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Abstract

We prove that every graph of minimum degree at least d ≥ 1
contains a subdivision of some maximal 3-degenerate graph of order
d+1. This generalizes the classic results of Dirac (d = 3) and Pelikán
(d = 4). We conjecture that for any planar maximal 3-degenerate
graph H of order d+ 1 and any graph G of minimum degree at least
d, G contains a subdivision of H. We verify this in the case H is P 3

6

and P 3
7 .

1 Introduction

A classic result of Dirac [2] states that every graph of minimum degree
at least 3 contains a subdivision of K4. Pelikán [6] proved that every
graph of minimum degree at least 4 contains a subdivision of K−

5 , the
graph obtained by deleting an edge from K5. In general, Mader [4]
first showed that there exists a function f(k) such that every graph of
minimum degree at least f(k) contains a subdivision of Kk. Bollobás
and Thomason [1] showed that f(k) is O(k2) and this is best possible.

We consider the question in the other direction. For a given integer
d ≥ 1, for what graphs H is it true that every graph of minimum
degree at least d contains a subdivision of H? Clearly, any such graph
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H can have at most d + 1 vertices, since Kd+1 has minimum degree
d. We consider graphs H of order exactly d + 1. We call a graph
H good if every graph of minimum degree at least |H| − 1 contains
a subdivision of H. For 1 ≤ d ≤ 3, it follows that Kd+1 is good.
Since there are planar graphs of minimum degree 4, K5 is not good,
but Pelikán’s theorem implies that K−

5 is good. We are interested in
finding the maximal good graphs. Mader [5] showed that every graph
of minimum degree at least d ≥ 2 contains a pair of adjacent vertices
with d internally disjoint paths between them. This implies that the
graph K2 ∨Kd−1, consisting of d − 1 triangles that share a common
edge, is good. However, this graph has only 2d− 1 edges and is not a
maximal good graph even for d = 3. Turner [7] showed that the wheel
Wd = Cd ∨K1 is good, for all d ≥ 3, but again this has size 2d and is
not a maximal good graph for d = 4.

Our main result is that every graph of minimum degree at least
d ≥ 2 contains a subdivision of some graph H of order d + 1 and
size 3d − 3. For d = 3, 4 this implies the theorems of Dirac and
Pelikán, respectively, since K4 and K−

5 are the only possible such
graphs. Further, for d = 5, this is the maximum possible number
of edges in a good graph, since there exist planar graphs of minimum
degree 5. We are unable to prove that any specific graphH of order d+
1 and size 3d−3 is good, for general d, but we can say something more
about the structure of the graph H. We show that H can be chosen
to be 3-degenerate, that is, every subgraph of H contains a vertex of
degree at most 3. We conjecture that every planar 3-degenerate graph
of order d + 1 and size 3d − 3 is good. We prove this for two specific
graphs P 3

6 and P 3
7 . A weaker conjecture would be that P 3

n is good for
all n ≥ 2.

2 Notation

All graphs considered are undirected, finite and simple. The vertex set
of a graph G is denoted by V (G) and the edge set by E(G). The order
of a graph G is |V (G)| and |E(G)| is its size. The subset of vertices
adjacent to a vertex v ∈ V (G) in a graph G is denoted by NG(v) and
dG(v) = |NG(v)| is the degree of the vertex v. If S ⊂ V (G) ∪ E(G),
G−S is the graph obtained fromG by deleting all vertices and edges in
S and also edges incident with vertices in S. A graph H is a subgraph
of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G). If S ⊂ V (G),
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G − (V (G) \ S) is the subgraph of G induced by S. The union of
two subgraphs H1,H2 of a graph G is the subgraph with vertex set
V (H1) ∪ V (H2) and edge set E(H1) ∪ E(H2).

A path P in a graph G is a sequence of distinct vertices v0, . . . , vl
such that vivi+1 is an edge in G for 0 ≤ i < l. We say P is a v0–vl
path that joins v0 to vl. The vertices v0, vl are the endpoints of P
and {v1, . . . , vl−1} are the internal vertices of P . The set of internal
vertices of P is denoted I(P ). We will also consider P to be a subgraph
of G with vertex set {v0, . . . , vl} and edge set {vivi+1 | 0 ≤ i < l}. A
path P is said to be an A–B path in G, for A,B ⊆ V (G), if P joins a
vertex in A to a vertex in B and I(P )∩ (A∪B) = ∅. An A–B path is
also said to join A to B. A set of paths P in G is said to be internally
disjoint if for any two distinct paths P,Q ∈ P, I(P ) ∩ I(Q) = ∅. If P
is a set of internally disjoint paths, let I(P) =

⋃
P∈P I(P ) be the set

of internal vertices of P. If A ⊂ V (G) and u ∈ V (G) \A, a u–A fan is
a set of internally disjoint u–A paths having distinct endpoints in A.

A graph G is said to contain a subdivision of a graph H if there
exists a subset B(H) ⊆ V (G) of vertices and a set P of internally
disjoint B(H)–B(H) paths in G such that:

1. There exist bijections f : V (H) → B(H) and g : E(H) → P.

2. If uv ∈ E(H) then g(uv) is an f(u)–f(v) path in G.

We call the subgraph of G formed by the union of the paths in P
a subdivision of H and denote it T (H). The vertex f(v) ∈ V (T (H))
is said to correspond to the vertex v ∈ V (H).

An ordered clique in a graph G is a complete subgraph of G to-
gether with a total ordering imposed on the vertices in the complete
subgraph.

Let G be a graph and K an ordered clique in G. Let u1, u2, . . . , ut
be a sequence of vertices in V (G)\V (K) and n1, n2, . . . , nt a sequence
of positive integers. We say (u1, . . . , ut) is (n1, . . . , nt)-joined to K in
G by a set of paths P if the paths satisfy the following properties:

1. Every path in P is a {u1, . . . , ut}–V (K) path.

2. P is a set of internally disjoint paths.

3. No two paths in P have the same pair of endpoints.

4. Exactly ni paths in P have ui as an endpoint, for all 1 ≤ i ≤ t.
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3 Unavoidable configurations

The main technique used in this paper is essentially the same as used
by Mader in [5]. We consider ordered pairs of the form (G,K), where
K is an ordered clique in the graph G. We define a reduction operation
on such pairs.

Let G be a graph and K an ordered clique in G, such that V (K) ⊂
V (G). Let v1 < v2 < · · · < vk be the ordering of the vertices in K.

1. Suppose there exists a vertex w ∈ V (G) \ V (K) that is adjacent
to all vertices in V (K). Let K ′ be the ordered clique in G with
V (K ′) = V (K) ∪ {w} and the ordering w < v1 < · · · < vk of
V (K ′). We say the pair (G,K ′) is obtained from the pair (G,K)
by adding the vertex w.

2. Suppose every vertex in V (G) \ V (K) is not adjacent to at least
one vertex in V (K). For every vertex u ∈ NG(v1)\V (K) let f(u)
be the smallest index such that vf(u) 6∈ NG(u). Let G′ be the
graph obtained from G by deleting the vertex v1 and adding the
edge uvf(u), for all vertices u ∈ NG(v1) \ V (K). Let K ′ be the
ordered clique in G′ with V (K ′) = V (K)\{v1} and the ordering
v2 < · · · < vk of V (K ′). We say the pair (G′,K ′) is obtained
from (G,K) by deleting the vertex v1.

Note that for any pair (G,K) with V (K) ⊂ V (G), exactly one of
the two operations can be applied. We say a pair (G′,K ′) can be de-
rived from the pair (G,K), denoted (G,K) → (G′,K ′), if (G′,K ′) can
be obtained from (G,K) by a sequence of vertex deletion or addition
operations.

Lemma 1 If (G,K) → (G′,K ′) then the following properties hold.

1. V (G′) \ V (K ′) ⊆ V (G) \ V (K).

2. For every vertex u ∈ V (G′) \ V (K ′), dG′(u) = dG(u).

3. For any subset S ⊆ V (G′ − V (K ′)) ∪ E(G′ − V (K ′)),
(G− S,K) → (G′ − S,K ′).

4. |V (G′)|+ |V (G′) \ V (K ′)| < |V (G)|+ |V (G) \ V (K)|.

Proof: The proof follows by induction on the number of reduction
operations used to derive (G′,K ′) from (G,K). It is easy to check
that each operation satisfies the required properties. �
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Lemma 2 Suppose (G′,K ′) is obtained from (G,K) by deleting a ver-

tex. If (u1, . . . , ut) is (n1, . . . , nt)-joined to K ′ in G′, then it is also

(n1, . . . , nt)-joined to K in G.

Proof: Let K be the ordered clique v1 < v2 < · · · < vk and suppose
K ′ is obtained from K by deleting v1, keeping the order of the remain-
ing vertices the same. Let P be the set of paths that (n1, . . . , nt)-joins
(u1, . . . , ut) to K ′ in G′. By the definition of the reduction operation,
the only edges in G′ that are not in G are edges of the form uvf(u)
for every vertex u ∈ NG(v1) \ V (K). We call such edges bad edges.
Note that there is at most one bad edge incident with any vertex
u ∈ V (G′) \ V (K ′), and it must have one endpoint in V (K ′). Also, if
uvf(u) is a bad edge, by the definition of f(u), uvi is an edge in G, for
all 1 ≤ i < f(u).

Let Pi be the set of ni paths in P that form a ui–V (K ′) fan. If none
of these paths contain a bad edge, these form a ui–V (K) fan in G. If
any of these paths contains a bad edge, it must be the last edge in the
path. Let wmvjm, for 1 ≤ m ≤ l, be the bad edges contained in the
paths in Pi, where 1 = j0 < j1 < j2 < · · · < jl, and 1 ≤ l ≤ ni. Then,
replacing the bad edge wmvjm by the edge wmvjm−1

, for 1 ≤ m ≤ l,
gives a set of ni paths that form a ui–V (K) fan in G. These paths
have the same set of internal vertices as the paths in Pi. Since the
paths in Pi and Pj can only have vertices in V (K ′) in common for
i 6= j, this step can be done independently for each ui. Thus we get a
set of paths that (n1, . . . , nt)-joins (u1, . . . , ut) to K in G. �

Lemma 3 Suppose (G,K ′) is obtained from (G,K) by adding a ver-

tex w. Suppose (u1, . . . , ut) is (n1, . . . , nt)-joined to K ′ in G by a set of

paths P. If the sequence n1, . . . , nt does not have a unique maximum,

and at most one path in P has w as an endpoint, then (u1, . . . , ut) is

(n1, . . . , nt)-joined to K in G.

Proof: If none of the paths in P has w as an endpoint, then P is a
set of paths that (n1, . . . , nt)-joins (u1, . . . , ut) to K = K ′ − w in G.
SupposeP contains exactly one path terminating in w. Without loss of
generality, we may assume u1 is its other endpoint. Since the sequence
n1, . . . , nt does not have a unique maximum, there exists an i > 1
such that ni ≥ n1. Without loss of generality, assume i = 2. Since P
contains n2 u2–V (K ′) paths having distinct endpoints in V (K ′)\{w},
we must have |V (K ′)| > n2 ≥ n1. This implies |V (K)| ≥ n1. Since
P contains n1 u1–V (K ′) paths, one of which terminates in w, there
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exists a vertex v ∈ V (K ′) \ {w}, such that there is no u1–v path in
P. Since w is adjacent to all vertices in K, adding the edge wv to
the u1–w path in P, together with all other paths in P, gives a set of
paths that (n1, . . . , nt)-joins (u1, . . . , ut) to K in G. �

In view of Lemma 2, we will henceforth only need to consider cases
where (G,K ′) is obtained from (G,K) by adding a vertex w. Suppose
(u1, . . . , ut) is (n1, . . . , nt)-joined to K ′ in G by a set of paths P. In
any such case, we will denote by P ′ ⊆ P the subset of paths that
terminate in w, and by U ′ ⊆ {u1, . . . , ut} the endpoints of paths in
P ′ other than w. We will only consider cases where the sequence
n1, . . . , nt does not have a unique maximum, and hence by Lemma 3,
we only need to consider cases where |P ′| = |U ′| ≥ 2.

Lemma 4 Suppose (G,K ′) is obtained from (G,K) by adding a ver-

tex w. Suppose (u1, . . . , ut) is (n1, . . . , nt)-joined to K ′ in G by a

set of paths P and suppose |P ′| ≥ 2. Then (u1, u2, . . . , ut, w) is

(n′
1, . . . , n

′
t,m)-joined to K in G− I(P ′), where n′

i = ni − 1 if ui ∈ U ′

else n′
i = ni, and m = max1≤i≤t n′

i.

Proof: Since the paths in P are internally disjoint, P \ P ′ is a set of
paths that (n′

1, . . . , n
′
t)-joins (u1, . . . , ut) to K in G− I(P ′). Since any

two paths in P can have at most one endpoint in common, |V (K)| ≥
m = max1≤i≤t n′

i. Since w is adjacent to every vertex in V (K),
adding m edges joining w to V (K) to the set of paths P \P ′ gives the
required set of paths that (n′

1, . . . , n
′
t,m)-joins (u1, . . . , ut, w) to K in

G− I(P ′). �

Let C be a set of graphs such that A = {a1, . . . , at} ⊆ V (H),
for all graphs H ∈ C. Suppose each vertex ai ∈ A is assigned a
positive integer weight ni, for 1 ≤ i ≤ t. We call such a set of graphs
C a configuration with terminal vertices (a1, . . . , at) having weights
(n1, . . . , nt).

Let C be a configuration with terminal vertices (a1, . . . , at) having
weights (n1, . . . , nt). We say that C is unavoidable if for every graph
G and (G′,K ′) such that (G, ∅) → (G′,K ′), the following property
holds.

• If (u1, . . . , ut) is (n1, . . . , nt)-joined to K ′ in G′, then G contains
a subdivision of some graph H ∈ C such that the vertex ui in G

corresponds to the vertex ai in H, for 1 ≤ i ≤ t.

The basic idea to prove that a configuration C is unavoidable is to
use induction on the length of the sequence of reductions (G, ∅) =
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(G0,K0), (G1,K1), . . . , (Gl,Kl) such that (Gi+1,Ki+1) is obtained
from (Gi,Ki) by addition or deletion of vertices. If C has t ter-
minals (a1, . . . , at) of weights (n1, . . . , nt), we assume (u1, . . . , ut) is
(n1, . . . , nt)-joined to Kl in Gl. In all configurations that we consider,
the sequence of weights does not have a unique maximum. Lemmas 2
and 3 then imply that if (Gl,Kl) is obtained from (Gl−1,Kl−1) by
deleting a vertex or if |P ′| = 1, we can apply induction. If |P ′| ≥ 2,
we use Lemma 4 and an appropriate configuration C′ that is either
known or assumed to be unavoidable as part of the induction hypoth-
esis, and apply induction. This may require that several configurations
are proved unavoidable simultaneously.

The following lemma gives a starting point for applying this argu-
ment to a graph of minimum degree at least d.

Lemma 5 Let G be a graph of minimum degree at least d ≥ 2. Then

there exists a pair (G′,K ′) such that (G, ∅) → (G′,K ′) and G′−V (K ′)
contains an edge u1u2 such that (u1, u2) is (d− 1, d− 1)-joined to K ′

in G′.

Proof: Let (G, ∅) = (G0,K0), (G1,K1), . . . , (Gl,Kl) be a maximal
sequence of pairs such that (Gi,Ki) is obtained from (Gi−1,Ki−1) by
either deleting or adding a vertex, for 1 ≤ i ≤ l. Such a sequence
exists since |V (Gi+1)| + |V (Gi+1) \ V (Ki+1)| < |V (Gi)| + |V (Gi) \
V (Ki)|. Then we must have V (Gl) = V (Kl), otherwise we can add
one more pair to the sequence. Let i < l be the largest index such
that Gi − V (Ki) contains an edge u1u2. The choice of i implies that
(Gi+1,Ki+1) is obtained from (Gi,Ki) be adding either the vertex u1
or u2 toKi, otherwise u1u2 is an edge in Gi+1−V (Ki+1). Without loss
of generality, V (Ki+1) = V (Ki) ∪ {u1}. Then u2 cannot be adjacent
to any vertex other than u1 in Gi − V (Ki). Since G has minimum
degree at least d, u2 has at least d − 1 neighbors in V (Ki) and thus
|V (Ki)| ≥ d− 1. Since u1 is adjacent to every vertex in V (Ki), it has
at least d−1 neighbors in V (Ki). Thus (u1, u2) is (d−1, d−1)-joined
to Ki in Gi, and (Gi,Ki) is the required pair. �

Let H be any graph of order d + 1 and C(H) the configuration
containing all possible graphs H − a1a2, for every edge a1a2 ∈ E(H),
with terminal vertices (a1, a2) having weights (d − 1, d − 1). If this
configuration is unavoidable, Lemma 5 implies that H is good.

We illustrate the method by restating the proof of Mader’s theorem
in terms of unavoidable configurations. Let C(d) be the configuration
containing the single graph K2,d, with the two vertices in the part of
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size 2 being the terminal vertices having weight d. We claim that for
all d ≥ 1, the configuration C(d) is unavoidable.

Applying the general strategy, we may assume (Gl,Kl) is obtained
from (Gl−1,Kl−1) by adding a vertex w and U ′ = {u1, u2}. Then the
union of the two paths in P ′ is a u1–u2 path P in Gl−1 − V (Kl−1)
that contains w. If d = 1, this gives a subdivision of K2,1 in G,
otherwise by Lemma 4, (u1, u2) is (d − 1, d − 1)-joined to Kl−1 in
Gl−1− I(P ). By induction, G− I(P ) contains a subdivision of K2,d−1

with vertices u1, u2 corresponding to the two terminals in K2,d−1. The
union of this with the path P gives the required subdivision of K2,d.
The unavoidability of C(d) and Lemma 5 proves Mader’s theorem for
d ≥ 2.

Turner’s theorem for wheels can be proved in a similar way. In this
case, we consider the configuration Wd − a1a2, where a1a2 is a spoke
and a1 the center of the wheel. Both a1, a2 have weight d−1. We also
need another configuration Wd−{a1a2, a1a3, a2a3}, where {a1, a2, a3}
induce a triangle in Wd with a1 being the center of the wheel. If d = 3,
a1, a2, a3 all have weight 1, while for d ≥ 4, a1, a2 have weight d − 2
and a3 has weight d− 3. It can be argued in a similar way that both
these configurations are unavoidable for all d ≥ 3.

4 Maximal 3-degenerate graphs

A maximal 3-degenerate graph of order n ≥ 3 is a graph whose vertices
can be ordered v1, . . . , vn such that {v1, v2, v3} induce a K3 and vi is
adjacent to exactly 3 vertices in {v1, . . . , vi−1}, for 4 ≤ i ≤ n.

Theorem 1 Every graph of minimum degree at least d ≥ 2 contains

a subdivision of some maximal 3-degenerate graph of order d+ 1.

Proof: The proof follows the same general strategy. We define a set
of configurations and show that they are unavoidable. The theorem
then follows by applying Lemma 5.

Consider the following configurations.

1. C1(d) for d ≥ 1, contains all graphs of order d + 2 with two
terminal vertices a1, a2, and d other vertices b1, . . . , bd, ordered
so that b1 is adjacent to a1 and a2, and bi is adjacent to exactly 3
vertices in {a1, a2, b1, . . . , bi−1}, for 2 ≤ i ≤ d. The two terminal
vertices a1, a2 have weight d.
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2. C2(d) for d ≥ 1, contains all graphs of order d+3 with 3 terminal
vertices a1, a2, a3, and d other vertices b1, b2, . . . , bd, ordered so
that bi is adjacent to exactly 3 vertices in {a1, a2, a3, b1, . . . , bi−1},
for 1 ≤ i ≤ d. The 3 terminal vertices have weight d each.

3. C3(d) for d ≥ 1, contains all graphs of order d+3 with 3 terminal
vertices a1, a2, a3, such that a1 adjacent to a2, and d other ver-
tices b1, . . . , bd, ordered so that bi is adjacent to exactly 3 vertices
in {a1, a2, a3, b1, . . . , bi−1} for 1 ≤ i ≤ d. The vertices a1, a2 have
weight d+ 1, while a3 has weight d.

4. C4(d, t) for d ≥ 0, t ≥ 3, contains all graphs with t terminal
vertices a1, a2, . . . , at such that a1 is adjacent to ai for 2 ≤ i ≤ t,
and d other vertices b1, . . . , bd such that bi is adjacent to exactly
3 vertices in {a1, . . . , at, b1, . . . , bi−1} for 1 ≤ i ≤ d. The weight
of a1 is d+ t− 1, and the weight of ai is d+ i− 1, for 2 ≤ i ≤ t.

We show that the configurations C1, C2, C3, C4 are unavoidable.
We consider each of the 4 configurations.
Case 1. Consider the configuration C1. If d = 1, this just contains the
graph K2,1 with 2 terminal vertices of weight 1. This is unavoidable,
as argued in the proof of Mader’s theorem. Suppose d ≥ 2. We may
assume P ′ contains exactly 2 paths. Lemma 4 implies (u1, u2, w) is
(d − 1, d − 1, d − 1)-joined to Kl−1 in Gl−1 − I(P ′). By induction,
G − I(P ′) contains a subdivision of some graph in C2(d − 1), with
vertices u1, u2, w corresponding to a1, a2, a3 , respectively. Adding the
paths in P ′ to this gives a subdivision of a graph in C1(d).
Case 2. Consider the configuration C2. If d = 1, this contains the
graph K3,1 with 3 terminal vertices of weight 1. If P ′ contains 3 paths,
this gives a subdivision of K3,1 in Gl−1 − V (Kl−1), with u1, u2, u3
corresponding to a1, a2, a3, respectively. Suppose |P

′| = 2, and assume
without loss of generality U ′ = {u1, u2}. Lemma 4 implies (u3, w) is
(1, 1)-joined to Kl−1 in Gl−1 − I(P ′). This implies G− I(P ′) contains
a u3–w path. Adding this to the paths in P ′ gives a subdivision of
K3,1 in which u1, u2, u3 correspond to a1, a2, a3, respectively.

A similar argument holds if d ≥ 2. If P ′ contains 3 paths, by
Lemma 4, (u1, u2, u3) is (d− 1, d− 1, d− 1)-joined to Kl−1 in Gl−1 −
(I(P ′)∪{w}). By induction, G− (I(P ′)∪{w}) contains a subdivision
of some graph in C2(d − 1), with vertices u1, u2, u3 corresponding to
a1, a2, a3, respectively. Adding the vertex w and the paths in P ′ to
this, gives a subdivision of a graph in C2(d). Suppose |P ′| = 2 and
assume without loss of generality, U ′ = {u1, u2}. Lemma 4 implies
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(u3, w, u1) is (d, d, d − 1)-joined to Kl−1 in Gl−1 − I(P ′). Therefore
G − I(P ′) contains a subdivision of some graph in C3(d − 1), with
vertices u3, w, u1 corresponding to a1, a2, a3, respectively. Adding the
paths in P ′ to this gives a subdivision of a graph in C2(d).
Case 3. Consider the configuration C3. Suppose |P ′| = 3. If d = 1,
then (u1, u2) is (1, 1)-joined to Kl−1 in Gl−1 − (I(P ′) ∪ {w}). This
implies G − (I(P ′) ∪ {w}) contains a u1–u2 path. Adding w and
the paths in P ′ to this, gives the required subdivision of the graph in
C3(1). If d ≥ 2, then (u1, u2, u3) is (d, d, d−1)-joined to Kl−1 in Gl−1−
(I(P ′)∪{w}). By induction, G− (I(P ′)∪{w}) contains a subdivision
of some graph in C3(d − 1), with vertices u1, u2, u3 corresponding to
a1, a2, a3, respectively. Adding the vertex w to this along with the
paths in P ′, gives the required subdivision of a graph in C3(d).

Suppose |P ′| = 2 and U ′ = {u1, u2}. The union of the two paths
in P ′ is a u1–u2 path P in Gl−1−V (Kl−1) that contains w. Lemma 4
implies (u1, u2, u3) is (d, d, d)-joined to Kl−1 in Gl−1 − I(P ). By in-
duction, G− I(P ) contains a subdivision of some graph in C2(d), with
vertices u1, u2, u3 corresponding to a1, a2, a3, respectively. Adding the
path P to this gives a subdivision of some graph in C3(d).

Suppose |P ′| = 2 and U ′ = {u2, u3}. The case when U ′ = {u1, u3}
is symmetric. Then (u1, u2, w) is (d + 1, d, d + 1)-joined to Kl−1 in
Gl−1 − I(P ′). By induction, G− I(P ′) contains a subdivision of some
graph in C4(d−1, 3), with vertices u1, u2, w corresponding to a1, a2, a3,
respectively. Adding the paths in P ′ to it, gives a subdivision of a
graph in C3(d).
Case 4. Consider the configuration C4.
Case 4.1 Suppose d = 0. The only graph in C4(0, t) has t ≥ 3
terminals a1, . . . , at with edges a1ai, for 2 ≤ i ≤ t. The weight of a1
is t− 1 and that of ai is i − 1 for 2 ≤ i ≤ t. In this case, we need to
show that there exist t−1 paths in G that form a u1–{u2, . . . , ut} fan.

Suppose u1 ∈ U ′. Let i be the smallest index greater than 1 such
that ui ∈ U ′. The union of the u1–w and ui–w paths in P ′ is a u1–ui
path P in Gl−1−V (Kl−1). If t > 3, then (u1, u2, . . . , ui−1, ui+1, . . . , ut)
is (t− 2, 1, . . . , i− 2, i− 1, . . . , t− 2)-joined to Kl−1 in Gl−1 − (I(P ′)∪
{w}). By induction, G−(I(P ′)∪{w}) contains t−2 internally disjoint
paths that form a u1–{u2, . . . , ui−1, ui+1, . . . , ut} fan. Adding the path
P to this gives the required set of t− 1 paths. If t = 3, then (u1, u5−i)
is (1, 1)-joined to Kl−1 in Gl−1−(I(P ′)∪{w}). Thus G−(I(P ′)∪{w})
contains a u1–u5−i path. Adding the path P to this gives the required
paths that form a u1–{u2, u3} fan.
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Suppose u1 6∈ U ′. Again, let i be the smallest index such that ui ∈
U ′. Then (u1, . . . , ui−1, ui+1, . . . , ut, w) is (t− 1, 1, 2, . . . , t− 2, t− 1)-
joined to Kl−1 in Gl−1− I(P ′). By induction, G− I(P ′) contains t−1
internally disjoint paths that form a u1–{u1, . . . , ui−1, ui+1, . . . , ut, w}
fan. The union of the u1–w path in this set with the ui–w path in P ′

is a u1–ui path in G that is internally disjoint from the other paths in
the set. Replacing the u1–w path in the fan by this gives t− 1 paths
that form a u1–{u2, . . . , ut} fan.
Case 4.2 Suppose d > 0. If |P ′| ≥ 3, then (u1, . . . , ut) is (d + t −
2, d, . . . , d+t−2)-joined to Kl−1 in Gl−1−(I(P ′)∪{w}). By induction,
G− (I(P ′)∪{w}) contains a subdivision of some graph in C4(d− 1, t)
with vertex ui corresponding to ai, for 1 ≤ i ≤ t. Adding the vertex
w and any 3 paths in P ′, we get a subdivision of graph in C4(d, t) that
is contained in G.

Suppose |P ′| = 2 and u1 ∈ U ′. Let ui, i > 1 be the other vertex
in U ′. Then the union of the two paths in P ′ is a u1–ui path P in
Gl−1 − V (Kl−1). If t = 3, then (u1, u5−i, ui) is (d+ 1, d + 1, d)-joined
to Kl−1 in Gl−1 − I(P ). By induction, G − I(P ) contains a subdivi-
sion of some graph in C3(d) with vertices u1, u5−i, ui corresponding to
a1, a2, a3 , respectively. Adding the u1–ui path P to this gives a subdi-
vision of a graph in C4(d, 3). If t > 3, then (u1, . . . , ui−1, ui+1, . . . , ut)
is (d + t − 2, d + 1, . . . , d + i − 2, d + i − 1, . . . , d + t − 2)-joined to
Kl−1 in Gl−1 − I(P ). By induction, G − I(P ) contains a subdivision
of some graph in C4(d, t − 1) with vertices u1, . . . , ui−1, ui+1, . . . , ut
corresponding to a1, . . . , at−1, respectively. Adding the path P to this
gives a subdivision of a graph in C4(d, t).

Finally, suppose |P ′| = 2 and u1 6∈ U ′. Then (u1, u2, . . . , ut, w)
is (d + t − 1, d, . . . , d + t − 2, d + t − 1)-joined to Kl−1 in Gl−1 −
I(P ′). By induction, G−I(P ′) contains a subdivision of some graph in
C4(d−1, t+1), with vertices u1, . . . , ut, w corresponding to a1, . . . , at+1,
respectively. Adding the paths in P ′ to this gives a subdivision of a
graph in C4(d, t).

This completes all cases and we conclude that all the 4 configura-
tions are unavoidable. The theorem then follows from Lemma 5 and
the fact that the configuration C1(d − 1) is unavoidable. Note that
for any graph in C1(d − 1), adding an edge between the two terminal
vertices a1, a2 gives a maximal 3-degenerate graph of order d+ 1. �
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5 Planar Maximal 3-degenerate Graphs

Since there exist non-planar 3-degenerate graphs of order 6, not every
maximal 3-degenerate graph is good. However, we do not know of any
planar graph that is not good. This suggests the following problem.

Conjecture 1 Every planar maximal 3-degenerate graph is good.

A specific family of planar maximal 3-degenerate graphs is P 3
n with

vertices v1, . . . , vn and vi adjacent to vj iff 1 ≤ |j − i| ≤ 3. We verify
Conjecture 1 for two graphs P 3

6 and P 3
7 . Note that P 3

4 is K4, P
3
5 is

K−
5 and P 3

6 is the only planar maximal 3-degenerate graph of order 6.

Theorem 2 Every graph of minimum degree at least 5 contains a

subdivision of P 3
6 .

Proof: The proof is again based on the same technique, using more
restricted configurations than those used in Theorem 1. Consider the
following set of configurations.

1. C5 contains a subset of the graphs in the configuration C1(4).
The graphs have 6 vertices {a1, a2, b1, b2, b3, b4}, where a1, a2 are
terminal vertices of weight 4. The edge sets of the 3 graphs are

(a) {a1b1, a2b1, a1b2, a2b2, b1b2, a1b3, a2b3, b2b3, a1b4, b2b4, b3b4}.

(b) {a1b1, a2b1, a1b2, a2b2, b1b2, a1b3, b1b3, b2b3, b1b4, b2b4, b3b4}.

(c) {a1b1, a2b1, a1b2, a2b2, b1b2, a2b3, b1b3, b2b3, a2b4, b2b4, b3b4}.

2. C6 contains a subset of the graphs in the configuration C2(3).
The graphs have 6 vertices {a1, a2, a3, b1, b2, b3}, where a1, a2, a3
are terminal vertices of weight 3. The edge sets of the 3 graphs
are

(a) {a1b1, a2b1, a3b1, a1b2, a2b2, b1b2, a1b3, b1b3, b2b3}.

(b) {a1b1, a2b1, a3b1, a1b2, a3b2, b1b2, a3b3, b1b3, b2b3}.

(c) {a1b1, a2b1, a3b1, a2b2, a3b2, b1b2, a2b3, b1b3, b2b3}.

3. C7 contains only one graph from the configuration C2(2). This
graph has 5 vertices {a1, a2, a3, b1, b2}, where a1, a2, a3 are ter-
minal vertices of weight 2. The edges in the graph are {a1b1,
a2b1, a3b1, a1b2, a2b2, b1b2}.

4. C8 contains only one graph from the configuration C3(2). This
graph has 5 vertices {a1, a2, a3, b1, b2}, where a1, a2, a3 are ter-
minal vertices, a1, a2 have weight 3 and a3 has weight 2. The
edge set of the graph is {a1a2, a1b1, a2b1, a3b1, a1b2, a2b2, b1b2}.
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5. C9 contains two graphs with 5 vertices {a1, a2, a3, a4, b1}, where
a1, a2, a3, a4 are terminals, a1, a2 have weight 1 and a3, a4 have
weight 2. The edge sets of the two graphs are

(a) {a1b1, a2b1, a3b1, a4b1}.

(b) {a1b1, a2b1, a3a4, a3b1}.

We show that C5, C6, C7, C8 and C9 are unavoidable.
Case 1. Consider the configuration C5. The only case to be considered
here is if |P ′| = 2. Lemma 4 implies that (u1, u2, w) is (3, 3, 3)-joined
to Kl−1 in Gl−1 − I(P ′). By induction, G− I(P ′) contains a subdivi-
sion of one of the graphs (a), (b) or (c) in C6, with vertices u1, u2, w

corresponding to a1, a2, a3, respectively. Adding the paths in P ′ to
this gives a subdivision of the corresponding graph (a), (b) or (c) in
C5 with u1, u2 corresponding to a1, a2 and w corresponding to b1.
Case 2. Consider the configuration C6. If |P ′| = 3, then (u1, w, u2)
is (2, 2, 2)-joined to Kl−1 in Gl−1 − I(P ′). By induction, G − I(P ′)
contains a subdivision of the graph in C7, with vertices u1, w, u2 cor-
responding to a1, a2, a3, respectively. Adding the paths in P ′ to this
gives a subdivision of the graph (a) in C6.

Suppose U ′ = {u1, u2}. The other cases can be argued symmetri-
cally. Then (u3, w, u1) is (3, 3, 2)-joined to Kl−1 in Gl−1 − I(P ′). By
induction, G − I(P ′) contains a subdivision of the graph in C8, with
vertices u3, w, u1 corresponding to a1, a2, a3, respectively. Adding the
paths in P ′ to this gives a subdivision of the graph (b) in C6.
Case 3. Consider the configuration C7. If |P

′| = 3, then (u1, u2, w) is
(1, 1, 1)-joined to Kl−1 in Gl−1 − I(P ′). Since the configuration C2(1)
is unavoidable, G − I(P ′) contains a subdivision of K3,1 in which
the vertices u1, u2, w correspond to the vertices in the part of size 3.
Adding the paths in P ′ to this, gives a subdivision of the graph in C7.

Suppose U ′ = {u1, u2}. Then (u1, u2, w, u3) is (1, 1, 2, 2)-joined to
Kl−1 in Gl−1 − I(P ′) and G − I(P ′) contains a subdivision of one
of the two graphs in C9, with vertices u1, u2, w, u3 corresponding to
a1, a2, a3, a4, respectively. In either case, adding the paths in P ′ to
this gives a subdivision of the graph in C7.

Suppose U ′ = {u2, u3}. Then (u1, w, u2) is (2, 2, 1)-joined to Kl−1

in Gl−1 − I(P ′) and G− I(P ′) contains a subdivision of the graph in
C3(1), with vertices u1, w, u2 corresponding to a1, a2, a3, respectively.
Adding the paths in P ′ to this gives a subdivision of the graph in C7.
The case when U ′ = {u1, u3} can be argued symmetrically.
Case 4. Consider the configuration C8. If |P ′| = 3 then (u1, u2, w)
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is (2, 2, 1)-joined to Kl−1 in Gl−1 − I(P ′). By induction, G − I(P ′)
contains a subdivision of the graph in C3(1), with vertices u1, u2, w

corresponding to a1, a2, a3, respectively. Together with the paths in
P ′, this gives a subdivision of the graph in C8.

Suppose U ′ = {u1, u2}. The union of the two paths in P ′ is a
u1–u2 path P in Gl−1 −V (Kl−1) that contains w. Since (u1, u2, u3) is
(2, 2, 2)-joined to Kl−1 in Gl−1−I(P ), G−I(P ) contains a subdivision
of the graph in C7, with vertices u1, u2, u3 corresponding to a1, a2, a3,
respectively. Adding the path P to this gives a subdivision of the
graph in C8.

Suppose U ′ = {u2, u3}. Then (u1, u2, w) is (3, 2, 3)-joined to Kl−1

in Gl−1− I(P ′). By induction, G− I(P ′) contains a subdivision of the
graph in C4(1, 3), with vertices u1, u2, w corresponding to a1, a2, a3,
respectively. Adding the paths in P ′ to this gives a subdivision of the
graph in C8. The case when U ′ = {u1, u3} is similar.
Case 5. Consider the configuration C9. If |P ′| = 4, then Gl−1 −
V (Kl−1) contains a subdivision of the graph (a) in C9, with vertices
u1, u2, u3, u4, w corresponding to a1, a2, a3, a4, b1, respectively.

If |P ′| = 3, then (ui, w) is (1, 1)-joined to Kl−1 in Gl−1 − I(P ′),
where ui 6∈ U ′. Then G− I(P ′) contains a ui–w path, which together
with the paths in P ′ gives a subdivision of the graph (a) in C9.

Suppose |P ′| = 2 and U ′ 6= {u3, u4}. Then (w, ui, uj) is (2, 1, 2)-
joined to Kl−1 in Gl−1 − I(P ′), where ui, uj 6∈ U ′ and 1 ≤ i < j ≤ 4.
By induction, G−I(P ′) contains a subdivision of the graph in C4(0, 3)
with vertices w, ui, uj corresponding to a1, a2, a3, respectively. Adding
the paths in P ′ gives a subdivision of the graph (a) in C9.

The only other possibility is that U ′ = {u3, u4}. The union of the
2 paths in P ′ is a u3–u4 path P in Gl−1 − V (Kl−1). Since (u1, u2, u3)
is (1, 1, 1)-joined to Kl−1 in Gl−1 − I(P ), G− I(P ) contains a subdi-
vision of the graph in C2(1), with vertices u1, u2, u3 corresponding to
a1, a2, a3, respectively. Adding the path P to this gives a subdivision
of the graph (b) in C9.

This completes all cases and shows that the configurations C5, C6,
C7, C8 and C9 are unavoidable. Theorem 2 then follows from Lemma 5,
since adding the edge a1a2 to any graph in C5 gives the graph P 3

6 . �

We next consider planar maximal 3-degenerate graphs of order 7.
There are 3 different such graphs, but we consider only the graph
P 3
7 . While it is possible to use the same technique, the number of

configurations required appears to be large. We can reduce the number
of configurations required by starting with an initial graph other than
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an edge.
Let C be a configuration with terminal vertices a1, . . . , at of weights

n1, . . ., nt, respectively. We say a pair (G,K) contains the configura-
tion C if G−V (K) contains a subdivision T (H) of some graph H ∈ C,
such that vertices u1, . . . , ut correspond to a1, . . . , at, respectively, and
(u1, . . . , ut) is (n1, . . . , nt)-joined to K in G− V (T (H)) \ {u1, . . . , ut}.

Consider the following set of configurations.

1. C10(d) for d ≥ 1 is the configuration containing only the graph
K2 with 2 terminal vertices of weight d.

2. C11(d) for d ≥ 1 is the configuration containing only the graph
K3 with 3 terminal vertices of weight d.

3. C12(d) for d ≥ 1 is the configuration containing only the graph
K−

4 , obtained by deleting an edge from K4. There are 3 terminal
vertices a1, a2, a3 with a1, a3 of weight d+ 1 and a2 of weight d.
The missing edge is a1a3.

4. C13(d) for d ≥ 1 is the configuration containing only the graph
K4 with 3 terminal vertices a1, a2, a3 of weight d.

Lemma 6 Let G be a graph of minimum degree at least d ≥ 4. Then

there exists a pair (G′,K ′) such that (G, ∅) → (G′,K ′) and (G′,K ′)
contains the configuration C13(d− 3).

Proof: Let (G, ∅) = (G0,K0), (G1,K1), . . . , (Gl,Kl) be a maximal
sequence of pairs such that (Gi+1,Ki+1) is obtained from (Gi,Ki) by
adding or deleting a vertex, for 0 ≤ i < l. Let i be the smallest index
such that (Gi,Ki) contains the configuration C10(d − 1). Lemma 5
implies there exists such an index i. Since d ≥ 4, we have i > 0.
Then (Gi,Ki) must be obtained from (Gi−1,Ki−1) by adding a vertex
w, and U ′ = {u1, u2}. This implies (Gi−1,Ki−1) contains the config-
uration C11(d − 2) with vertices u1, u2, w corresponding to a1, a2, a3,
respectively.

Let j be the smallest index such that (Gj ,Kj) contains C11(d− 2).
Since d ≥ 4, we have j > 0. Again, (Gj ,Kj) must be obtained from
(Gj−1,Kj−1) by adding a vertex w. If |P ′| = 3, then (Gj−1,Kj−1) con-
tains C13(d− 3), with vertices u1, u2, u3 corresponding to the vertices
a1, a2, a3, respectively. Then (Gj−1,Kj−1) is the required pair.

Suppose |P ′| = 2, and without loss of generality, U ′ = {u2, u3}.
Then (Gj−1,Kj−1) contains C12(d − 3) with vertices u1, u2, w corre-
sponding to a1, a2, a3, respectively.
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Letm be the smallest index such that (Gm,Km) contains C12(d−3).
Since d ≥ 4, we have m > 0. Again, (Gm,Km) must be obtained from
(Gm−1,Km−1) by adding a vertex w. If |P ′| = 3, then (Gm−1,Km−1)
contains the configuration C13(d−3) with vertices u1, u3, w correspond-
ing to a1, a2, a3, respectively. If U ′ = {u1, u3} then (Gm−1,Km−1)
contains C13(d− 3) with vertices u1, u2, u3 corresponding to a1, a2, a3,
respectively. If U ′ = {u2, u3} then (Gm−1,Km−1) contains C12(d −
3), with vertices u1, u3, w corresponding to a1, a2, a3, respectively.
This contradicts the choice of m. Similarly, if U ′ = {u1, u2}, then
(Gm−1,Km−1) contains C12(d− 3), with vertices u3, u1, w correspond-
ing to a1, a2, a3, respectively. Again, this contradicts the choice of m.
Therefore (Gm−1,Km−1) must contain C13(d− 3). �

Theorem 3 Every graph of minimum degree at least 6 contains a

subdivision of P 3
7 .

Proof: Let G be a graph of minimum degree at least 6. Lemma 6
implies there exists a pair (G′,K ′) such that (G, ∅) → (G′,K ′) and
(G′,K ′) contains the configuration C13(3). Thus G

′ − V (K ′) contains
a subdivision H of K4, with vertices u1, u2, u3 corresponding to the
vertices a1, a2, a3, respectively, such that (u1, u2, u3) is (3, 3, 3)-joined
toK ′ in G′−(V (H)\{u1, u2, u3}). Since C6 is unavoidable, G−(V (H)\
{u1, u2, u3}) contains a subdivision of one of the graphs (a), (b), or (c)
in C6, with vertices u1, u2, u3 corresponding to a1, a2, a3, respectively.
In all cases, the union of this graph with H gives a subdivision of P 3

7

in G. �

6 Remarks

We have verified Conjecture 1 for the other two planar maximal 3-
degenerate graphs of order 7. Although the method is the same,
the number of configurations required is larger, and we omit the de-
tails. A planar maximal 3-degenerate graph is also a maximal planar
graph. An interesting question is whether all maximal planar graphs
are good? The smallest case to consider is the octahedron, obtained
by deleting a perfect matching from K6. While we do not know a
graph of minimum degree 5 that does not contain a subdivision of
this, the technique used in this paper cannot be applied since the
required configuration is avoidable. It would be interesting to see if
there is any characterization of unavoidable configurations. Perhaps
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the first question to answer would be to find the maximum number of
edges in a good graph of order d + 1. For 2 ≤ d ≤ 5, this is exactly
3d − 3. Does this hold in general? An even simpler question would
be to find the largest number m such that every graph of minimum
degree d contains a subdivision of some graph of order d+ 1 and size
m. Theorem 1 shows that m ≥ 3d − 3 and the bound is tight for
2 ≤ d ≤ 5. Does this hold for all d? Finally, it would be interesting
to consider non-separating versions of these results. Kriesell [3] gen-
eralized Dirac’s theorem to show that every connected graph G with
minimum degree at least 4 contains a subdivision H of K4 such that
G− V (H) is connected. Can the results in this paper be extended in
a similar way, by increasing the minimum degree bound by one?

References

[1] B. Bollobás and A. G. Thomason, Proof of a conjecture of Mader,
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