Non-separating Trees in Connected Graphs

Ajit A. Diwan and Namrata P. Tholiya
Department of Computer Science and Engineering
Indian Institute of Technology Bombay
Powai, Mumbai 400076,India.
email: aad@cse.iitb.ac.in

October 6, 2008

Abstract

Let T be any tree of order $d \geq 1$. We prove that every connected graph G with minimum degree d contains a subtree T^{\prime} isomorphic to T such that $G-V\left(T^{\prime}\right)$ is connected.

1 Introduction.

A subgraph H of a connected graph G is said to be non-separating if $G-V(H)$ is a connected non-empty graph. It is well-known that every non-trivial connected graph G contains a vertex v such that $G-v$ is connected. It is also known that every connected graph with minimum degree two contains a non-separating edge [4] and that every connected graph with minimum degree three contains a non-separating induced cycle [6].

A non-trivial connected graph G is said to be k-cohesive if for any two distinct vertices u and v, $d(u)+d(v)+d(u, v) \geq k$, where $d(u)$ is the degree of u and $d(u, v)$ is the distance between u and v. Locke [2] conjectured that for $k \geq 3$, every connected $2 k$-cohesive graph contains a non-separating copy of every tree of order k, and proved it for paths [3]. Abreu and Locke [1] proved that every connected $(2 k+2)$-cohesive graph contains a non-separating copy of every tree of order k and diameter at most four.

We show that every connected graph of minimum degree d contains a non-separating copy of every tree of order d. The graph $m K_{d-1} \vee K_{1}$ for $m \geq 3$, shows that the degree bound is tight for any tree of order d. Our result may be considered to be a partial step towards Locke's conjecture.

The proof is based on a technique used by Mader to prove a completely different result. Mader [5] showed that every graph with minimum degree d contains an edge $u v$ such that there are d internally vertex-disjoint paths between u and v in G. We extend this technique slightly to obtain our result.

The notation used is largely standard and follows, for example, [7]. One difference to be noted is that we will refer to cliques in a graph by K_{i}, where i is an index and not the order of the clique.

2 Main Result

Theorem 1 Let G be a connected graph with minimum degree $d \geq 1$. Then for any tree T of order d, G contains a subtree T^{\prime} isomorphic to T such that $G-V\left(T^{\prime}\right)$ is connected.

Before proving the theorem, we introduce some definitions to describe Mader's technique.
An ordered clique K in a graph G is a complete subgraph of G with an ordering imposed on the vertices of K. Let K be an ordered clique in a graph G with the ordering $v_{1}, v_{2}, \ldots, v_{k}$ of its vertices. A subtree T of G is said to be consistent with the ordered clique K if every vertex $v_{i} \in V(K) \cap V(T)$ has at most one neighbor in T that is not contained in $\left\{v_{1}, v_{2}, \ldots, v_{i-1}\right\}$. We will be considering ordered pairs of the form (G, K), where K is an ordered clique in a graph G.

Definition 2 Let K be an ordered clique in a graph G and let $v_{1}, v_{2}, \ldots, v_{k}$ be the ordering of the vertices of K. If K is a proper subgraph of G, the reduction $\alpha(G, K)$ of the ordered pair (G, K) is the pair $\left(G^{\prime}, K^{\prime}\right)$ defined as follows.

1. Suppose there is a vertex $v \in V(G) \backslash V(K)$ such that v is adjacent to all vertices in K. Then let $G^{\prime}=G$ and $V\left(K^{\prime}\right)=V(K) \cup\{v\}$ with the ordering $v_{1}, v_{2}, \ldots, v_{k}, v$ of the vertices of K^{\prime}. If there is more than one such vertex, any one may be chosen arbitrarily.
2. Suppose no vertex in $V(G) \backslash V(K)$ is adjacent to all vertices in K. For each vertex $w \in$ $V(G) \backslash V(K)$, let $\pi(w)$ be the largest index i such that w is not adjacent to $v_{i} \in V(K)$. Then let $K^{\prime}=K-v_{k}, V\left(G^{\prime}\right)=V(G) \backslash\left\{v_{k}\right\}$ and $E\left(G^{\prime}\right)=E\left(G-v_{k}\right) \cup\left\{w v_{\pi(w)} \mid w \in N_{G}\left(v_{k}\right) \backslash V(K)\right\}$.

The reduction defined in Definition 2 can be applied repeatedly to an ordered pair (G, K), until $G-V(K)$ is empty. Define $\alpha^{0}(G, K)=(G, K)$ and $\alpha^{i}(G, K)=\alpha\left(\alpha^{i-1}(G, K)\right)$ for $i \geq 1$.

Some obvious properties of this reduction are noted in Lemma 3.

Lemma 3 Let K be an ordered clique in a graph G and let $\left(G_{i}, K_{i}\right)=\alpha^{i}(G, K)$ for some $i \geq 0$. Then the following statements are true.

1. $G_{i}-V\left(K_{i}\right)$ is an induced subgraph of $G-V(K)$.
2. The degree in G_{i} of any vertex in $V\left(G_{i}\right) \backslash V\left(K_{i}\right)$ is equal to its degree in G.
3. If $S \subset V\left(G_{i}\right) \backslash V\left(K_{i}\right)$, then $\left(G_{i}-S, K_{i}\right)=\alpha^{i}(G-S, K)$.

Let G be a graph with minimum degree d and let v_{1} be any vertex in G. Let $\left(G_{i}, K_{i}\right)=\alpha^{i}\left(G, v_{1}\right)$ for $i \geq 0$. Let l be the smallest number such that $G_{l}-V\left(K_{l}\right)$ contains only one vertex. Since the reduction can be applied until $G_{i}-V\left(K_{i}\right)$ is empty, and G is non-trivial, there exists such an $l \geq 0$.

Lemma 4 The vertex v_{1} is the first vertex in each of the ordered cliques K_{i}, for $0 \leq i \leq l$.
Proof: This is true by definition for $i=0$. If $\left(G_{i+1}, K_{i+1}\right)$ is obtained from $\left(G_{i}, K_{i}\right)$ by applying step 1 of the reduction, then the first vertex in K_{i+1} is the same as the first vertex in K_{i}. The same is true if step 2 of the reduction is applied, unless $\left|K_{i}\right|=1$ and K_{i+1} is empty. However, in
this case v_{1} has no neighbor in $V\left(G_{i}\right) \backslash V\left(K_{i}\right)$. Hence, by Lemma 3, any component of $G_{i}-V\left(K_{i}\right)$ is a component of G not containing v_{1}, contradicting the fact that G is connected.

Let T be any tree of order d. Let $u_{1}, u_{2}, \ldots, u_{d}$ be an ordering of the vertices of T such that u_{i} is adjacent to exactly one vertex u_{j} with $j>i$, for $1 \leq i<d$.

Lemma 5 There exists a sequence of trees $T_{0}, T_{1}, \ldots, T_{l}$ satisfying the following properties for all $0 \leq i \leq l$.

1. T_{i} is a subtree of G_{i} isomorphic to T.
2. The vertex v_{1} is not contained in $V\left(T_{i}\right)$.
3. T_{i} is consistent with K_{i}.
4. Every connected component of $G_{i}-\left(V\left(K_{i}\right) \cup V\left(T_{i}\right)\right)$ contains a vertex w such that $\mid N_{G_{i}}(w) \cap$ $V\left(K_{i}\right)\left|>\left|V\left(K_{i}\right) \cap V\left(T_{i}\right)\right|\right.$.

Proof: We construct the sequence $T_{0}, T_{1}, \ldots, T_{l}$ inductively, starting with T_{l}. Let w be the single vertex in $G_{l}-V\left(K_{l}\right)$. Since the degree of w is at least d in $G_{l},\left|K_{l}\right| \geq d$. Let $v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{d}}$ be vertices in K_{l} adjacent to w in G_{l} such that $i_{1}<i_{2}<\cdots<i_{d}$. Now let the vertex u_{j} of T correspond to the vertex $v_{i_{j+1}}$ in G_{l} for $1 \leq j<d$, and let the vertex u_{d} of T correspond to the vertex w in G_{l}. This gives a subtree T_{l} of G_{l} satisfying all properties stated in Lemma 5 .

Suppose T_{i+1} is a subtree of G_{i+1} satisfying all properties in Lemma 5 for some $0 \leq i<l$. We show how to construct T_{i} from T_{i+1}.
Case 1.
Suppose G_{i+1} is obtained from G_{i} by applying step 1 of the reduction defined in Definition 2. Then $G_{i}=G_{i+1}$, and $K_{i}=K_{i+1}-v$, where v is the last vertex in the ordering of $V\left(K_{i+1}\right)$. Let T_{i} be the same as T_{i+1}. Then T_{i} is a subtree of G_{i}, isomorphic to T and consistent with K_{i}.

If $v \in V\left(T_{i+1}\right)$, any component of $G_{i}-\left(V\left(K_{i}\right) \cup V\left(T_{i}\right)\right)$ is a component of $G_{i+1}-\left(V\left(K_{i+1}\right) \cup\right.$ $\left.V\left(T_{i+1}\right)\right)$. Also, for any vertex w in such a component, $\left|N_{G_{i}}(w) \cap V\left(K_{i}\right)\right| \geq\left|N_{G_{i+1}}(w) \cap V\left(K_{i+1}\right)\right|-1$. Since $\left|V\left(K_{i}\right) \cap V\left(T_{i}\right)\right|=\left|V\left(K_{i+1}\right) \cap V\left(T_{i+1}\right)\right|-1$, by induction, using property 4 in Lemma 5 , every such component contains a vertex w with $\left|N_{G_{i}}(w) \cap V\left(K_{i}\right)\right|>\left|V\left(K_{i}\right) \cap V\left(T_{i}\right)\right|$.

If $v \notin V\left(T_{i+1}\right)$, for the component of $G_{i}-\left(V\left(K_{i}\right) \cup V\left(T_{i}\right)\right)$ that contains $v,\left|N_{G_{i}}(v) \cap V\left(K_{i}\right)\right|>$ $\left|V\left(K_{i}\right) \cap V\left(T_{i}\right)\right|$, since v is adjacent to all vertices in K_{i} and $v_{1} \notin V\left(T_{i}\right)$. Any other component of $G_{i}-\left(V\left(K_{i}\right) \cup V\left(T_{i}\right)\right)$ is also a component of $G_{i+1}-\left(V\left(K_{i+1}\right) \cup V\left(T_{i+1}\right)\right)$. For any vertex w in such a component, $\left|N_{G_{i}}(w) \cap V\left(K_{i}\right)\right|=\left|N_{G_{i+1}}(w) \cap V\left(K_{i+1}\right)\right|$, hence by induction, using property 4 in Lemma 5, such a component contains a vertex w such that $\left|N_{G_{i}}(w) \cap V\left(K_{i}\right)\right|>\left|V\left(K_{i}\right) \cap V\left(T_{i}\right)\right|$.

Case 2.

Suppose G_{i+1} is obtained from G_{i} by applying step 2 of the reduction. Then $V\left(G_{i}\right)=V\left(G_{i+1}\right) \cup$ $\left\{v_{k}\right\}, V\left(K_{i}\right)=V\left(K_{i+1}\right) \cup\left\{v_{k}\right\}$ and for some subset $X \subseteq V\left(G_{i+1}\right) \backslash V\left(K_{i+1}\right), E\left(G_{i}\right)=\left(E\left(G_{i+1}\right) \backslash\right.$ $\left.\left\{w v_{\pi(w)} \mid w \in X\right\}\right) \cup\left\{w v_{k} \mid w \in X\right\}$. Here v_{k} is the last vertex in the ordering of $V\left(K_{i}\right)$ and $X=$ $N_{G_{i}}\left(v_{k}\right) \backslash V\left(K_{i}\right)$. We call the edges $\left\{w v_{\pi(w)}, w \in X\right\}$ bad edges.

If none of the bad edges is contained in T_{i+1} then let T_{i} be the same as T_{i+1}. Suppose $w v_{j}$ is a bad edge contained in T_{i+1} for some $w \in X$ and $v_{j} \in V\left(K_{i+1}\right)$. Since T_{i+1} is consistent with K_{i+1},
and $v_{1} \notin V\left(T_{i+1}\right)$, all other neighbors of v_{j} in T_{i+1} are contained in $\left\{v_{2}, \ldots, v_{j-1}\right\}$, hence T_{i+1} can contain at most one bad edge incident with v_{j}. Similarly, there is at most one bad edge incident with a vertex $w \in X$. Let $w_{1} v_{j_{1}}, w_{2} v_{j_{2}}, \ldots, w_{m} v_{j_{m}}$ be the bad edges contained in T_{i+1}, such that $j_{1}<j_{2}<\cdots<j_{m}$. By the definition of the reduction, if $w v_{p}$ is a bad edge in G_{i+1}, then $w v_{q}$ is an edge in G_{i} for all $p<q \leq k$. Construct T_{i} from T_{i+1} by replacing the vertex $v_{j_{p}} \in V\left(T_{i+1}\right)$ by the vertex $v_{j_{p+1}}$ for $1 \leq p \leq m$, where $v_{j_{m+1}}$ is v_{k}. This is possible since $v_{j_{p+1}}$ is adjacent in G_{i} to all vertices adjacent to $v_{j_{p}}$ in T_{i+1}. Since a vertex is replaced by a vertex following it in the ordering, T_{i} is consistent with K_{i} and $v_{1} \notin V\left(T_{i}\right)$.

If w is a vertex in $V\left(G_{i+1}\right) \backslash V\left(K_{i+1}\right)$, then $\left|N_{G_{i}}(w) \cap V\left(K_{i}\right)\right|=\left|N_{G_{i+1}}(w) \cap V\left(K_{i+1}\right)\right|$ since any bad edge incident with w is replaced by the edge $w v_{k}$. Since the connected components of $G_{i}-\left(V\left(K_{i}\right) \cup V\left(T_{i}\right)\right)$ are same as the components of $G_{i+1}-\left(V\left(K_{i+1}\right) \cup V\left(T_{i+1}\right)\right)$, every such component contains a vertex w such that $\left|N_{G_{i}}(w) \cap V\left(K_{i}\right)\right|>\left|V\left(K_{i}\right) \cap V\left(T_{i+1}\right)\right|=\left|V\left(K_{i}\right) \cap V\left(T_{i}\right)\right|$. Hence T_{i} is the required tree in G_{i}, satisfying the properties in Lemma 5.

Theorem 1 now follows from Lemma 5. The tree T_{0} obtained in Lemma 5 is a subtree of $G_{0}=G$, isomorphic to T and not containing the vertex v_{1}. Since $V\left(K_{0}\right)=\left\{v_{1}\right\}$, by property 4 in Lemma 5 , every connected component of $G-\left(\left\{v_{1}\right\} \cup V\left(T_{0}\right)\right)$ contains a vertex adjacent to v_{1}. This implies T_{0} is a non-separating subtree of G isomorphic to T.

References

[1] M. Abreu, S. C. Locke, Non-separating n-trees up to diameter 4 in a $(2 n+2)$-cohesive graph, Proceedings of the Thirty-third Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton,Florida,2002), Congr. Numer. 154 (2002) 21-30.
[2] S. C. Locke, Problem 10647, MAA Monthly 105 (1998) 176.
[3] S. C. Locke, P. Tracy, H.-J. Voss, Highly Cohesive Graphs have Long Non-separating Paths: Solution to Problem 10647, MAA Monthly 108 (2001) 470-472.
[4] L. Lovász, Combinatorial Problems and Exercises, North Holland, 1979, p. 40, Exercise 6.6(b).
[5] W. Mader, Existenz gewisser Konfigurationen in n-gesättigten Graphen und in Graphen genügend großer Kantendichte, Math. Ann. 194 (1974) 295-312.
[6] C. Thomassen, B. Toft, Non-separating induced cycles in graphs, J. Combin. Theory Ser. B 31 (1981) 199-224.
[7] D. B. West, Introduction to Graph Theory, second ed., Prentice-Hall, 2001.

