Cycles of even lengths modulo k

Ajit A. Diwan
Department of Computer Science and Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.

January 19, 2009

Abstract

Thomassen [9] conjectured that for all natural numbers $k>0$ and m, every graph of minimum degree $k+1$ contains a cycle of length congruent to $2 m$ modulo k. We prove that this is true for $k \geq 2$ if the minimum degree is $2 k-1$, which improves the previously known bound of $3 k-2$. We also show that Thomassen's conjecture is true for $m=2$.

Keywords: cycle lengths; minimum degree

1 Introduction

The study of cycle lengths in a graph modulo a positive integer k was initiated by Erdős and Burr [6], who conjectured that for every odd positive integer k, there exists a constant c_{k} such that for all natural numbers m, every graph of average degree at least c_{k} contains a cycle of length congruent to m modulo k. They proved this for $m=2$ and the full conjecture was proved by Bollobás [1], who showed that $c_{k}=2\left((k+1)^{k}-1\right) / k$ suffices. Thomassen [9, 10] showed a more general result, that an average degree of $4 k(k+1)$ implies that the graph contains a cycle of length congruent to $2 m$ modulo k for all natural numbers $k>0$ and m. He also conjectured that a minimum degree of $k+1$ suffices.

Verstraëte [11] showed that if $k \geq 2$ and the average degree is at least $8 k$, then there exist k cycles of consecutive even lengths, which implies that for all natural numbers m, there exists a cycle of length congruent to $2 m$ modulo k. Fan [7] showed that if $k \geq 2$ and the minimum degree is $3 k-2$, then there exist k cycles
with consecutive even lengths, or consecutive odd lengths. This implies that for odd $k \geq 2$, if the minimum degree is $3 k-2$, then the graph contains a cycle of length congruent to $2 m$ modulo k for all m. We give a simple proof that for $k \geq 2$, a minimum degree of $2 k-1$ suffices to ensure that the graph contains a cycle of length congruent to $2 m$ modulo k for all m. The proof is an application of a technique used by Mader in [8].

Thomassen's conjecture is known to be true for $k \leq 4,[3,4,5]$ and for claw-free graphs [2]. For $m=1$, it follows easily by considering a longest path and the edges incident with an endpoint of the path. We prove that it is true for $m=2$.

All graphs considered are simple and finite. We denote the vertex set of a graph G by $V(G)$ and the edge set by $E(G)$. The set of neighbors of a vertex v in a graph G is denoted by $N_{G}(v)$ or simply $N(v)$ when G is understood from the context. If $V \subset V(G)$ then $G-V$ is the subgraph of G obtained by deleting all vertices in V and edges incident with them. The graph $G-(V(G) \backslash V)$ is the subgraph of G induced by V.

A path with endpoints $\{u, v\}$ is called a $u-v$ path, and a $u-u$ path is the trivial path containing only the vertex u. The length of a path or cycle P is denoted by $l(P)$. A set of paths (or cycles) $\left\{P_{1}, P_{2}, \ldots, P_{r}\right\}$ is said to have distinct lengths modulo k if $l\left(P_{i}\right) \not \equiv l\left(P_{j}\right) \bmod k$ for all $1 \leq i<j \leq r$. A graph G is said to contain all cycles of even lengths modulo k, if for all natural numbers m, G contains a cycle of length congruent to $2 m$ modulo k. If P and Q are graphs, we denote by $P \cup Q$ the graph with vertex set $V(P) \cup V(Q)$ and edge set $E(P) \cup E(Q)$. To simplify the notation, we will consider an edge to be a graph with two vertices, where necessary.

2 Main Result

Theorem 1 Let $k \geq 2$ be an integer and G a graph with minimum degree $2 k-1$. For all natural numbers m, G contains a cycle of length congruent to $2 m$ modulo k.

We will assume throughout that $k \geq 2$ is a fixed integer. We will be considering ordered pairs of the form (G, K), where K is a proper complete subgraph of G, possibly empty.

Definition 1 The ordered pair (G, K) contains a configuration of type \boldsymbol{A} if $V(G) \backslash$ $V(K)$ contains a vertex u such that $|N(u) \cap V(K)| \geq 2 k-1$.

Definition 2 The ordered pair (G, K) contains a configuration of type \boldsymbol{B} if $V(G) \backslash$ $V(K)$ contains two vertices u, v such that $|N(u) \cap V(K)| \geq 2 k-2,|N(v) \cap V(K)| \geq$ $2 k-2$, and there exists a u-v path P in $G-V(K)$.

Definition 3 The ordered pair (G, K) contains a configuration of type \boldsymbol{C} and rank r, if $V(G) \backslash V(K)$ contains two vertices u, v such that $|N(u) \cap V(K)| \geq 2(k-r)+1$, $|N(v) \cap V(K)| \geq 2(k-r)+1$, and there exists a set $\left\{P_{1}, P_{2}, \ldots, P_{r}\right\}$ of $r u-v$ paths in $G-V(K)$ having distinct lengths modulo k.

Definition 4 The ordered pair (G, K) contains a configuration of type \boldsymbol{D} and rank r, if $V(G) \backslash V(K)$ contains three vertices u, w, v satisfying the following properties.

1. uw and $w v$ are edges in $G-V(K)$.
2. There exist vertices $\left\{u^{\prime}, w^{\prime}, v^{\prime}\right\} \subseteq V(G) \backslash V(K)$ and vertex-disjoint paths P_{u}, P_{w}, P_{v} in $G-V(K)$ such that $\left|N\left(u^{\prime}\right) \cap V(K)\right| \geq 2(k-r)-1,\left|N\left(w^{\prime}\right) \cap V(K)\right| \geq$ $2(k-r),\left|N\left(v^{\prime}\right) \cap V(K)\right| \geq 2(k-r)$, and P_{z} is a $z-z^{\prime}$ path for all $z \in\{u, v, w\}$. Note that the vertex z^{\prime} may be the same as the vertex z, for $z \in\{u, v, w\}$.
3. There is a set $\left\{P_{1}, P_{2}, \ldots, P_{r}\right\}$ of $r u-v$ paths in $G-V(K)$ having distinct lengths modulo k, such that P_{i} is internally vertex-disjoint from P_{u}, P_{w} and P_{v} for $1 \leq i \leq r$. Also, one of the paths in $\left\{P_{1}, P_{2}, \ldots, P_{r}\right\}$ has length congruent to 0 modulo k.

Lemma 1 Let G be a graph and K a proper complete subgraph of G. If every vertex in $V(G) \backslash V(K)$ has degree at least $2 k-1$ in G, then either $G-V(K)$ contains cycles of all even lengths modulo k, or the ordered pair (G, K) contains a configuration of one of the types $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{D}$. If the configuration is of type \boldsymbol{C}, then the rank is at least two and at most k. If the configuration is of type \boldsymbol{D}, then the rank is at least two and less than k.

Proof: Let (G, K) be a counterexample that minimizes $|V(G) \backslash V(K)|$ and subject to this condition, minimizes $|V(K)|$. If $|V(G) \backslash V(K)|=1$, the only vertex $u \in$ $V(G) \backslash V(K)$ has degree at least $2 k-1$, hence $|N(u) \cap V(K)| \geq 2 k-1$. This implies (G, K) contains a configuration of type \mathbf{A}, a contradiction.

Suppose $|V(G) \backslash V(K)|>1$. We consider two cases.
Case 1.
Suppose there exists a vertex $x \in V(G) \backslash V(K)$ that is adjacent to all vertices in $V(K)$. Let K^{\prime} be the complete subgraph of G induced by $V(K) \cup\{x\}$. Then the ordered pair $\left(G, K^{\prime}\right)$ satisfies the hypothesis of Lemma 1 , and by the minimality of (G, K), either $G-V\left(K^{\prime}\right)$ contains cycles of all even lengths modulo k or (G, K^{\prime}) contains a configuration of one of the four types. Since $G-V\left(K^{\prime}\right)$ is a subgraph of $G-V(K)$, we may assume that the latter holds. Now we show that in each case, the configuration in (G, K^{\prime}) can be modified to either find cycles of all even lengths
modulo k in $G-V(K)$, or get a configuration of one of the four types in (G, K), contradicting the fact that (G, K) is a counterexample.
Case 1.1
Suppose (G, K^{\prime}) contains a configuration of type \mathbf{A}. Let u be a vertex in $V(G) \backslash$ $V\left(K^{\prime}\right)$ such that $\left|N(u) \cap V\left(K^{\prime}\right)\right| \geq 2 k-1$. If u is not adjacent to x, then $\mid N(u) \cap$ $V(K) \mid \geq 2 k-1$ and (G, K) contains a configuration of type \mathbf{A}. If u is adjacent to x, then $|N(u) \cap V(K)| \geq 2 k-2$ and since x is adjacent to every vertex in $V(K)$, $|N(x) \cap V(K)|=|V(K)| \geq 2 k-2$. The edge $u x$ implies that (G, K) contains a configuration of type \mathbf{B}.

Case 1.2

Suppose (G, K^{\prime}) contains a configuration of type B. Let u, v be vertices in $V(G) \backslash$ $V\left(K^{\prime}\right)$ such that $\left|N(u) \cap V\left(K^{\prime}\right)\right| \geq 2 k-2,\left|N(v) \cap V\left(K^{\prime}\right)\right| \geq 2 k-2$ and there is a $u-v$ path P in $G-V\left(K^{\prime}\right)$.

If x is not adjacent to any of the vertices $\{u, v\}$, then u, v satisfy the same properties with K^{\prime} replaced by K, and (G, K) contains the same configuration of type \mathbf{B}.

If x is adjacent to u but not adjacent to v, then $|N(v) \cap V(K)| \geq 2 k-2$ and hence $|N(x) \cap V(K)| \geq 2 k-2$. Also, $P \cup x u$ is an $x-v$ path in $G-V(K)$. Hence (G, K) contains a configuration of type \mathbf{B}. A symmetrical argument holds if x is adjacent to v but not adjacent to u.

Suppose x is adjacent to both u and v. Then $|N(u) \cap V(K)| \geq 2 k-3, \mid N(v) \cap$ $V(K) \mid \geq 2 k-3$ and hence $|N(x) \cap V(K)| \geq 2 k-3$. If $l(P) \equiv 0 \bmod k$ and $k>2$, then P and $Q=u x \cup x v$ are two $u-v$ paths in $G-V(K)$ of distinct lengths modulo k, hence (G, K) contains a configuration of type \mathbf{C} and rank two. If $l(P) \equiv 0 \bmod k$ and $k=2$, then $P \cup Q$ is an even cycle in $G-V(K)$, hence $G-V(K)$ contains cycles of all even lengths modulo 2 . If $l(P) \not \equiv 0 \bmod k$, then the edge $u x$ and the path $P \cup v x$ are two $u-x$ paths in $G-V(K)$ of distinct lengths modulo k, hence (G, K) contains a configuration of type \mathbf{C} and rank two.
Case 1.3
Suppose (G, K^{\prime}) contains a configuration of type \mathbf{C} and rank r, for some $2 \leq$ $r \leq k$. Let u, v be vertices in $V(G) \backslash V\left(K^{\prime}\right)$ such that $\left|N(u) \cap V\left(K^{\prime}\right)\right| \geq 2(k-r)+1$, $\left|N(v) \cap V\left(K^{\prime}\right)\right| \geq 2(k-r)+1$ and let $\left\{P_{1}, P_{2}, \ldots, P_{r}\right\}$ be the set of $r u-v$ paths in $G-V\left(K^{\prime}\right)$ having distinct lengths modulo k.

If x is not adjacent to any of the vertices $\{u, v\}$, then (G, K) also contains the same configuration of type \mathbf{C} and rank r.

If x is adjacent to u but not to v, then $|N(v) \cap V(K)| \geq 2(k-r)+1$ and hence $|N(x) \cap V(K)| \geq 2(k-r)+1$. The paths $P_{i} \cup x u$ for $1 \leq i \leq r$ are $x-v$ paths in
$G-V(K)$ having distinct lengths modulo k. Hence (G, K) contains a configuration of type \mathbf{C} and rank r. A symmetrical argument holds if x is adjacent to v but not adjacent to u.

Suppose x is adjacent to both u and v. If $r=k$, then the cycles $u x \cup x v \cup P_{i}$ for $1 \leq i \leq k$ have distinct lengths modulo k, hence $G-V(K)$ contains cycles of all even lengths modulo k. If $r<k$, then $|N(u) \cap V(K)| \geq 2(k-r),|N(v) \cap V(K)| \geq 2(k-r)$ and hence $|N(x) \cap V(K)| \geq 2(k-r)$. If none of the paths $P_{1}, P_{2}, \ldots, P_{r}$ has length congruent to 0 modulo k, then the edge $u x$ and the paths $P_{i} \cup v x$ for $1 \leq i \leq r$ are $r+1 u-x$ paths in $G-V(K)$ with distinct lengths modulo k, and (G, K) contains a configuration of type \mathbf{C} and $\operatorname{rank} r+1$.

Suppose one of the paths $P_{1}, P_{2}, \ldots, P_{r}$ has length congruent to 0 modulo k. Then by relabeling the vertex x as w, choosing the vertices $u^{\prime}, w^{\prime}, v^{\prime}$ to be the vertices u, w, v respectively, and the paths P_{u}, P_{w}, P_{v} to be trivial, we get a configuration of type \mathbf{D} and rank r in (G, K).
Case 1.4
Finally, suppose (G, K^{\prime}) contains a configuration of type \mathbf{D} and rank r, for some $2 \leq r<k$. Let u, w, v be the three vertices in $V(G) \backslash V\left(K^{\prime}\right)$ such that $u w, w v$ are edges in G. Let $u^{\prime}, w^{\prime}, v^{\prime}$ be the vertices in $V(G) \backslash V\left(K^{\prime}\right)$ such that $\mid N\left(u^{\prime}\right) \cap$ $V\left(K^{\prime}\right)\left|\geq 2(k-r)-1,\left|N\left(w^{\prime}\right) \cap V\left(K^{\prime}\right)\right| \geq 2(k-r)\right.$ and $| N\left(v^{\prime}\right) \cap V\left(K^{\prime}\right) \mid \geq 2(k-r)$ and let P_{u}, P_{w}, P_{v} be the vertex-disjoint $u-u^{\prime}, w-w^{\prime}$ and $v-v^{\prime}$ paths in $G-V\left(K^{\prime}\right)$, respectively. Let $\left\{P_{1}, P_{2}, \ldots, P_{r}\right\}$ be the set of $r u-v$ paths in $G-V\left(K^{\prime}\right)$ that are internally vertex-disjoint from the paths P_{u}, P_{w}, P_{v} and have distinct lengths modulo k.

If x is not adjacent to any of the vertices $\left\{u^{\prime}, w^{\prime}, v^{\prime}\right\}$, it is clear that (G, K) contains the same configuration of type \mathbf{D} and rank r. If x is adjacent to exactly one of the vertices $\left\{u^{\prime}, w^{\prime}, v^{\prime}\right\}$, then $|N(x) \cap V(K)| \geq 2(k-r)$. If x is adjacent only to z^{\prime} for some $z \in\{u, w, v\}$, replace the vertex z^{\prime} by the vertex x and the path P_{z} by the path $P_{z} \cup x z^{\prime}$. This gives a configuration of type \mathbf{D} and $\operatorname{rank} r$ in (G, K).

Suppose x is adjacent to u^{\prime} and v^{\prime} but not to w^{\prime}. Then $\left|N\left(w^{\prime}\right) \cap V(K)\right| \geq 2(k-r)$, $\left|N\left(v^{\prime}\right) \cap V(K)\right| \geq 2(k-r)-1$ and hence $|N(x) \cap V(K)| \geq 2(k-r)$. Replace the vertex u^{\prime} by x and the path P_{u} by the path $P_{u} \cup x u^{\prime}$. Now interchanging the labels of the vertices $\{u, v\}$, labeling x as v^{\prime} and v^{\prime} as u^{\prime}, gives a configuration of type \mathbf{D} and rank r in (G, K).

Suppose x is adjacent to w^{\prime} and u^{\prime} and may or may not be adjacent to v^{\prime}. Then $\left|N\left(w^{\prime}\right) \cap V(K)\right| \geq 2(k-r)-1,\left|N\left(v^{\prime}\right) \cap V(K)\right| \geq 2(k-r)-1$ and hence $|N(x) \cap V(K)| \geq 2(k-r)-1$. Let $Q_{i}=x u^{\prime} \cup P_{u} \cup P_{i} \cup P_{v}$ and $Q_{i}^{\prime}=x w^{\prime} \cup$ $P_{w} \cup w u \cup P_{i} \cup P_{v}$ for $1 \leq i \leq r$, be $2 r x-v^{\prime}$ paths in $G-V(K)$. If amongst
the $2 r$ paths $\left\{Q_{1}, Q_{1}^{\prime}, \ldots, Q_{r}, Q_{r}^{\prime}\right\}$, there are $r+1$ paths of distinct lengths modulo k, then (G, K) contains a configuration of type \mathbf{C} and rank $r+1$, with x and v^{\prime} as the two required vertices. Similarly, let $S_{i}=w^{\prime} x \cup x u^{\prime} \cup P_{u} \cup P_{i} \cup P_{v}$ and $S_{i}^{\prime}=P_{w} \cup w u \cup P_{i} \cup P_{v}$ for $1 \leq i \leq r$, be $2 r w^{\prime}-v^{\prime}$ paths in $G-V(K)$. If amongst the $2 r$ paths $\left\{S_{1}, S_{1}^{\prime}, \ldots, S_{r}, S_{r}^{\prime}\right\}$ there are $r+1$ paths of distinct lengths modulo k, then (G, K) contains a configuration of type \mathbf{C} and rank $r+1$, with w^{\prime} and v^{\prime} as the required vertices.

Suppose both sets of paths $\left\{Q_{1}, Q_{1}^{\prime}, \ldots, Q_{r}, Q_{r}^{\prime}\right\}$ and $\left\{S_{1}, S_{1}^{\prime}, \ldots, S_{r}, S_{r}^{\prime}\right\}$ contain at most r paths of distinct lengths modulo k. Note that $l\left(Q_{i}\right) \equiv l\left(P_{i}\right)+C_{1} \bmod k$ for some constant C_{1} and all $1 \leq i \leq r$, which implies that $\left\{Q_{1}, \ldots, Q_{r}\right\}$ have distinct lengths modulo k. Similarly, $l\left(Q_{i}^{\prime}\right) \equiv l\left(P_{i}\right)+C_{2} \bmod k$ for some constant C_{2}. Also $l\left(S_{i}\right)=l\left(Q_{i}\right)+1$ and $l\left(S_{i}^{\prime}\right)=l\left(Q_{i}^{\prime}\right)-1$. Suppose $l\left(P_{i}\right) \equiv a \bmod k$ for some $1 \leq i \leq r$ and natural number a. Then $l\left(Q_{i}^{\prime}\right) \equiv a+C_{2} \bmod k$ and there exists an index j such that $l\left(Q_{j}\right) \equiv a+C_{2} \bmod k$. Therefore $l\left(S_{j}\right) \equiv a+C_{2}+1 \bmod k$. Hence, there is an index m such that $l\left(S_{m}^{\prime}\right) \equiv a+C_{2}+1 \bmod k$, which implies $l\left(P_{m}\right) \equiv a+2 \bmod k$. Since this holds for all paths P_{i}, and there exists a path of length congruent to 0 modulo k, there must be paths of all even lengths modulo k in $\left\{P_{1}, P_{2}, \ldots, P_{r}\right\}$. Then $u w \cup w v \cup P_{i}$ for $1 \leq i \leq r$ are cycles of all even lengths modulo k in $G-V(K)$. Note that this case can occur only when k is even and $r=k / 2$.

If x is adjacent to w^{\prime} and v^{\prime} but not to u^{\prime}, then $\left|N\left(w^{\prime}\right) \cap V(K)\right| \geq 2(k-r)-1$, $\left|N\left(u^{\prime}\right) \cap V(K)\right| \geq 2(k-r)-1$ and hence $|N(x) \cap V(K)| \geq 2(k-r)-1$. Now, we can use the same argument as before, by interchanging the vertices u, v and u^{\prime}, v^{\prime}. Case 2.

Suppose there is no vertex $x \in V(G) \backslash V(K)$ that is adjacent to all vertices in $V(K)$. Let v be any vertex in $V(K)$. For every vertex $u \in N_{G}(v) \backslash V(K)$, let $f(u)$ denote any vertex in $V(K)$ that is not adjacent to u. Let G^{\prime} be the graph obtained from $G-\{v\}$ by adding edges $u f(u)$ for all vertices $u \in N_{G}(v) \backslash V(K)$. Let $K^{\prime}=K-\{v\}$.

Now, $\left|V\left(G^{\prime}\right) \backslash V\left(K^{\prime}\right)\right|=|V(G) \backslash V(K)|$ but $\left|V\left(K^{\prime}\right)\right|<|V(K)|$, and every vertex in $V\left(G^{\prime}\right) \backslash V\left(K^{\prime}\right)$ has degree at least $2 k-1$ in G^{\prime}. Hence by the minimality of (G, K), either $G^{\prime}-V\left(K^{\prime}\right)$ contains cycles of all even lengths modulo k, or $\left(G^{\prime}, K^{\prime}\right)$ contains one of the four types of configurations. Since $G^{\prime}-V\left(K^{\prime}\right)=G-V(K)$ and $\left|N_{G^{\prime}}(u) \cap V\left(K^{\prime}\right)\right|=\left|N_{G}(u) \cap V(K)\right|$ for every vertex $u \in V(G) \backslash V(K)$, it follows that either $G-V(K)$ contains cycles of all even lengths modulo k, or (G, K) contains the same configuration as (G^{\prime}, K^{\prime}).

The proof of Theorem 1 follows immediately from Lemma 1. If G is a graph with minimum degree $2 k-1$, then the ordered pair (G, \emptyset) satisfies the hypothesis of

Lemma 1 and hence either G contains cycles of all even lengths modulo k, or (G, \emptyset) contains a configuration of one of the four types. However, since K is empty, the latter is not possible, and the theorem follows.

Note that the proof shows that the cycles can be chosen such that two adjacent edges are included in all cycles.

3 Remarks

As mentioned in the introduction, it is straightforward to verify Thomassen's conjecture for $m=1$. However, we do not know any other natural numbers m for which it is known to be true. We show that it is true for $m=2$.

Theorem 2 Every graph with minimum degree $k+1$ contains a cycle of length congruent to 4 modulo k, for all integers $k \geq 2$.

We use the same technique as in the previous section. Here, we need only the configurations of type \mathbf{A} and \mathbf{C}, with some modifications. In a configuration of type A we require $|N(u) \cap V(K)| \geq k+1$. In a configuration of type \mathbf{C} and rank r, we require $|N(u) \cap V(K)| \geq k-r+1$ and $|N(v) \cap V(K)| \geq k-r+1$, where the rank r is at least one and at most k. The only difference in the proof is that when considering a configuration of type \mathbf{C} and rank r, in the case when x is adjacent to both u and v, if any of the $u-v$ paths in the configuration has length congruent to 2 modulo k, then $G-V(K)$ contains a cycle of length congruent to 4 modulo k. If no path has length congruent to 2 modulo k, then there are $r+1 u-v$ paths in $G-V(K)$ of distinct lengths modulo k, which gives a configuration of type \mathbf{C} and rank $r+1$ in (G, K).

References

[1] B. Bollobás, Cycles modulo k, Bull. London Math. Soc. 9 (1977), 97-98.
[2] X. Cai and W. Shreve, Pancyclicity mod k of claw-free graphs and $K_{1,4}$ free graphs, Discrete Math. 230 (2001), 113-118.
[3] G. T. Chen and A. Saito, Graphs with a cycle of length divisible by three, J. Combin. Theory Ser. B 60 (1994), 277-292.
[4] N. Dean, A. Kaneko, K. Ota and B. Toft, Cycles modulo 3, DIMACS Technical Report 91-32 (1991).
[5] N. Dean, L. Lesniak and A. Saito, Cycles of length 0 modulo 4 in graphs, Discrete Math. 121 (1993), 37-49.
[6] P. Erdős, Some recent problems and results in graph theory, combinatorics, and number theory, Proc. Seventh S-E Conf. Combinatorics, Graph Theory and Computing, Utilitas Math., Winnipeg, (1976) 3-14.
[7] G. Fan, Distribution of cycle lengths in graphs, J. Combin. Theory Ser B 84 (2002), 187-202.
[8] W. Mader, Existenz gewisser Konfigurationen in n-gesättigten Graphen und in Graphen genügend großer Kantendichte, Math. Ann. 194 (1971), 295-312.
[9] C. Thomassen, Graph decomposition with applications to subdivisions and path systems modulo k, J. Graph Theory 7 (1983), 261-271.
[10] C. Thomassen, 'Paths, Circuits and Subdivisions', Selected Topics in Graph Theory 3 L.W. Beineke and R.J. Wilson, (Editors), Academic Press, New York (1988), pp. 97-132.
[11] J. Verstraëte, On arithmetic progressions of cycle lengths in graphs, Combin. Probab. and Comput., 9 (2000), 369-373.

