K in a graph G is a complete subgraph of G with an ordering imposed on
the vertices of K. We will be considering ordered pairs of the form (G, K), where K is an ordered
clique in a graph G.

Definition 3 Let (G, K) be any pair with K an ordered clique in a graph G. Let (vy,va,...,vk)
be the ordering of vertices in K. If K is a proper subgraph of G, the reduction «(G, K) of the pair
(G, K) is the pair (G',K") defined as follows:

1. If there is a vertex v € V(G) \ V(K) that is adjacent to all vertices in V(K), then G' = G
and V(K') = V(K) U {v} with the ordering (v1,va,...,vg,v) of vertices in K'. If there is
more than one such vertex, choose any one arbitrarily.

2. Suppose no vertex in V(G) \ V(K) is adjacent to all vertices in V(K). For every vertex
u € V(G)\V(K), let m(u) be the smallest index i such that u is not adjacent to v; € V(K).
Then G' = (G —v1) U{uvg(y) | u € V(G) \ V(K),m(u) > 1}, and K' = K — vy.



The reduction step can be applied repeatedly to a pair (G, K), until G — K is empty. Define
(G, K) = (G,K), and (G, K) = a(a'"1(G, K)) for i > 1.
Some obvious properties of this reduction are noted in Lemma 4.

Lemma 4 Let (G, K) be any pair and let (G', K') = o*(G, K), for somei > 0. Then the following
statements are true.

1. G' — K’ is an induced subgraph of G — K.

2. If every vertex in G — K has degree at least d in G then every vertexr in G' — K' has degree
at least d in G'.

3. For any set S of edges in G' — K', (G' — S,K') = ‘(G — S, K). O

Definition 5 Let (G, K) be any pair with K a proper subgraph of G. A sequence of distinct vertices
(uy,ug,...,up) in G — K is said to be (c1,ca,...,cm)-joined to K in G, if there are Y ;" ¢; edge-
disjoint {ui,ug,...,un -V (K) paths in G such that exactly c; paths have u; as an endpoint and
no two paths have the same pair of endpoints.

Lemma 6 Let G be any graph and K an ordered clique in G that is a proper subgraph of G. Let
(G, K;) = (G, K) and (Gi_1,K;—1) = o' Y(G, K), for some i > 1. Suppose a sequence of distinct
vertices (U1, ua, ..., Uny) in G; — K; is (c1,ca,...,cn)-joined to K; in G;. If (G, K;) is obtained by
applying step 2 of the reduction to (Gi—1,K;—1), then (ui,ug,...,uy) is (c1,c2,. .., Cn)-joined to
Ki—l m Gi—l-

Proof: Let Py be the set of 377", ¢; edge-disjoint {u1,uz,...,un}-V(K;) paths in G; such that
exactly ¢; paths have u; as an endpoint and no two paths have the same pair of endpoints. Since
(Gi, K;) is obtained by applying step 2 of the reduction to (G;_1, K;—1), V(K;—1) = V(K;) U{n },
V(Gi—1) = V(G;)U{v1 } and for some subset X C V(G;)\V(K;), E(Gi—1) = (E(Gi)U{uvi|u € X})
\ {uvrylu € X}). We call the edges in By = {uvy(,)|u € X} bad edges. If none of the paths in Py
contain a bad edge, then Py is the required set of paths in G;_1. Let Iy be the largest index such
that some edge in By is incident with v, € V(K;). To prove the Lemma, we show that the paths
in Py can be modified so that none of the paths contain a bad edge. This modification is done in
a sequence of steps. At each step we maintain a triple (P, B,[) satisfying the following properties:

1. B is a set of edges, called bad edges, joining vertices in V(G;) \ V(Kj;) to vertices in V(K;).
Any vertex u € V(G;) \ V(K;) is incident with at most one edge in B. If uv,, for some
uw e V(G;) \ V(K;) and v, € V(K;), is an edge in B then wv, is an edge in G;_; for all
1 < g < p. The largest index j > 2 such that some edge in B is incident with v; € V(Kj;) is
denoted by [. Note that an edge in B may be parallel to an edge in G;_; and we consider
Gi—1 U B to be a multigraph.

2. P is aset of Z;-”:l ¢; edge-disjoint {uy,ug, ..., un }-V (K;) paths in G;_; UB such that exactly
c¢;j paths have u; as an endpoint. If two paths in P have the same pair of endpoints, then one
of the common endpoints must be v;, and one of the two paths terminates at v; with an edge
in B while the other terminates with an edge not in B.



Note that (Po, By, ly) satisfies the two properties. Suppose (P, B,l) is a triple satisfying these
properties with [ = 2. If any path in P contains an edge uve € B, for some u € V(G;) \ V(K;),
replace that edge by the edge uv; in G;—1. This gives a new set of paths that are contained in G;_1.
Two paths terminating at v, cannot have their other endpoint common, as two paths in P, having
both endpoints common, cannot both terminate with a bad edge at vo. This gives the required set
of paths in G;_1.

Suppose [ > 2. We show that we can find a new triple with a smaller value of [. We may assume
that every edge in B that is incident with v; is contained in some path in P, otherwise just delete
the edge from B. Any two paths in P that terminate in v; with a bad edge must have their other
endpoints distinct. Let S be the set of indices j such that some path in P has {u;,v;} as endpoints
and contains a bad edge. We colour the bad edge in this path j. Thus all bad edges incident with
v; get distinct colours.

Define a subset S’ C S as the smallest subset of S satisfying the following:

1. If for some j € S, there exists a path in P with endpoints {u;,v;_;} that terminates in a bad
edge incident with v;_1 then j € S'.

2. Suppose t € S" and uw; is the bad edge coloured ¢ incident with v;. If the edge uv;_1, which
is an edge in G;_1, is contained in some path in P having u; as an endpoint, and j € S, then
jes.

Now for every bad edge wv; incident with v;, we do the following. If the edge uwv; is coloured j
and j € S’ then replace the edge uv; by the good edge uv;_; in the path in P that contains uv;.
If the edge wv;_1 was contained in some path in P, add a new bad edge parallel to it, and replace
uv;_1 by the bad edge that is parallel to it, in this path. If j ¢ S’, add a new bad edge uv;_
parallel to the good edge uwv;_1, and replace the edge uv; by the new bad edge uv;_; in the path in
‘P that contains uv;. Finally, delete the edge wv; from B and add any newly added bad edge to B.

We claim that the new set of paths P’ and the new set of bad edges B’ satisfy the required
properties. This gives a triple with a smaller value of [.

Since any new bad edge is obtained by replacing a bad edge of the form uwv; by uv;_q, it is clear
that the new set of bad edges satisfies the required property.

It remains to show that P’ also satisfies the required property. From the construction, it can be
seen that paths in P that terminate at v; with a bad edge are replaced in P’ by paths terminating
at v;_1, while all other paths have the same pair of endpoints. Hence v;_1 is the only vertex at
which more than one path from some vertex u; can terminate, and there can be at most two such
paths.

Suppose there are two paths is P’ with endpoints {u;,v;_1} for some j € {1,2...,m}. Then
one of the paths, say Pi, is obtained by replacing a bad edge wv; of colour j, contained in some
path in P, either by the good edge uv;_1 or by a newly added bad edge uv;_1. Hence j € S. If
j € S’ then P; terminates with a good edge. By the definition of S’, either the path in P with
endpoints {uj,v;_1} terminates with a bad edge, or if it terminates with a good edge, the good
edge is replaced by a bad edge parallel to it. In either case, the second path in P’ with endpoints
{uj,vi_1} terminates with a bad edge. If j ¢ S’, P; terminates with a bad edge, and the other



path in P’ with endpoints {u;,v;_1} is a path in P. It must terminate with a good edge, by the
definition of S’. Hence (P’, B/, — 1) is a triple satisfying the required properties. O

Lemma 7 Let G be any graph and K an ordered clique in G that is a proper subgraph of G. Let
(G, K;) = (G, K) and (Gi_1,K;_1) = o' Y(G, K), for some i > 1. Suppose a sequence of distinct
vertices (u1,ug, ..., Uy) in G; — K; is (c1,¢2,...,cn)-joined to K; in G;, and (G;, K;) is obtained
by applying step 1 of the reduction to (G;—1,K;—1). Then there exists a vertex v € V(K;) and a
subset S C {1,2,...,m} such that the following statements are true.

1. Gi—l = Gz and Ki—l = Kz' — .
2. v is adjacent to all vertices in K;_1.
3.¢; >0 foralljesS.

4. There are |S| edge-disjoint {v}—{uy,us,...,un} paths {Q;|j € S} in Gi—1 — K;—1 such that
Q; has endpoints {uj,v}, for all j € S.

5. The sequence of vertices (uy,us,...,Umn,v) is (di,da,...,dn,d)-joined to K;—1 in G;—1 —
(Ujes E(Qj)), where dj = c; if j €S, dj =c; —1if j € S and d = max(dy,da, ..., dn).

Proof: Let P be the set of 3 7", ¢; edge-disjoint {u1,us2, ..., un}-V (K;) paths such that exactly
c; paths have u; as an endpoint, and no two paths have the same pair of endpoints. Since (G;, K;)
is obtained from (G;_1, K;_1) using step 1 of the reduction, G; = G;—1 and V(K;) = V(K;_1)U{v},
for some vertex v in GG;_1 — K;_1 that is adjacent to all vertices in K;_1. This proves the first two
statements in Lemma 7. Let S C {1,2,...,m} be the subset of indices j such that some path in P
has endpoints {u;,v}. There can be at most one such path for each j and we denote these paths
{Qjl|j € S}. Clearly these paths are {v}—{u1,us,...,un} paths contained in G;—; — K;_1. This
proves the third and fourth statements in Lemma 7. Finally, P’ = P\ {Q,|j € S} is a collection of
> 74y dj edge-disjoint {u1,ug, ..., um}-V (K;—1) paths in G;—1 — (U;es £(Q;)) such that exactly d;
paths have u; as an endpoint and no two paths have both endpoints the same. This implies that
|Ki—1| > d = max(dy,ds, ...,dp). Therefore, P' U {vvjjv; € V(K;—1),1 < j < d} is a collection of
>_jL1dj + d edge-disjoint {u1,usz, ..., um,v}-V (K;_1) paths such that exactly d; paths have u; as
an endpoint and no two paths have both endpoints the same. This completes the proof of Lemma
7. O

Lemma 8 Let G be any graph, let K be an ordered clique in G and let (uy,us,...,Un,v) be a
sequence of distinct vertices in G — K. Suppose for some subset S’ C {1,2,...,m}, G— K contains
|S| edge-disjoint {v}—{u1,uz,...,un} paths {Q;|i € S'}, with Q; having endpoints {u;,v} for all
i € S, such that (u1,ug, ..., Un,v) is (C1,¢2,...,Cn,c)-joined to K in G — (Ujesr E(Qi)). Let
Sy ={ilie S c; >c—k}. If|S] <k for all0 < k < |S'|, then (u1,us, ..., un) is (di,dz,...,dn)-
joined to K in G, where d; = c¢; ifi € S and d; =c; +1 ifi € 5.

Proof: Let P be the set of Y.7"; ¢; + ¢ edge-disjoint {u1,ug,...,un,v}-V(K) paths in G —
(Uies' E(Q;)) such that exactly ¢; paths have endpoint u; and no two paths have the same pair of



endpoints. Let V; be the subset of vertices in V(K') that are endpoints of paths is P having u; as
one endpoint, for 1 < i < m. Similarly, let V' be the set of endpoints in V(K) of paths in P that
have v as an endpoint. Note that |V;| = ¢; and |V| =c.

Let the vertices {u;|i € S’} be ordered (u;,,u;,,...,u;, ) such that ¢;; > ¢;, > -+ > ¢;,. Since
|S)] < kforall0 <k <r ¢, <c—kforl <k <r. Hence, there exist distinct vertices
(Viy, Vig, .-, 0;,) such that v;, € V and v;, ¢ V;,, for 1 < k < r. Let ng be the path in P
with endpoints {v,v;, }, and let P;, be a path with endpoints {u;, ,v;, } contained in Q; U Q;
for 1 <k <7 Then (PU{P;,[1 <k <7r})\{Q] |1 <k < r} contains a collection of >3, d;
edge-disjoint {u1, ug, ..., un,}—V (K) paths such that exactly d; paths have endpoint u; and no two
of the paths have the same pair of endpoints, where d; = ¢; if 1 € S’ and d; = ¢; +1ifi e S'. O

If Lemma 8 holds for some subset S’ and paths {Q;|i € S}, we say the paths {Q;]i € S’} can
be extended to the clique K in G.

Lemma 9 Let (G, K;) = oi(G,0) for some i > 0 and let (u1,uz,u3) be a sequence of distinct
vertices in G; — K;. Then the following statements are true for all integers k > 1.

1. If (uy,ug,us) is (2k, 2k, 2k)-joined to K; in G;, then (uy,us,us) is (k, k, k) edge-connected in
G.

2. If (u1,u9,us) is (2k — 1,2k — 1,2k — 2)-joined to K; in G;, then (uy,us,us3) is (k,k—1,k—1)
edge-connected in G.

3. If (uy,ug,usz) is (2k,2k,2k — 1)-joined to K; in G;, then (uy,us,us) is (k+ 1,k — 1,k —1)
edge-connected in G, and also (k,k,k — 1) edge-connected in G.

4. If G; — K; contains a vertex ugy & {u1,uz,us} and edge-disjoint {us}—{u1,u2,us} paths Py, Ps
with endpoints {ug,us} and {us,us} respectively, such that (uy,us,us,uq) is (2k,2k — 1,2k —
1,2k)-joined to K; in G; — (E(P2) U E(Ps)), then (ui,ug,us) is (k,k, k) edge-connected in G.

5. If G; — K; contains a verter ug ¢ {ui,u,us} and edge-disjoint {us}—{ui,uz,us} paths
Py, Py, Ps with endpoints {uy,uq},{us,us} and {us,us} respectively, such that (uy,ug,us, ug)
is (2k—1,2k—1,2k—1,2k—1)-joined to K; in G; — (E(P1)UE(Py)UE(P3)), then (ui,ug,us)
is (k,k,k) edge-connected in G.

6. If G; — K; contains a verter uy ¢ {uy,us,us} and edge-disjoint {us}—{uy,us,us} paths
Py, Py, P3 with endpoints {ug,us}, {uz,us} and {us,us} respectively, such that (uq,us, us, uy)
is (2k,2k — 2,2k — 1, 2k)-joined to K; in G; — (E(Py) U E(Py) U E(Ps)), then (u1,us,us) is
(k,k, k) edge-connected in G.

Proof: The proof is by induction on 4, the number of steps in the reduction. If i = 0, then G; = G
and K is empty, and the Lemma is trivially true, since no vertex in G; — K; can be joined by a path
to K, and there do not exist vertices (u1,uz,us) satisfying the hypothesis of any of the statements
in Lemma 9.

Suppose i > 0 and let (G;_1, K;_1) = o' "1 (G, D). Then (Gy, K;) is obtained by applying either
step 1 or step 2 of the reduction, defined in Definition 3, to (G;—1, K;_1).



Suppose (G;, K;) is obtained from (G;_1, K;_1) by applying step 2 of the reduction. By Lemma
6, if a sequence of vertices (u1,ug,us) in G; — K; satisfies the hypothesis of any of the statements
in Lemma 9 in G;, then (u1,ug,us) satisfies the same hypothesis in G;_1. Hence, by induction,
(u1,ug,us) satisfies the corresponding conclusion in G, and each of the statements in the Lemma
is true.

Suppose (G;, K;) is obtained from (G;_1,K;_1) by applying step 1 of the reduction. Then
G;,_1 = G; and K;_1 = K; — v for some vertex v that satisfies the statements in Lemma 7. Let
S C {1,2,3,4} be the subset that satisfies the statements in Lemma 7 and let {Q;|j € S} be
the corresponding paths. If S is empty, by statement 5 in Lemma 7, if (uy,us,us) satisfies the
hypothesis of any statement in Lemma 9 in G;, it satisfies the same hypothesis in G;_1, and we
can apply induction. We may therefore assume S is not empty.

We consider each statement in Lemma 9 separately.

Case 1. Suppose (uy,us,us) is (2k, 2k, 2k)-joined to K; in G;.

If |S| =1, by Lemmas 7 and 8, with S” = S, we can extend the path {Q;[j € S} to the clique
K;_1 in G;—1. Hence, (uj,uz,us) is (2k,2k,2k)-joined to K;_; in G;_1, and by induction, using
statement 1 in Lemma 9, it is (k, k, k) edge-connected in G.

Suppose |S| = 2 and without loss of generality, S = {2,3}. Considering v to be the vertex
ug and Q2,Q3 to be the paths P, Ps, (u1,us,us,ug) is (2k,2k — 1,2k — 1,2k)-joined to K;_1 in
Gi—1— (E(P2) UE(Ps)), by Lemma 7. By induction, using statement 4 in Lemma 9, (u1, ua,us) is
(k, k, k) edge-connected in G. It is worth noting that in this case, (w1, ug2,us) is (2k,2k — 1,2k —1)-
joined to K;_1 in G;—1 — (E(Q2) U E(Q3)). Unfortunately, this does not imply it is (k,k,k — 1)
edge-connected in G — (E(Q2) U E(Q3)).

If S = {1,2,3} then considering v to be the vertex uy4, and the paths @1, Q2, Q3 to be the
paths Pj, Py, Py respectively, (ui,ug,us,uq) is (2k — 1,2k — 1,2k — 1,2k — 1)-joined to K;_; in
Gi—1 — (E(P1) U E(P,) U E(P3)), by Lemma 7. By induction, using statement 5 in Lemma 9,
(uq,ug,u3) is (k, k, k) edge-connected in G.

Case 2. Suppose (u1,us,u3) is (2k — 1,2k — 1,2k — 2)-joined to K; in G;.

If | S| < 2and S # {1, 2}, then by Lemma 8 with S’ = S, we can extend the paths {Q;|j € S} to
K; 1 in G;_1, and hence (uq, ug, us) is (2k — 1,2k — 1, 2k — 2)-joined to K;_1 in G;_;. By induction,
using statement 2 in Lemma 9, (u1,ug,us3) is (k,k — 1,k — 1) edge-connected in G.

If S ={1,2}, let Q be a path with endpoints {uj,us} contained in @1 U Q2. Then, by Lemma
7, (ul,u2,u;3) is (2]€ - 2,2]€ - 2,2k - 2)—joined to Ki,1 in Gi,1 - E(Q) If K =1 then Q is the
required path in G with endpoints {u1,us}. If £ > 1, by induction, using statement 1 in Lemma
9, (u1,u2,u3) is (k— 1,k — 1,k — 1) edge-connected in G — E(Q), and hence (k,k — 1,k — 1) edge-
connected in G. If S = {1,2,3}, the same argument holds, as by Lemma 8 with S" = {3}, we can
extend the path Q3 to K;_1 in G;_1 — E(Q), and hence (uq, ug, u3) is (2k — 2,2k — 2, 2k — 2)-joined
to Ki—l in Gi—l — E(Q)

Case 3. Suppose (uq,us,us) is (2k, 2k, 2k — 1)-joined to K; in G;.

If {1,2} Z S then by Lemma 8 with S’ =S, we can extend the paths {Q;]j € S} to the clique
K;_1 in G;_1, and hence (u1,ug,us) is (2k, 2k, 2k — 1)-joined to K;_1 in G;_1. By induction, using
statement 3 in Lemma 9, (u1, ug, u3) is (k+1,k—1,k—1) edge-connected in G, and also (k, k,k—1)
edge-connected in G.



If S ={1,2}, let Q be a path with endpoints {u1,us} contained in Q1 U Q2. Then (uy,ua,us) is
(2k—1,2k—1,2k—1)-joined to K;_; in G;_1 — E(Q). By induction, using statement 2 in Lemma 9,
(u1,u2,u3) is (k,k —1,k—1) edge-connected in G — E(Q), and also (k—1,k, k — 1) edge-connected
in G — E(Q). Hence (uy,u2,u3) is (k+ 1,k — 1,k — 1) edge-connected in G, and also (k,k,k — 1)
edge-connected in G. The same argument can be used if S = {1,2,3}, as by applying Lemma 8
with S = {3}, we can extend the path Q3 to the clique K; 1 in G;_; — E(Q), and hence (u1,uz, us3)
is (2k — 1,2k — 1,2k — 1)-joined to K, in Gij—1 — E(Q).

Case 4. Suppose G; — K; contains a vertex uy ¢ {u1,ue,us} and edge-disjoint {uq }—{u1, uo,us}
paths P, P3 with endpoints {ug,us}, {us,us} respectively, such that (uq,us,us,uq) is (2k,2k —
1,2k — 1,2k)-joined to K; in G; — (E(Pa) U E(Ps)).

If |S| <2and S # {1,4} then by Lemma 8 with S” = S, we can extend the paths {Q;[j € S} to
the clique K;_1 in G;_1 — (E(P2) UE(Ps)), and hence (u1, ua, us,us) is (2k, 2k — 1,2k — 1, 2k)-joined
to K;—1 in G;—1 — (E(P2) U E(Ps)). By induction, using statement 4 in Lemma 9, (u1,ug,us3) is
(k,k, k) edge-connected in G.

If S = {1,4}, let P; be a path with endpoints {u1,us} contained in Q1 UQ4. Then (uq,ug, us, uyg)
is (2k — 1,2k — 1,2k — 1,2k — 1)-joined to K;_1 in G;j_1 — (E(P1) U E(P) U E(P3)). By induction,
using statement 5 in Lemma 9, (u1,us,us3) is (k, k, k) edge-connected in G. The same argument
holds if S = {1,2,4} or S = {1,3,4}, as by Lemma 8 with S’ = {2} or S’ = {3} respectively, we
can extend the path Q2 or Q3 to K;—1 in G;_1 — (E(P;)UE(P,) U E(P3)), and hence (uq,us, us, tg)
is (2k — 1,2k — 1,2k — 1,2k — 1)-joined to K;_; in Gi_1 — (E(Py) U E(Ps) U B(P3)).

If S ={1,2,3} then by Lemma 7, (u1,u2,us,uq,v) is (2k — 1,2k — 2,2k — 2,2k, 2k)-joined to
K, 1in G;_1— (E(PQ) UE(Pg) UE(Ql) UE(QQ) UE(Qg)) Applying Lemma 8 with S = {2, 3}, we
can extend the paths {Ps, P3} to K;—1 in G;—1 — (E(Q1) U E(Q2) U E(Q3)). Hence Q1,Q2, Q3 are
edge-disjoint {v}—{u1, us, us} paths in G;_1 — K;_1 with endpoints {u1,v}, {ug, v} and {us, v}, such
that (uq,us,us,v) is (2k—1,2k—1,2k—1,2k—1)-joined to K;_1 in G;—1 — (E(Q1)UE(Q2)UE(Q3)).
By induction, considering v to be the vertex uy in statement 5 in Lemma 9, (u1,us,us) is (k, k, k)
edge-connected in G.

If S ={2,3,4} then (uy,us,us,uq,v) is (2k, 2k — 2,2k — 2,2k — 1, 2k)-joined to K;_; in G;—1 —
(E(Py) UE(P;) UE(Q2) U E(Q3) U E(Q4)). Let Pj be a path with endpoints {ug,v} contained in
P,UQ4. Applying Lemma 8 with S’ = {3}, we can extend the path P5 to K;_1 in G;—1 — (E(P3)U
E(Q2)UE(Q3)), and hence Pj, Q2, Q3 are edge-disjoint {v}—{uy,us,us} paths in G;—1 — K;_1 with
endpoints {ug, v}, {uz,v} and {us, v} respectively, such that (uy,us,us,v) is (2k, 2k — 2,2k — 1, 2k)-
joined to K;_1 in G;—1 — (E(Py) U E(Q2) U E(Q3)). By induction, considering v to be the vertex
uy4 in statement 6 in Lemma 9, (u1,uq,us) is (k, k, k) edge-connected in G.

Finally, suppose S = {1,2,3,4}. Let @ be a path with endpoints {u1,us} contained in Q1 U Q3
and Q' a path with endpoints {us,ug} contained in P, U P3. Applying Lemma 8 with S’ = {2}, we
can extend the path Qs to K;_1 in G;_1 — (F(Q)UE(Q’)), hence (u1,uz,u3) is (2k—1,2k—1, 2k—2)-
joined to K;—1 in G;—1 — (E(Q)U E(Q")). By induction, using statement 2 in Lemma 9, (u1,ug, us)
is (k,k — 1,k — 1) edge-connected in G — (E(Q) U E(Q")) and hence (k, k, k) edge-connected in G.

Case 5. Suppose G; — K; contains a vertex ug & {u1, us, us} and edge-disjoint {ug}—{u1,ue,us}
paths Pj, Py, P3 with endpoints {uy,u4}, {ua, us} and {us, ug} respectively, such that (uq, ug, us, ug)
is (2k — 1,2k — 1,2k — 1,2k — 1)-joined to K; in G; — (E(Py) U E(Py) U E(P3)).



If |S| = 1, by Lemma 8 with S’ = S, we can extend the path {Q;,j € S} to K;_; in G;_1 —
(E(P) U E(Ps) U E(Py)), hence (ug,us,uz, ug) is (2k — 1,2k — 1,2k — 1,2k — 1)-joined to K;_;
in G;_1 — (E(P1) U E(Py) U E(P3)). By induction, using statement 5 in Lemma 9, (u1,ug,us3) is
(k,k, k) edge-connected in G.

Suppose S = {1,2}. Let @ be a path with endpoints {u1,us} contained in @1 U Q2 and let @’
be a path with endpoints {ug, us} contained in P, U P3. Applying Lemma 8 with S’ = {1}, we can
extend the path P; to K;_1 in G;—1 — (E(Q)U E(Q")). Hence, (u1,ug,us) is (2k — 1,2k — 2,2k — 1)-
joined to K;_1 in G;j—1 — (F(Q)UE(Q’)). By induction, using statement 2 in Lemma 9, (u1,ug, us}
is (k — 1,k,k — 1) edge-connected in G — (E(Q) U E(Q")) and hence (k, k, k) edge-connected in G.
A similar argument holds if S = {1,3} or S = {2, 3}, by symmetry. If S = {1,2,3}, apply Lemma
8 twice, with S = {1} and extend the path P; to K;_; in G;_1 — (E(Q) U E(Q") U E(Q3)), and
again with S” = {3}, extend the path Q3 to K;,_; in G;,_1 — (E(Q) U E(Q")). Hence (u1,us2,us) is
(2k — 1,2k — 2,2k — 1)-joined to K;_1 in G;—1 — (E(Q) U E(Q’)) and the previous argument holds.

Suppose S = {1,4}. Let @ be a path with endpoints {u1,us} contained in Q1 UQ4UP; and Q" a
path with endpoints {u,u3} contained in Py U P3. Then (uj,ue,us) is (2k — 2,2k — 1, 2k — 1)-joined
to K;—1 in G;—1 — (E(Q) U E(Q")) and by induction, using statement 2 in Lemma 9, (u1, ug,ug) is
(k—1,k—1,k) edge-connected in G — (E(Q)UE(Q")). Hence (u1,us,us) is (k, k, k) edge-connected
in G. A similar argument holds if S = {2,4} or S = {3,4}, by symmetry. Further, if S = {1,2,4},
applying Lemma 8 with S = {2}, we can extend the path Q2 to K;,—; in G;,—1 — (E(Q) U E(Q")),
hence (u1,uz2,us3) is (2k — 2,2k — 1,2k — 1)-joined to K;_1 in G;—1 — (E(Q) U E(Q")). The same
argument holds if S = {1,3,4} or S = {2,3,4}, by symmetry.

Finally, suppose S = {1,2,3,4}. Let @ be a path with endpoints {u1,us} contained in Q1 U
Q41U Py, let Q" be a path with endpoints {uj,us} contained in P; U P3, and Q" a path with
endpoints {ug,uz} contained in Q2 U Q3. Then (uy,us,us) is (2k — 2,2k — 2,2k — 2)-joined to K;_
inGi_1— (F(QUEQ)UE(Q")). f k=1, Q,Q" and Q" are the required paths in G. If k > 1,
by induction, using statement 1 in Lemma 9, (uq,ug,us) is (k — 1,k — 1,k — 1) edge-connected in
G- (E(Q)UE(Q")UE(Q")) and hence is (k, k, k) edge-connected in G.

Case 6. Suppose G; — K; contains a vertex uy ¢ {ui,ug, us} and edge-disjoint {uq }—{u1,uo,us}
paths Py, Py, P3 with endpoints {ug, ug}, {us, us} and {us, us} respectively, such that (uy,ug,us, us)
is (2k, 2k — 2,2k — 1, 2k)-joined to K; in G; — (E(P3) U E(PL) U E(P3)).

If {1,4} Z S, applying Lemma 8 with S’ = S and extending the paths {Q;|j € S} to K;_; in
Gi—1— (E(P2)UE(Py) UE(Ps)), we see that (u1,us, us, uq) is (2k, 2k — 2,2k — 1, 2k)-joined to K;_;
in Gi—1 — (E(Py) U E(Py) U E(P3)). By induction, using statement 6 in Lemma 9, (u1,us,us) is
(k,k, k) edge-connected in G.

Suppose S = {1,4}. Let @ be a path with endpoints {u1,u2} contained in Q1 UQ4U P and let
Q' be a path with endpoints {us, ug} contained in PjUPs. Then (uy,us,us) is (2k—1,2k—2,2k—1)-
joined to K;—1 in G;—1 — (E(Q)U E(Q")). By induction, using statement 2 in Lemma 9, (u1,ug, us)
is (k —1,k, k — 1) edge-connected in G — (E(Q) U E(Q")), and hence is (k, k, k) edge-connected in
G. The same argument holds for any set S such that {1,4} C S, as we can apply Lemma 8 with
S"=5N{2,3} and extend the paths {Q;|j € S’} to K;_1 in G;—1 — (E(Q) U E(Q’)), and get that
(ur, us, us) is (2k — 1,2k — 2,2k — 1)-joined to K;_1 in Gi_1 — (E(Q) U E(Q")). 0



Lemma 10 Let G be a graph with minimum degree d > 2. Then there exists a pair (G;, K;) =
o' (G,0) such that one of the following is true.

1. G; — K; contains two edges {uv,vw} such that (u,v,w) is (d —1,d —2,d — 1)-joined to K; in
Gi — {uv,vw}.

2. G; — K; contains three edges {uv,uw,vw} such that (u,v,w) is (d —2,d —2,d — 2)-joined to
K; in G — {ww, uw,vw}.

Proof: Let i + 1 be the smallest integer such that G;;1 — K;1 has maximum degree 1, that is,
each component of G;;1 — K11 is either Ky or K». Since Gy — Ky is G, which has minimum degree
at least 2, and the reduction terminates when G; — K; is empty, there exists such an ¢ > 0. We
must have G; = G;41 and K; = K;11 — v for some vertex v, by the minimality of . Every vertex
in G171 — K;41 has degree at most two in G; — K; and hence |K;| > d — 2. Further, v is adjacent
to every vertex in K;, by Lemma 7.

Suppose v is adjacent to both endpoints of an edge ww in G;+1 — K;y1. Then {uv, uvw,vw} are
edges in G; — K such that (u,v,w) is (d — 2,d — 2,d — 2)-joined to K; in G; — {uww, uw,vw}.

Suppose v is adjacent to a vertex u that is an endpoint of an edge uw in G;11 — K;41, but is
not adjacent to w. Then w has at least d — 1 neighbours in K; and hence so does v. Thus {uv, uw}
are edges in G; — K; such that (v,u,w) is (d — 1,d — 2,d — 1)-joined to K; in G; — {uv,uw}.

The only other possibility is that v is the only vertex of degree at least two in G; — Kj;, and is
adjacent to vertices u,w that are isolated in G;+1 — K;+1. Then {uv,vw} are edges in G; — K; such
that (u,v,w) is (d —1,d — 2,d — 1)-joined to K; in G; — {uv,vw}. O
Proof: (Theorem 1) Suppose d = 2k is even. By Lemma 10, there exists an ¢ > 0 such that
(G, K;) = o' (G, ) satisfies one of the statements in Lemma, 10.

Suppose there exist edges {uv, vw} in G; — K; such that (u,v,w) is (2k— 1,2k — 2,2k — 1)-joined
to K; in G; — {uv,vw}. By Lemma 9, statement 2, (u,v,w) is (k — 1,k,k — 1) edge-connected in
G — {uv,vw} and hence (k,k, k) edge-connected in G.

Suppose there exist edges {uv, vw,uw} in G; — K; such that (u,v,w) is (2k — 2,2k — 2,2k — 2)-
joined to K; in G; — {uv,vw,uw}. If k = 1, the three edges form the required paths. If k£ > 1,
by Lemma 9, statement 1, (u,v,w) is (k — 1,k — 1,k — 1) edge-connected in G — {uv, vw,uw} and
hence (k, k, k) edge-connected in G.

A similar argument holds if d = 2k + 1 is odd. Suppose there exist edges {uv,vw} in G; — K;
such that (u,v,w) is (2k,2k — 1,2k)-joined to K; in G; — {uv,vw}. By Lemma 9, statement 3,
(u,v,w)is (k—1,k+1,k—1) edge-connected in G —{uv,vw}, as well as (k, k, k—1) edge-connected
in G — {uv,vw}. Hence (u,v,w) is (k,k + 1, k) edge-connected in G, as well as (k + 1, k, k) edge-
connected in G.

Suppose there exist edges {uv, vw, uw} in G; — K; such that (u,v,w) is (2k — 1,2k — 1,2k — 1)-
joined to K; in G; — {uv,vw,vw}. By Lemma 9, statement 2, (u,v,w) is (k — 1,k,k — 1) and
also (k,k — 1,k — 1) edge-connected in G — {uv, vw,uw}. Hence (u,v,w) is (k,k + 1,k) as well as
(k+1,k, k) edge-connected in G. O
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3 Multigraphs

Theorem 11 Let k,d be positive integers and G a multigraph of order at least k and minimum
degree at least d. Then there ezists a set A of k vertices such that G contains |dk/2] edge-disjoint
[A]-paths, where an [A]-path is either an A-path or an A-cycle.

Proof: It is sufficient to consider the case when G is connected. If not, let C1,Cs,...,C,, be the
connected components of G. Let ¢ be the smallest integer such that |C|+ |Co| + -+ |Cs| > k. If
i = 1, we consider only the component Cy. If i > 1, choose A to be V(C1)U---UV(C;—1) U A,
where A’ is a set of k— (|C1|+---+|Ci_1]) vertices in C; such that there are |d|A’|/2] edge-disjoint
[A']-paths in C;. Then the total number of [A]-paths in G is

[dICy]/2] + -+ + [d|Cia] /2] + |d(k = (IC1] + - + [Cia])) /2]

>
> |dk/2).

Suppose G is connected and has order n > k. If n = k£ then the edges in G are the required
paths, so we may assume n > k. Order the vertices in G (v1, v, ...,v,) such that v; is adjacent to
at least one vertex v; with j > i for 1 < i < n. Let A; be the set of vertices {v1,vo,...,v;} and
B; =V(G)\ A;. We claim that there are |dk/2] edge-disjoint [A]-paths in G.

To prove this, we show that for each i, k <1i < n, G contains a set of [Ag]-paths P;, and a set
of Ay—B; paths Q;, such that the paths in P; U Q; are edge-disjoint, and |Q;| > dk — 2|P;|.

For i = k, let Py, be the set of edges with both endpoints in A, and let Qj be the set of edges
that join a vertex in Ay to a vertex in By.

Suppose for some i, kK <7 < n — 1, we have the sets of paths P; and Q;. Let Q be the subset of
paths in Q; that terminate in v;41. Let {P1, P»,..., Py} be the paths in Q. Let Q; be a [Ay]-path
that is contained in Poj_1 U Pyj, for 1 < j < |m/2]. Let Piy1 = P U{Q; 1 < j < |m/2]}. Ifm
is even, let Q;11 = Q; \ Q. If m is odd, let @ be the Ap—B;11 path contained in P, U {vit1v;},
where v; is a vertex adjacent to v;4q1 with [ > i+ 1. Now let Q;11 = (Q; \ Q) U{Q@}. Then
"PZ'JF1| = ’,PZ‘ + Lm/QJ and ‘Qi+1| = ’Ql| - 2Lm/2J By induction, ‘Qi+1‘ > dk — 2|PZ+1|

Applying the same argument to paths in Q,,_1, which must terminate in v,, we get |P,_1| +
||Qn-1|/2| edge-disjoint [Ag]-paths in G. Since |Qp_1| > dk — 2|P,—_1|, there are at least |dk/2]
edge-disjoint [Ag]-paths in G. O
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