
Cycles of even lengths modulo k

Ajit A. Diwan

Department of Computer Science and Engineering,

Indian Institute of Technology Bombay,

Mumbai, 400076, India.

January 19, 2009

Abstract

Thomassen [9] conjectured that for all natural numbers k > 0 and m, every

graph of minimum degree k + 1 contains a cycle of length congruent to 2m modulo

k. We prove that this is true for k ≥ 2 if the minimum degree is 2k − 1, which

improves the previously known bound of 3k − 2. We also show that Thomassen’s

conjecture is true for m = 2.
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1 Introduction

The study of cycle lengths in a graph modulo a positive integer k was initiated by

Erdős and Burr [6], who conjectured that for every odd positive integer k, there

exists a constant ck such that for all natural numbers m, every graph of average

degree at least ck contains a cycle of length congruent to m modulo k. They proved

this for m = 2 and the full conjecture was proved by Bollobás [1], who showed that

ck = 2((k + 1)k − 1)/k suffices. Thomassen [9, 10] showed a more general result,

that an average degree of 4k(k+1) implies that the graph contains a cycle of length

congruent to 2m modulo k for all natural numbers k > 0 and m. He also conjectured

that a minimum degree of k + 1 suffices.

Verstraëte [11] showed that if k ≥ 2 and the average degree is at least 8k, then

there exist k cycles of consecutive even lengths, which implies that for all natural

numbers m, there exists a cycle of length congruent to 2m modulo k. Fan [7]

showed that if k ≥ 2 and the minimum degree is 3k − 2, then there exist k cycles
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with consecutive even lengths, or consecutive odd lengths. This implies that for

odd k ≥ 2, if the minimum degree is 3k − 2, then the graph contains a cycle of

length congruent to 2m modulo k for all m. We give a simple proof that for k ≥ 2,

a minimum degree of 2k − 1 suffices to ensure that the graph contains a cycle

of length congruent to 2m modulo k for all m. The proof is an application of a

technique used by Mader in [8].

Thomassen’s conjecture is known to be true for k ≤ 4, [3, 4, 5] and for claw-free

graphs [2]. For m = 1, it follows easily by considering a longest path and the edges

incident with an endpoint of the path. We prove that it is true for m = 2.

All graphs considered are simple and finite. We denote the vertex set of a graph

G by V (G) and the edge set by E(G). The set of neighbors of a vertex v in a graph

G is denoted by NG(v) or simply N(v) when G is understood from the context. If

V ⊂ V (G) then G − V is the subgraph of G obtained by deleting all vertices in

V and edges incident with them. The graph G − (V (G) \ V ) is the subgraph of G

induced by V .

A path with endpoints {u, v} is called a u–v path, and a u–u path is the trivial

path containing only the vertex u. The length of a path or cycle P is denoted by

l(P ). A set of paths (or cycles) {P1, P2, . . . , Pr} is said to have distinct lengths

modulo k if l(Pi) 6≡ l(Pj) mod k for all 1 ≤ i < j ≤ r. A graph G is said to contain

all cycles of even lengths modulo k, if for all natural numbers m, G contains a cycle

of length congruent to 2m modulo k. If P and Q are graphs, we denote by P ∪ Q

the graph with vertex set V (P )∪ V (Q) and edge set E(P )∪E(Q). To simplify the

notation, we will consider an edge to be a graph with two vertices, where necessary.

2 Main Result

Theorem 1 Let k ≥ 2 be an integer and G a graph with minimum degree 2k − 1.

For all natural numbers m, G contains a cycle of length congruent to 2m modulo k.

We will assume throughout that k ≥ 2 is a fixed integer. We will be considering

ordered pairs of the form (G,K), where K is a proper complete subgraph of G,

possibly empty.

Definition 1 The ordered pair (G,K) contains a configuration of type A if V (G)\

V (K) contains a vertex u such that |N(u) ∩ V (K)| ≥ 2k − 1.

Definition 2 The ordered pair (G,K) contains a configuration of type B if V (G)\

V (K) contains two vertices u, v such that |N(u)∩V (K)| ≥ 2k−2, |N(v)∩V (K)| ≥

2k − 2, and there exists a u–v path P in G − V (K).
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Definition 3 The ordered pair (G,K) contains a configuration of type C and rank

r, if V (G)\V (K) contains two vertices u, v such that |N(u)∩V (K)| ≥ 2(k−r)+1,

|N(v)∩ V (K)| ≥ 2(k − r) + 1, and there exists a set {P1, P2, . . . , Pr} of r u–v paths

in G − V (K) having distinct lengths modulo k.

Definition 4 The ordered pair (G,K) contains a configuration of type D and rank

r, if V (G) \ V (K) contains three vertices u,w, v satisfying the following properties.

1. uw and wv are edges in G − V (K).

2. There exist vertices {u′, w′, v′} ⊆ V (G) \ V (K) and vertex-disjoint paths Pu,

Pw, Pv in G−V (K) such that |N(u′)∩V (K)| ≥ 2(k−r)−1, |N(w′)∩V (K)| ≥

2(k−r), |N(v′)∩V (K)| ≥ 2(k−r), and Pz is a z–z′ path for all z ∈ {u, v, w}.

Note that the vertex z′ may be the same as the vertex z, for z ∈ {u, v, w}.

3. There is a set {P1, P2, . . . , Pr} of r u–v paths in G − V (K) having distinct

lengths modulo k, such that Pi is internally vertex-disjoint from Pu, Pw and Pv

for 1 ≤ i ≤ r. Also, one of the paths in {P1, P2, . . . , Pr} has length congruent

to 0 modulo k.

Lemma 1 Let G be a graph and K a proper complete subgraph of G. If every vertex

in V (G)\V (K) has degree at least 2k−1 in G, then either G−V (K) contains cycles

of all even lengths modulo k, or the ordered pair (G,K) contains a configuration of

one of the types A, B, C, D. If the configuration is of type C, then the rank is at

least two and at most k. If the configuration is of type D, then the rank is at least

two and less than k.

Proof: Let (G,K) be a counterexample that minimizes |V (G) \V (K)| and subject

to this condition, minimizes |V (K)|. If |V (G) \ V (K)| = 1, the only vertex u ∈

V (G)\V (K) has degree at least 2k−1, hence |N(u)∩V (K)| ≥ 2k−1. This implies

(G,K) contains a configuration of type A, a contradiction.

Suppose |V (G) \ V (K)| > 1. We consider two cases.

Case 1.

Suppose there exists a vertex x ∈ V (G) \ V (K) that is adjacent to all vertices

in V (K). Let K ′ be the complete subgraph of G induced by V (K)∪{x}. Then the

ordered pair (G,K ′) satisfies the hypothesis of Lemma 1, and by the minimality of

(G,K), either G − V (K ′) contains cycles of all even lengths modulo k or (G,K ′)

contains a configuration of one of the four types. Since G− V (K ′) is a subgraph of

G − V (K), we may assume that the latter holds. Now we show that in each case,

the configuration in (G,K ′) can be modified to either find cycles of all even lengths
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modulo k in G − V (K), or get a configuration of one of the four types in (G,K),

contradicting the fact that (G,K) is a counterexample.

Case 1.1

Suppose (G,K ′) contains a configuration of type A. Let u be a vertex in V (G)\

V (K ′) such that |N(u) ∩ V (K ′)| ≥ 2k − 1. If u is not adjacent to x, then |N(u) ∩

V (K)| ≥ 2k − 1 and (G,K) contains a configuration of type A. If u is adjacent to

x, then |N(u) ∩ V (K)| ≥ 2k − 2 and since x is adjacent to every vertex in V (K),

|N(x) ∩ V (K)| = |V (K)| ≥ 2k − 2. The edge ux implies that (G,K) contains a

configuration of type B.

Case 1.2

Suppose (G,K ′) contains a configuration of type B. Let u, v be vertices in V (G)\

V (K ′) such that |N(u) ∩ V (K ′)| ≥ 2k − 2, |N(v) ∩ V (K ′)| ≥ 2k − 2 and there is a

u–v path P in G − V (K ′).

If x is not adjacent to any of the vertices {u, v}, then u, v satisfy the same

properties with K ′ replaced by K, and (G,K) contains the same configuration of

type B.

If x is adjacent to u but not adjacent to v, then |N(v) ∩ V (K)| ≥ 2k − 2 and

hence |N(x) ∩ V (K)| ≥ 2k − 2. Also, P ∪ xu is an x–v path in G − V (K). Hence

(G,K) contains a configuration of type B. A symmetrical argument holds if x is

adjacent to v but not adjacent to u.

Suppose x is adjacent to both u and v. Then |N(u) ∩ V (K)| ≥ 2k − 3, |N(v) ∩

V (K)| ≥ 2k − 3 and hence |N(x) ∩ V (K)| ≥ 2k − 3. If l(P ) ≡ 0 mod k and k > 2,

then P and Q = ux∪xv are two u–v paths in G−V (K) of distinct lengths modulo

k, hence (G,K) contains a configuration of type C and rank two. If l(P ) ≡ 0 mod k

and k = 2, then P ∪ Q is an even cycle in G − V (K), hence G − V (K) contains

cycles of all even lengths modulo 2. If l(P ) 6≡ 0 mod k, then the edge ux and the

path P ∪ vx are two u–x paths in G − V (K) of distinct lengths modulo k, hence

(G,K) contains a configuration of type C and rank two.

Case 1.3

Suppose (G,K ′) contains a configuration of type C and rank r, for some 2 ≤

r ≤ k. Let u, v be vertices in V (G)\V (K ′) such that |N(u)∩V (K ′)| ≥ 2(k−r)+1,

|N(v) ∩ V (K ′)| ≥ 2(k − r) + 1 and let {P1, P2, . . . , Pr} be the set of r u–v paths in

G − V (K ′) having distinct lengths modulo k.

If x is not adjacent to any of the vertices {u, v}, then (G,K) also contains the

same configuration of type C and rank r.

If x is adjacent to u but not to v, then |N(v) ∩ V (K)| ≥ 2(k − r) + 1 and hence

|N(x) ∩ V (K)| ≥ 2(k − r) + 1. The paths Pi ∪ xu for 1 ≤ i ≤ r are x–v paths in
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G−V (K) having distinct lengths modulo k. Hence (G,K) contains a configuration

of type C and rank r. A symmetrical argument holds if x is adjacent to v but not

adjacent to u.

Suppose x is adjacent to both u and v. If r = k, then the cycles ux∪xv ∪Pi for

1 ≤ i ≤ k have distinct lengths modulo k, hence G−V (K) contains cycles of all even

lengths modulo k. If r < k, then |N(u)∩V (K)| ≥ 2(k−r), |N(v)∩V (K)| ≥ 2(k−r)

and hence |N(x) ∩ V (K)| ≥ 2(k − r). If none of the paths P1, P2, . . . , Pr has length

congruent to 0 modulo k, then the edge ux and the paths Pi ∪ vx for 1 ≤ i ≤ r are

r + 1 u–x paths in G − V (K) with distinct lengths modulo k, and (G,K) contains

a configuration of type C and rank r + 1.

Suppose one of the paths P1, P2, . . . , Pr has length congruent to 0 modulo k.

Then by relabeling the vertex x as w, choosing the vertices u′, w′, v′ to be the vertices

u,w, v respectively, and the paths Pu, Pw, Pv to be trivial, we get a configuration of

type D and rank r in (G,K).

Case 1.4

Finally, suppose (G,K ′) contains a configuration of type D and rank r, for some

2 ≤ r < k. Let u,w, v be the three vertices in V (G) \ V (K ′) such that uw,wv

are edges in G. Let u′, w′, v′ be the vertices in V (G) \ V (K ′) such that |N(u′) ∩

V (K ′)| ≥ 2(k − r) − 1, |N(w′) ∩ V (K ′)| ≥ 2(k − r) and |N(v′) ∩ V (K ′)| ≥ 2(k − r)

and let Pu, Pw, Pv be the vertex-disjoint u–u′, w–w′ and v–v′ paths in G − V (K ′),

respectively. Let {P1, P2, . . . , Pr} be the set of r u–v paths in G − V (K ′) that

are internally vertex-disjoint from the paths Pu, Pw, Pv and have distinct lengths

modulo k.

If x is not adjacent to any of the vertices {u′, w′, v′}, it is clear that (G,K)

contains the same configuration of type D and rank r. If x is adjacent to exactly

one of the vertices {u′, w′, v′}, then |N(x)∩ V (K)| ≥ 2(k − r). If x is adjacent only

to z′ for some z ∈ {u,w, v}, replace the vertex z ′ by the vertex x and the path Pz

by the path Pz ∪ xz′. This gives a configuration of type D and rank r in (G,K).

Suppose x is adjacent to u′ and v′ but not to w′. Then |N(w′)∩V (K)| ≥ 2(k−r),

|N(v′) ∩ V (K)| ≥ 2(k − r) − 1 and hence |N(x) ∩ V (K)| ≥ 2(k − r). Replace the

vertex u′ by x and the path Pu by the path Pu ∪ xu′. Now interchanging the labels

of the vertices {u, v}, labeling x as v ′ and v′ as u′, gives a configuration of type D

and rank r in (G,K).

Suppose x is adjacent to w′ and u′ and may or may not be adjacent to v′.

Then |N(w′) ∩ V (K)| ≥ 2(k − r) − 1, |N(v′) ∩ V (K)| ≥ 2(k − r) − 1 and hence

|N(x) ∩ V (K)| ≥ 2(k − r) − 1. Let Qi = xu′ ∪ Pu ∪ Pi ∪ Pv and Q′

i = xw′ ∪

Pw ∪ wu ∪ Pi ∪ Pv for 1 ≤ i ≤ r, be 2r x–v′ paths in G − V (K). If amongst
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the 2r paths {Q1, Q
′

1
, . . . , Qr, Q

′

r}, there are r + 1 paths of distinct lengths modulo

k, then (G,K) contains a configuration of type C and rank r + 1, with x and v ′

as the two required vertices. Similarly, let Si = w′x ∪ xu′ ∪ Pu ∪ Pi ∪ Pv and

S′

i = Pw ∪ wu ∪ Pi ∪ Pv for 1 ≤ i ≤ r, be 2r w′–v′ paths in G − V (K). If amongst

the 2r paths {S1, S
′

1
, . . . , Sr, S

′

r} there are r + 1 paths of distinct lengths modulo k,

then (G,K) contains a configuration of type C and rank r + 1, with w ′ and v′ as

the required vertices.

Suppose both sets of paths {Q1, Q
′

1
, . . . , Qr, Q

′

r} and {S1, S
′

1
, . . . , Sr, S

′

r} contain

at most r paths of distinct lengths modulo k. Note that l(Qi) ≡ l(Pi)+C1 mod k for

some constant C1 and all 1 ≤ i ≤ r, which implies that {Q1, . . . , Qr} have distinct

lengths modulo k. Similarly, l(Q′

i) ≡ l(Pi) + C2 mod k for some constant C2. Also

l(Si) = l(Qi)+1 and l(S ′

i) = l(Q′

i)−1. Suppose l(Pi) ≡ a mod k for some 1 ≤ i ≤ r

and natural number a. Then l(Q′

i) ≡ a+C2 mod k and there exists an index j such

that l(Qj) ≡ a+C2 mod k. Therefore l(Sj) ≡ a+C2 +1 mod k. Hence, there is an

index m such that l(S ′

m) ≡ a + C2 + 1 mod k, which implies l(Pm) ≡ a + 2 mod k.

Since this holds for all paths Pi, and there exists a path of length congruent to

0 modulo k, there must be paths of all even lengths modulo k in {P1, P2, . . . , Pr}.

Then uw∪wv∪Pi for 1 ≤ i ≤ r are cycles of all even lengths modulo k in G−V (K).

Note that this case can occur only when k is even and r = k/2.

If x is adjacent to w′ and v′ but not to u′, then |N(w′) ∩ V (K)| ≥ 2(k − r) − 1,

|N(u′) ∩ V (K)| ≥ 2(k − r) − 1 and hence |N(x) ∩ V (K)| ≥ 2(k − r) − 1. Now, we

can use the same argument as before, by interchanging the vertices u, v and u ′, v′.

Case 2.

Suppose there is no vertex x ∈ V (G) \ V (K) that is adjacent to all vertices

in V (K). Let v be any vertex in V (K). For every vertex u ∈ NG(v) \ V (K), let

f(u) denote any vertex in V (K) that is not adjacent to u. Let G′ be the graph

obtained from G − {v} by adding edges uf(u) for all vertices u ∈ NG(v) \ V (K).

Let K ′ = K − {v}.

Now, |V (G′) \ V (K ′)| = |V (G) \ V (K)| but |V (K ′)| < |V (K)|, and every vertex

in V (G′) \ V (K ′) has degree at least 2k − 1 in G′. Hence by the minimality of

(G,K), either G′ − V (K ′) contains cycles of all even lengths modulo k, or (G′,K ′)

contains one of the four types of configurations. Since G′ −V (K ′) = G−V (K) and

|NG′(u)∩V (K ′)| = |NG(u)∩V (K)| for every vertex u ∈ V (G)\V (K), it follows that

either G − V (K) contains cycles of all even lengths modulo k, or (G,K) contains

the same configuration as (G′,K ′). 2

The proof of Theorem 1 follows immediately from Lemma 1. If G is a graph

with minimum degree 2k−1, then the ordered pair (G, ∅) satisfies the hypothesis of
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Lemma 1 and hence either G contains cycles of all even lengths modulo k, or (G, ∅)

contains a configuration of one of the four types. However, since K is empty, the

latter is not possible, and the theorem follows. 2

Note that the proof shows that the cycles can be chosen such that two adjacent

edges are included in all cycles.

3 Remarks

As mentioned in the introduction, it is straightforward to verify Thomassen’s con-

jecture for m = 1. However, we do not know any other natural numbers m for

which it is known to be true. We show that it is true for m = 2.

Theorem 2 Every graph with minimum degree k + 1 contains a cycle of length

congruent to 4 modulo k, for all integers k ≥ 2.

We use the same technique as in the previous section. Here, we need only the

configurations of type A and C, with some modifications. In a configuration of

type A we require |N(u) ∩ V (K)| ≥ k + 1. In a configuration of type C and rank

r, we require |N(u) ∩ V (K)| ≥ k − r + 1 and |N(v) ∩ V (K)| ≥ k − r + 1, where the

rank r is at least one and at most k. The only difference in the proof is that when

considering a configuration of type C and rank r, in the case when x is adjacent to

both u and v, if any of the u–v paths in the configuration has length congruent to

2 modulo k, then G − V (K) contains a cycle of length congruent to 4 modulo k.

If no path has length congruent to 2 modulo k, then there are r + 1 u–v paths in

G − V (K) of distinct lengths modulo k, which gives a configuration of type C and

rank r + 1 in (G,K). 2
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