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Abstract

One of the relatively less known theorems of Mader states that every graph G

with minimum degree d ≥ 1 contains an edge uv such that there are d internally
vertex-disjoint paths between u and v in G. We give a generalization of this theorem.
Let T be any rooted tree with d + 1 vertices. There is a rooted subtree T ′ of G

isomorphic to T , such that G contains d paths that pairwise intersect in the root of
T ′ and join the root to the other d vertices in T ′. The proof technique is essentially
the same as Mader’s.

1 Introduction

One of the most basic results in graph theory, attributed to folklore, is that every
graph with minimum degree d contains every tree with d + 1 vertices. Another
such result is that every graph with minimum degree d ≥ 2 contains a cycle of
length ≥ d + 1. Brandt [1] showed that every graph of order n and minimum
degree d contains every forest with d edges and at most n vertices. An early result
of Mader [4] is that every graph with minimum degree d ≥ 1 contains an edge
such that there are d internally vertex-disjoint paths between the endvertices of the
edge. A well-known theorem of Dirac [3] is that every graph with minimum degree
3 contains a subdivision of K4. Thomassen and Toft [5] showed that a graph with
minimum degree 3 contains a subdivision of K4 such that edges in a hamilton path
of K4 are not subdivided.

These results suggest the following general question: What are the graphs that
are guaranteed to be “contained” in any graph with minimum degree d? In order
to make this precise and meaningful, we need to define what we mean by “contain”
more carefully.

Let T (H) denote the set of all graphs that can be obtained from a graph H by
subdividing the edges of H. A graph H is a topological minor of a graph G if there
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is a subgraph of G that belongs to T (H) [2]. We write H � G if H is a topological
minor of G. If F is a forest in a graph H, we denote by T (H,F ) the set of all graphs
that can be obtained by subdividing the edges of H that are not in F . With a slight
abuse of notation, we say (H,F ) � G if there is a subgraph of G that belongs to
T (H,F ).

We can now restate the theorems as follows. Let G be a graph with minimum
degree d ≥ 1. Then

• (T, T ) � G for any tree T with d + 1 vertices.

• (Cd+1, P d+1) � G, if d ≥ 2.

• (K1 ∗ K1,d−1 ,K1,d) � G (Mader).

• K4 � G, if d ≥ 3 (Dirac).

• (K4, P 4) � G, if d ≥ 3 (Thomassen and Toft).

In this note, we generalize Mader’s theorem from this point of view. We will
prove that if F is any forest with d vertices, then (K 1 ∗ F, T ) � G, where T is any
spanning tree in K1 ∗ F that contains F . Another way of viewing this result is
that if T is a rooted tree with d + 1 vertices, then there is a rooted subtree T ′ of
G isomorphic to T , such that G contains d paths that pairwise intersect in the root
of T ′ and join the root to the other d vertices in T ′. Thus if T is K1,d with a leaf
vertex as the root, this implies Mader’s theorem.

We believe this is not the most general theorem. It should be possible to show
that (K1 ∗ F, T ) � G for any spanning tree T in K1 ∗ F . Even more generally,
it is possible that (H,T ) � G, where H is a connected series-parallel graph with
d + 1 vertices and T a spanning tree in H. Note that if T is a tree with d vertices,
then K1 ∗ T is a series-parallel graph with d + 1 vertices. However, Mader’s proof
technique does not seem to extend to these problems.

2 Main Result

We first describe the terminology used. Most of it is standard and may be found
in, for example, [2].

If A and B are disjoint subsets of vertices, an A–B path is a path with one end
in A and the other in B and whose internal vertices are not in A ∪ B. A collection
of paths is said to be internally vertex-disjoint if no path contains an internal vertex
of any other path. A v–S fan is a collection of |S| v–S paths such that any two
paths have only the vertex v in common. If P is a u–v path and x a vertex in P ,
we denote by P [u, x] (P [x, v]) the u–x (x–v) path that is a subpath of P .

Theorem 1 Let G be a graph with minimum degree δ(G) ≥ d and let T be any

rooted tree with d+1 vertices. Then there is a subtree T ′ of G isomorphic to T with

root r′, such that G contains a r′-V (T ′) fan.

In order to prove Theorem 1 by induction, we need to prove something stronger.
We introduce some more definitions.
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An ordered clique K in a graph G is a clique in G with an ordering imposed
on its vertices. Let K be an ordered clique with vertices ordered v1, v2, . . . , vk. We
say a subtree T ′ of G is consistent with the ordered clique K, if for every vertex
vi ∈ V (T ′) ∩ V (K), vi has at most one neighbour in T ′ that is not contained in
{v1, v2, . . . , vi−1}, for 1 ≤ i ≤ k. We denote the degree in T of the root of a rooted
tree T by d(T ).

Theorem 2 Let G be a graph and T a rooted tree with d + 1 vertices. Let K be

an ordered clique in G such that every vertex in G − K has degree at least d in G.

Suppose G−K contains a vertex of degree at least d(T ). Then there is a subtree T ′

of G isomorphic to T that satisfies the following properties.

1. The root r′ of T ′ and the neighbours of r′ in T ′ are contained in G − K.

2. T ′ is consistent with the ordered clique K.

3. G contains a r′–V (T ′) fan.

Proof: Let v1, v2, . . . , vk be the ordering of the vertices in K. Let L be a maximal
clique in G containing K and suppose the vertices of L are ordered v1, . . . , vk, . . . , vl.
Here vk+1, . . . , vl are the vertices in L − K. We will say that a vertex vi in L is
larger than vj if i > j.

We consider two cases.
Case 1. G − L does not contain a vertex with degree ≥ d(T ).

Assume the vertices of T are labeled t1, t2, . . . , td+1 in reverse breadth-first order
such that td+1 is the root and every ti has exactly one neighbour tj with j > i, for
1 ≤ i < d + 1. We call this unique neighbour the parent of ti. All other neighbours
of ti are its children. Let d(T ) = t and let d1, d2, . . . , dt be the degrees of the children
of the root in T . Let d′ =

∑t
i=1 di ≤ d. Let L′ = L − {v1, v2, . . . , vd−d′}.

Suppose G − L is empty. Since G − K is not empty and every vertex in G − K

has degree at least d in G, G must be a clique with at least d + 1 vertices. Since
G−K contains a vertex of degree at least t, |L−K| ≥ t + 1. Let the vertex ti of T

correspond to the vertex vi+l−d−1 in G, for 1 ≤ i ≤ d+1. This gives an isomorphism
from T to a subtree T ′ of G that satisfies all the properties stated in Theorem 2.

Suppose G−L is not empty. We will first choose the root r ′ of T ′ and its children
c1, c2, . . . , ct in G − K. Let S denote the set {c1, . . . , ct}.

If there is a vertex in G−L with degree at least t in G−K, choose such a vertex
r′ with maximum degree in G − L as the root of T ′. Let c1, c2, . . . , cs, s < t be
neighbours of r′ in G−L. These will be children of r′ in T ′. Since the degree of r′ is
at least d in G, r′ has at least d− s neighbours in L and hence at least d′− s ≥ t− s

neighbours in L′. Let cs+1, . . . , ct be the t− s largest neighbours of r′ in L′, with ct

the smallest of them. These will be the remaining children of r ′ in T ′. Note that
since r′ has degree at least t in G − K, ct is not in K.

We claim that for 1 ≤ i ≤ s, the vertex ci has at least d′ − t neighbours in
V (L′) \ S. Since its degree in G is at least d, if it had less than d′ − t neighbours
in V (L′) \ S, it must have at least s + 1 neighbours in G − L and at least t + 1
neighbours in G − K. This contradicts the choice of the root r ′. Similarly, since r′
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has at least d′ − t neighbours smaller than ct in V (L′) \ S, each of the vertices ci,
for s + 1 ≤ i ≤ t, has d′ − t neighbours smaller than ct in V (L′) \ S.

If every vertex in G −L has degree less than t in G −K, let r ′ be any vertex in
G − K with degree at least t in G − K. Let c1, c2, . . . , ct be any t neighbours of r′

in G − K. Every vertex in G − L has degree at least d in G and hence has at least
d − t + 1 neighbours in K. Since G − L is not empty, this implies |K| ≥ d − t + 1.
Therefore all vertices c1, c2, . . . , ct have at least d− t+1 neighbours in K and hence
at least d′ − t + 1 neighbours in K −{v1, v2, . . . , vd−d′}. Note that vertices in K are
smaller than the vertices in L − K.

From the above construction, in both cases, each ci, for 1 ≤ i ≤ t, has at least
d′−t neighbours in V (L′)\S and if ci ∈ L it has at least d′−t neighbours in V (L′)\S

that are smaller than itself. Since
∑t

i=1(di −1) = d′− t, we can find disjoint subsets
S1, S2, . . . , St of vertices in V (L′) \ S such that |Si| = di − 1 and every vertex in Si

is adjacent to ci, for 1 ≤ i ≤ t. Further, if ci ∈ V (L), the vertices in Si are smaller
than ci. Now join every vertex in Si to ci in T ′. The remaining d − d′ vertices
of T , t1, t2, . . . , td−d′ are mapped to the vertices v1, v2, . . . , vd−d′ respectively, and
we add edges joining these to the vertex in T ′ corresponding to their parent. The
construction ensures that T ′ satisfies the first two properties in Theorem 2.

Let A = V (T ′) and let B be the set of neighbours of r ′ in G together with r′.
Then |A| = d+1 and |B| ≥ d+1, hence there is an injection f from A \B to B \A.
For a vertex v ∈ A ∩ B, if v 6= r′, the edge r′v forms the path from r′ to v in the
r′–V (T ′) fan, otherwise the vertex r′ by itself forms a path in the fan. In particular,
for every child of r′, the path in the fan has length one and is an edge in T ′. Any
vertex v ∈ A \B is not a child of r′ and must be in L. Similarly, a vertex u ∈ B \A

must be in L. Hence r′, f(v), v is path from r′ to v in the r′–V (T ′) fan. These paths
give the required r′–V (T ′) fan in G.

This completes the proof of Case 1.
Case 2. G − L contains a vertex of degree ≥ d(T ).

Since L is a maximal clique, every vertex in G − L is not adjacent to at least
one vertex in L. For a vertex v in G − L, let π(v) denote the largest vertex in L

that is not adjacent to v.
Let G′ = (G−vl)∪{vπ(v) : v ∈ G−L and π(v) 6= vl} and let L′ = L−vl be the

ordered clique in G′ with the ordering v1, v2, . . . , vl−1. Every vertex in G′ − L′ =
G − L has degree at least d in G′ and G′ − L′ contains a vertex of degree at least
d(T ). By the induction hypothesis, there is a subtree T ′ of G′ isomorphic to T and
consistent with the ordered clique L′, such that the root r′ of T ′ and its children are
in G′ −L′, and G′ contains a r′–V (T ′) fan. We may assume that for r′, the path in
the fan has length zero, while for the children of r ′, the path in the fan has length
one. Further, any path in the fan that intersects L′ contains at most one edge in L′.
Note that for every vertex v ∈ V (T ′) ∩ V (L′), the r′–v path in the fan is internally
disjoint from the r′–v path in T ′. We will show that we can modify T ′ to find the
required tree in G.

The only edges of G′ that are missing in G are edges of the form vπ(v) for
v ∈ G′ − L′. If neither T ′ nor any of the paths in the r′–V (T ′) fan contain any of
these edges, then T ′ is the required tree in G. Note that T ′ is consistent with any
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ordered subclique of L having the same ordering of vertices as L, in particular K.
Suppose that the tree T ′ and/or the paths in the fan contain some edges of the

form vπ(v) with v ∈ G′ − L′. We call these edges bad edges.
Suppose there is an edge vπ(v) in T ′ incident with the vertex π(v) = vi in L′.

Since v and the root of T ′ are in G′ − L′, and T ′ is consistent with L′, v must be
the parent of vi and all children of vi are in L′ and are smaller than vi. Therefore
T ′ cannot contain any other edge of the form uπ(u) with π(u) = π(v) = vi. We call
any such bad edge in T ′ a bad outgoing edge.

Suppose a path in the r′–V (T ′) fan contains an edge of the form vπ(v) with
π(v) = vj. If vj ∈ V (T ′) then this path must be terminating at vj. We call these
edges bad incoming edges. If vj 6∈ V (T ′), we call the bad edge a bad incoming edge
if v is nearer to the root than vj in the path containing this edge, otherwise we say
it is a bad outgoing edge.

Summarizing, we note that a vertex vi in L′ satisfies exactly one of the following.

• There are no bad edges incident with vi.

• There is exactly one bad edge incident with vi, which may be incoming or
outgoing.

• There are exactly two bad edges incident with vi, one of which is incoming
and one outgoing.

Now we describe the transformation that gives the required tree in G. Let
P1, P2, . . . , Pm be the paths in the r′–V (T ′) fan that contain a vertex in L′. Let si

be the vertex in Pi ∩ L′ that is nearest to r′ in Pi and let ti be the farthest such
vertex. We may assume that either si = ti or siti is an edge in Pi. Denote by s−i
the vertex that precedes si in Pi. If the vertex ti is in V (T ′), the path Pi terminates
at ti, otherwise let t+i be the vertex that succeeds ti in Pi.

Let A =
⋃m

i=1{si} and let B =
⋃m

i=1{ti}. Let A′ ⊆ A be the subset of vertices
that have a bad incoming edge incident with them, and B ′ ⊆ B be the subset of
vertices that have a bad outgoing edge incident with them. Note that a vertex in
A \ B (B \ A) cannot have a bad outgoing (incoming) edge incident with it. Let
A′ = {vi1 , vi2 , . . . , vip} and let B ′ = {vj1 , vj2 , . . . , vjq

} such that i1 < i2 < · · · < ip
and j1 < j2 < · · · < jq. Let vip+1

= vjq+1
= vl. Let A1 = (A ∪ {vl}) \ {vi1} if p ≥ 1

else let A1 = A. Let B1 = (B ∪ {vl}) \ {vj1} if q ≥ 1 else let B1 = B. Note that
|A1| = |B1| = m and hence there is a bijection f from B1 \ A1 to A1 \ B1.

First delete all edges siti in paths Pi for which si 6= ti. For 1 ≤ c ≤ p, replace
the bad incoming edge v−icvic by the edge v−icvic+1

. This procedure replaces the paths
Pi[r

′, si] that form an r′–A fan in G′ by m paths P ′

1, P
′

2, . . . , P
′

m that form an r′–A1

fan in G.
For 1 ≤ c ≤ q, if vjc

is a vertex in T ′, the bad outgoing edge incident with it
must be an edge in T ′. Replace the vertex vjc

by the vertex vjc+1
in T ′. This is

possible since vjc+1
is adjacent in G to all neighbours of vjc

in T ′, and since vjc
is

smaller than vjc+1
, the resulting tree is consistent with L. If vjc+1

∈ A1 then a path
P ′

i for some 1 ≤ i ≤ m terminates at vjc+1
. If vjc+1

6∈ A1 we add an edge joining
it to the vertex f(vjc+1

) ∈ A1 \ B1. This gives the path in the r′–V (T ′) fan in G

terminating at vjc+1
.
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If vjc
6∈ V (T ′) then replace the bad outgoing edge vjc

v+
jc

by the edge vjc+1
v+
jc

.
Suppose the vertex vjc

was contained in a path P in the fan joining r ′ to a vertex
v ∈ V (T ′). Then v 6∈ V (L) and we replace the path P [vjc

, v] by the path vjc+1
v+
jc
∪

P [v+
jc

, v]. If vjc+1
∈ A1 then a path P ′

i for some 1 ≤ i ≤ m terminates at vjc+1
. If

vjc+1
6∈ A1 we add the edge joining it to the vertex f(vjc+1

) ∈ A1 \ B1. This gives
the path in the r′–V (T ′) fan in G terminating at v.

This completes the proof of Case 2 and Theorem 2 is proved. 2

The proof of Theorem 1 follows easily from Theorem 2. If d(T ) = d, that is T

is K1,d rooted at the center, the theorem is trivial. If d(T ) < d, we choose K to
be a clique containing a single vertex. The hypothesis of Theorem 2 holds and the
conclusion follows.

3 Remarks

We mention some corollaries of Theorem 1 that seem interesting by themselves.

Corollary 3 Let d = d1 + d2 + · · · + dk where each di is a positive integer. Every

graph G with minimum degree d contains a vertex v and k neighbours v1, v2, . . . , vk

of v, such that there are d internally vertex-disjoint v-{v1, v2, . . . , vk} paths in G,

with exactly di paths terminating in vi.

Proof: This follows from Theorem 1 by considering T to be rooted tree in which
the root has k children and the ith child has degree di in T . 2

Corollary 3 suggests another possible generalization of Mader’s theorem.

Problem 4 Let T be a weighted tree with k edges e1, e2, . . . , ek that are assigned

positive integer weights d1, d2, . . . , dk and let G be a graph with minimum degree

d = d1 + d2 + · · · + dk. Is there an isomorphism f from T to a subtree T ′ of G,

such that there are d internally vertex-disjoint paths in G, exactly di of which join

the endpoints of the edge f(ei) in T ′?

We believe there are even further generalizations possible, especially by consid-
ering graphs with more than one connected component.
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