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Abstract

Let T be any tree of order d ≥ 1. We prove that every connected graph G with minimum

degree d contains a subtree T ′ isomorphic to T such that G − V (T ′) is connected.

1 Introduction.

A subgraph H of a connected graph G is said to be non-separating if G − V (H) is a connected

non-empty graph. It is well-known that every non-trivial connected graph G contains a vertex v

such that G − v is connected. It is also known that every connected graph with minimum degree

two contains a non-separating edge [4] and that every connected graph with minimum degree three

contains a non-separating induced cycle [6].

A non-trivial connected graph G is said to be k-cohesive if for any two distinct vertices u and v,

d(u)+d(v)+d(u, v) ≥ k, where d(u) is the degree of u and d(u, v) is the distance between u and v.

Locke [2] conjectured that for k ≥ 3, every connected 2k-cohesive graph contains a non-separating

copy of every tree of order k, and proved it for paths [3]. Abreu and Locke [1] proved that every

connected (2k + 2)-cohesive graph contains a non-separating copy of every tree of order k and

diameter at most four.

We show that every connected graph of minimum degree d contains a non-separating copy of

every tree of order d. The graph mKd−1 ∨ K1 for m ≥ 3, shows that the degree bound is tight for

any tree of order d. Our result may be considered to be a partial step towards Locke’s conjecture.

The proof is based on a technique used by Mader to prove a completely different result. Mader [5]

showed that every graph with minimum degree d contains an edge uv such that there are d internally

vertex-disjoint paths between u and v in G. We extend this technique slightly to obtain our result.

The notation used is largely standard and follows, for example, [7]. One difference to be noted

is that we will refer to cliques in a graph by Ki, where i is an index and not the order of the clique.
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2 Main Result

Theorem 1 Let G be a connected graph with minimum degree d ≥ 1. Then for any tree T of order

d, G contains a subtree T ′ isomorphic to T such that G − V (T ′) is connected.

Before proving the theorem, we introduce some definitions to describe Mader’s technique.

An ordered clique K in a graph G is a complete subgraph of G with an ordering imposed on

the vertices of K. Let K be an ordered clique in a graph G with the ordering v1, v2, . . . , vk of

its vertices. A subtree T of G is said to be consistent with the ordered clique K if every vertex

vi ∈ V (K) ∩ V (T ) has at most one neighbor in T that is not contained in {v1, v2, . . . , vi−1}. We

will be considering ordered pairs of the form (G,K), where K is an ordered clique in a graph G.

Definition 2 Let K be an ordered clique in a graph G and let v1, v2, . . . , vk be the ordering of the

vertices of K. If K is a proper subgraph of G, the reduction α(G,K) of the ordered pair (G,K) is

the pair (G′,K ′) defined as follows.

1. Suppose there is a vertex v ∈ V (G) \ V (K) such that v is adjacent to all vertices in K. Then

let G′ = G and V (K ′) = V (K) ∪ {v} with the ordering v1, v2, . . . , vk, v of the vertices of K ′.

If there is more than one such vertex, any one may be chosen arbitrarily.

2. Suppose no vertex in V (G) \ V (K) is adjacent to all vertices in K. For each vertex w ∈

V (G) \ V (K), let π(w) be the largest index i such that w is not adjacent to vi ∈ V (K). Then

let K ′ = K−vk, V (G′) = V (G)\{vk} and E(G′) = E(G−vk)∪{wvπ(w)|w ∈ NG(vk)\V (K)}.

The reduction defined in Definition 2 can be applied repeatedly to an ordered pair (G,K), until

G − V (K) is empty. Define α0(G,K) = (G,K) and αi(G,K) = α(αi−1(G,K)) for i ≥ 1.

Some obvious properties of this reduction are noted in Lemma 3.

Lemma 3 Let K be an ordered clique in a graph G and let (Gi,Ki) = αi(G,K) for some i ≥ 0.

Then the following statements are true.

1. Gi − V (Ki) is an induced subgraph of G − V (K).

2. The degree in Gi of any vertex in V (Gi) \ V (Ki) is equal to its degree in G.

3. If S ⊂ V (Gi) \ V (Ki), then (Gi − S,Ki) = αi(G − S,K).

Let G be a graph with minimum degree d and let v1 be any vertex in G. Let (Gi,Ki) = αi(G, v1)

for i ≥ 0. Let l be the smallest number such that Gl − V (Kl) contains only one vertex. Since the

reduction can be applied until Gi −V (Ki) is empty, and G is non-trivial, there exists such an l ≥ 0.

Lemma 4 The vertex v1 is the first vertex in each of the ordered cliques Ki, for 0 ≤ i ≤ l.

Proof: This is true by definition for i = 0. If (Gi+1,Ki+1) is obtained from (Gi,Ki) by applying

step 1 of the reduction, then the first vertex in Ki+1 is the same as the first vertex in Ki. The

same is true if step 2 of the reduction is applied, unless |Ki| = 1 and Ki+1 is empty. However, in
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this case v1 has no neighbor in V (Gi) \ V (Ki). Hence, by Lemma 3, any component of Gi − V (Ki)

is a component of G not containing v1, contradicting the fact that G is connected. 2

Let T be any tree of order d. Let u1, u2, . . . , ud be an ordering of the vertices of T such that ui

is adjacent to exactly one vertex uj with j > i, for 1 ≤ i < d.

Lemma 5 There exists a sequence of trees T0, T1, . . . , Tl satisfying the following properties for all

0 ≤ i ≤ l.

1. Ti is a subtree of Gi isomorphic to T .

2. The vertex v1 is not contained in V (Ti).

3. Ti is consistent with Ki.

4. Every connected component of Gi − (V (Ki)∪V (Ti)) contains a vertex w such that |NGi
(w)∩

V (Ki)| > |V (Ki) ∩ V (Ti)|.

Proof: We construct the sequence T0, T1, . . . , Tl inductively, starting with Tl. Let w be the single

vertex in Gl − V (Kl). Since the degree of w is at least d in Gl, |Kl| ≥ d. Let vi1 , vi2 , . . . , vid

be vertices in Kl adjacent to w in Gl such that i1 < i2 < · · · < id. Now let the vertex uj of T

correspond to the vertex vij+1
in Gl for 1 ≤ j < d, and let the vertex ud of T correspond to the

vertex w in Gl. This gives a subtree Tl of Gl satisfying all properties stated in Lemma 5.

Suppose Ti+1 is a subtree of Gi+1 satisfying all properties in Lemma 5 for some 0 ≤ i < l. We

show how to construct Ti from Ti+1.

Case 1.

Suppose Gi+1 is obtained from Gi by applying step 1 of the reduction defined in Definition 2.

Then Gi = Gi+1, and Ki = Ki+1 − v, where v is the last vertex in the ordering of V (Ki+1). Let Ti

be the same as Ti+1. Then Ti is a subtree of Gi, isomorphic to T and consistent with Ki.

If v ∈ V (Ti+1), any component of Gi − (V (Ki) ∪ V (Ti)) is a component of Gi+1 − (V (Ki+1) ∪

V (Ti+1)). Also, for any vertex w in such a component, |NGi
(w)∩V (Ki)| ≥ |NGi+1

(w)∩V (Ki+1)|−1.

Since |V (Ki)∩V (Ti)| = |V (Ki+1)∩V (Ti+1)|−1, by induction, using property 4 in Lemma 5, every

such component contains a vertex w with |NGi
(w) ∩ V (Ki)| > |V (Ki) ∩ V (Ti)|.

If v 6∈ V (Ti+1), for the component of Gi − (V (Ki)∪ V (Ti)) that contains v, |NGi
(v)∩V (Ki)| >

|V (Ki) ∩ V (Ti)|, since v is adjacent to all vertices in Ki and v1 6∈ V (Ti). Any other component of

Gi − (V (Ki)∪V (Ti)) is also a component of Gi+1 − (V (Ki+1)∪V (Ti+1)). For any vertex w in such

a component, |NGi
(w) ∩ V (Ki)| = |NGi+1

(w) ∩ V (Ki+1)|, hence by induction, using property 4 in

Lemma 5, such a component contains a vertex w such that |NGi
(w) ∩ V (Ki)| > |V (Ki) ∩ V (Ti)|.

Case 2.

Suppose Gi+1 is obtained from Gi by applying step 2 of the reduction. Then V (Gi) = V (Gi+1)∪

{vk}, V (Ki) = V (Ki+1) ∪ {vk} and for some subset X ⊆ V (Gi+1) \ V (Ki+1), E(Gi) = (E(Gi+1) \

{wvπ(w)|w ∈ X}) ∪ {wvk|w ∈ X}. Here vk is the last vertex in the ordering of V (Ki) and X =

NGi
(vk) \ V (Ki). We call the edges {wvπ(w), w ∈ X} bad edges.

If none of the bad edges is contained in Ti+1 then let Ti be the same as Ti+1. Suppose wvj is a

bad edge contained in Ti+1 for some w ∈ X and vj ∈ V (Ki+1). Since Ti+1 is consistent with Ki+1,
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and v1 6∈ V (Ti+1), all other neighbors of vj in Ti+1 are contained in {v2, . . . , vj−1}, hence Ti+1 can

contain at most one bad edge incident with vj . Similarly, there is at most one bad edge incident

with a vertex w ∈ X. Let w1vj1 , w2vj2 , . . . , wmvjm be the bad edges contained in Ti+1, such that

j1 < j2 < · · · < jm. By the definition of the reduction, if wvp is a bad edge in Gi+1, then wvq is an

edge in Gi for all p < q ≤ k. Construct Ti from Ti+1 by replacing the vertex vjp ∈ V (Ti+1) by the

vertex vjp+1
for 1 ≤ p ≤ m, where vjm+1

is vk. This is possible since vjp+1
is adjacent in Gi to all

vertices adjacent to vjp in Ti+1. Since a vertex is replaced by a vertex following it in the ordering,

Ti is consistent with Ki and v1 6∈ V (Ti).

If w is a vertex in V (Gi+1) \ V (Ki+1), then |NGi
(w) ∩ V (Ki)| = |NGi+1

(w) ∩ V (Ki+1)| since

any bad edge incident with w is replaced by the edge wvk. Since the connected components of

Gi − (V (Ki) ∪ V (Ti)) are same as the components of Gi+1 − (V (Ki+1) ∪ V (Ti+1)), every such

component contains a vertex w such that |NGi
(w)∩V (Ki)| > |V (Ki)∩V (Ti+1)| = |V (Ki)∩V (Ti)|.

Hence Ti is the required tree in Gi, satisfying the properties in Lemma 5. 2

Theorem 1 now follows from Lemma 5. The tree T0 obtained in Lemma 5 is a subtree of G0 = G,

isomorphic to T and not containing the vertex v1. Since V (K0) = {v1}, by property 4 in Lemma

5, every connected component of G− ({v1} ∪V (T0)) contains a vertex adjacent to v1. This implies

T0 is a non-separating subtree of G isomorphic to T . 2
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