
Technical Writing:  
The Anatomy of a Research Paper

Preethi Jyothi
Department of CSE, IIT Bombay

ACM India Grad Cohort 2018 
July 6, ‘18

Disclaimer

• A talk about technical writing can never be complete

• There are a large number of excellent online resources on this topic

✓ [Knuth89] “Mathematical Writing”, Donald E. Knuth, Tracy Larrabee and Paul M. Roberts,
1989

✓ [Gopen90] “The Science of Scientific Writing”, George Gopen and Judith Swan,  
American Scientist, 1990

• [Lisberger11] “From Science to Citation: How to Publish a Successful Scientific Paper”,
Stephen Lisberger, 2011

✓ [Mensh17] “Ten Simple Rules for Structuring Papers”, Brett Mensh and Konrad Kording,
PLOS Computational Biology, 2017

✓ [Freeman18], “How to Write a Good Research Paper”, Bill Freeman, Good Citizen of
CVPR, 2018 (https://www.cc.gatech.edu/~parikh/citizenofcvpr/)

This talk borrows content from the references marked with ✓

https://www.cc.gatech.edu/~parikh/citizenofcvpr/

Easy to lose sight of

The fundamental purpose of scientific discourse is not the
mere presentation of information and thought, but rather
its actual communication. It does not matter how pleased
an author might be to have converted all the right data into
sentences and paragraphs; it matters only whether a large
majority of the reading audience accurately perceives what
the author had in mind.

  
 George Gopen, Judith Swan

For a reviewer of your paper

it’s less like this… and more like this!
Image from: http://phdcomics.com/comics.php?f=980

Skeleton of a paper [Mensh17]

• Context: State the problem you are tackling. Tell the
reader why he/she should care about it.

• Content: What is your solution to the problem? Why is it
different from previously proposed solutions?

• Conclusion: Discuss your approach. Analyse its benefits
and weaknesses.

• Title

• Abstract

• Introduction

• Related Work

• Main Ideas/Content

• Experiments/Results

• Discussion/Future Work/Conclusions

• Acknowledgments

• References

• Appendices

Structure of a typical paper
Varies depending on the subfield of computer science

Pick an informative and non-generic title.  
Should reflect the main ideas in the paper.

Include prominent keywords that will help in better indexing.

• Title

• Abstract

• Introduction

• Related Work

• Main Ideas/Content

• Experiments/Results

• Discussion/Future Work/Conclusions

• Acknowledgments

• References

• Appendices

Structure of a typical paper
Varies depending on the subfield of computer science

Convey the entire message of the paper in the abstract. 
Maintain the “context, content, conclusion” structure here.

• Title

• Abstract

• Introduction

• Related Work

• Main Ideas/Content

• Experiments/Results

• Discussion/Future Work/Conclusions

• Acknowledgments

• References

• Appendices

Structure of a typical paper
Varies depending on the subfield of computer science

Can sell or sink your paper. Spend considerable time on this section! 
Explain gaps in the literature and how your paper fills the gap.

Keep the reader interested and clearly summarise your main results.

• Title

• Abstract

• Introduction

• Related Work

• Main Ideas/Content

• Experiments/Results

• Discussion/Future Work/Conclusions

• Acknowledgments

• References

• Appendices

Structure of a typical paper
Varies depending on the subfield of computer science

Important to give proper credit. Be generous.
Relate your ideas well to what was previously proposed.

• Title

• Abstract

• Introduction

• Related Work

• Main Ideas/Content

• Experiments/Results

• Discussion/Future Work/Conclusions

• Acknowledgments

• References

• Appendices

Structure of a typical paper
Varies depending on the subfield of computer science

Organize your main content well. Typically multiple sections.
Ensure logical flow across and within sections.

Figures are a good idea.

• Title

• Abstract

• Introduction

• Related Work

• Main Ideas/Content

• Experiments/Results

• Discussion/Future Work/Conclusions

• Acknowledgments

• References

• Appendices

Structure of a typical paper
Varies depending on the subfield of computer science

Results to convince the reader that the central claim is justified.
Figures are very important. Also, captions of the figures!

• Title

• Abstract

• Introduction

• Related Work

• Main Ideas/Content

• Experiments/Results

• Discussion/Future Work/Conclusions

• Acknowledgments

• References

• Appendices

Structure of a typical paper
Varies depending on the subfield of computer science

Evaluate strengths/weaknesses of your approach.
Preempt reviewers’ comments about shortcomings.

Example paper from [Freeman18]
Removing Camera Shake from a Single Photograph

Rob Fergus1 Barun Singh1 Aaron Hertzmann2 Sam T. Roweis2 William T. Freeman1

1MIT CSAIL 2University of Toronto

Figure 1: Left: An image spoiled by camera shake. Middle: result from Photoshop “unsharp mask”. Right: result from our algorithm.

Abstract

Camera shake during exposure leads to objectionable image blur
and ruins many photographs. Conventional blind deconvolution
methods typically assume frequency-domain constraints on images,
or overly simplified parametric forms for the motion path during
camera shake. Real camera motions can follow convoluted paths,
and a spatial domain prior can better maintain visually salient im-
age characteristics. We introduce a method to remove the effects of
camera shake from seriously blurred images. The method assumes
a uniform camera blur over the image and negligible in-plane cam-
era rotation. In order to estimate the blur from the camera shake,
the user must specify an image region without saturation effects.
We show results for a variety of digital photographs taken from
personal photo collections.

CR Categories: I.4.3 [Image Processing and Computer Vision]:
Enhancement, G.3 [Artificial Intelligence]: Learning

Keywords: camera shake, blind image deconvolution, variational
learning, natural image statistics

1 Introduction

Camera shake, in which an unsteady camera causes blurry pho-
tographs, is a chronic problem for photographers. The explosion of
consumer digital photography has made camera shake very promi-
nent, particularly with the popularity of small, high-resolution cam-
eras whose light weight can make them difficult to hold sufficiently
steady. Many photographs capture ephemeral moments that cannot
be recaptured under controlled conditions or repeated with differ-
ent camera settings — if camera shake occurs in the image for any
reason, then that moment is “lost”.

Shake can be mitigated by using faster exposures, but that can lead
to other problems such as sensor noise or a smaller-than-desired

depth-of-field. A tripod, or other specialized hardware, can elim-
inate camera shake, but these are bulky and most consumer pho-
tographs are taken with a conventional, handheld camera. Users
may avoid the use of flash due to the unnatural tonescales that re-
sult. In our experience, many of the otherwise favorite photographs
of amateur photographers are spoiled by camera shake. A method
to remove that motion blur from a captured photograph would be
an important asset for digital photography.

Camera shake can be modeled as a blur kernel, describing the cam-
era motion during exposure, convolved with the image intensities.
Removing the unknown camera shake is thus a form of blind image
deconvolution, which is a problem with a long history in the im-
age and signal processing literature. In the most basic formulation,
the problem is underconstrained: there are simply more unknowns
(the original image and the blur kernel) than measurements (the
observed image). Hence, all practical solutions must make strong
prior assumptions about the blur kernel, about the image to be re-
covered, or both. Traditional signal processing formulations of the
problem usually make only very general assumptions in the form
of frequency-domain power laws; the resulting algorithms can typi-
cally handle only very small blurs and not the complicated blur ker-
nels often associated with camera shake. Furthermore, algorithms
exploiting image priors specified in the frequency domain may not
preserve important spatial-domain structures such as edges.

This paper introduces a new technique for removing the effects of
unknown camera shake from an image. This advance results from
two key improvements over previous work. First, we exploit recent
research in natural image statistics, which shows that photographs
of natural scenes typically obey very specific distributions of im-
age gradients. Second, we build on work by Miskin and MacKay
[2000], adopting a Bayesian approach that takes into account uncer-
tainties in the unknowns, allowing us to find the blur kernel implied
by a distribution of probable images. Given this kernel, the image
is then reconstructed using a standard deconvolution algorithm, al-
though we believe there is room for substantial improvement in this
reconstruction phase.

We assume that all image blur can be described as a single convolu-
tion; i.e., there is no significant parallax, any image-plane rotation
of the camera is small, and no parts of the scene are moving rel-
ative to one another during the exposure. Our approach currently
requires a small amount of user input.

Our reconstructions do contain artifacts, particularly when the

Removing Camera Shake from a Single Photograph 
Fergus et al. 2006

above assumptions are violated; however, they may be acceptable to
consumers in some cases, and a professional designer could touch-
up the results. In contrast, the original images are typically unus-
able, beyond touching-up — in effect our method can help “rescue”
shots that would have otherwise been completely lost.

2 Related Work

The task of deblurring an image is image deconvolution; if the blur
kernel is not known, then the problem is said to be “blind”. For
a survey on the extensive literature in this area, see [Kundur and
Hatzinakos 1996]. Existing blind deconvolution methods typically
assume that the blur kernel has a simple parametric form, such as
a Gaussian or low-frequency Fourier components. However, as il-
lustrated by our examples, the blur kernels induced during camera
shake do not have simple forms, and often contain very sharp edges.
Similar low-frequency assumptions are typically made for the input
image, e.g., applying a quadratic regularization. Such assumptions
can prevent high frequencies (such as edges) from appearing in the
reconstruction. Caron et al. [2002] assume a power-law distribution
on the image frequencies; power-laws are a simple form of natural
image statistics that do not preserve local structure. Some methods
[Jalobeanu et al. 2002; Neelamani et al. 2004] combine power-laws
with wavelet domain constraints but do not work for the complex
blur kernels in our examples.

Deconvolution methods have been developed for astronomical im-
ages [Gull 1998; Richardson 1972; Tsumuraya et al. 1994; Zarowin
1994], which have statistics quite different from the natural scenes
we address in this paper. Performing blind deconvolution in this do-
main is usually straightforward, as the blurry image of an isolated
star reveals the point-spread-function.

Another approach is to assume that there are multiple images avail-
able of the same scene [Bascle et al. 1996; Rav-Acha and Peleg
2005]. Hardware approaches include: optically stabilized lenses
[Canon Inc. 2006], specially designed CMOS sensors [Liu and
Gamal 2001], and hybrid imaging systems [Ben-Ezra and Nayar
2004]. Since we would like our method to work with existing cam-
eras and imagery and to work for as many situations as possible, we
do not assume that any such hardware or extra imagery is available.

Recent work in computer vision has shown the usefulness of heavy-
tailed natural image priors in a variety of applications, including
denoising [Roth and Black 2005], superresolution [Tappen et al.
2003], intrinsic images [Weiss 2001], video matting [Apostoloff
and Fitzgibbon 2005], inpainting [Levin et al. 2003], and separating
reflections [Levin and Weiss 2004]. Each of these methods is effec-
tively “non-blind”, in that the image formation process (e.g., the
blur kernel in superresolution) is assumed to be known in advance.

Miskin and MacKay [2000] perform blind deconvolution on line art
images using a prior on raw pixel intensities. Results are shown for
small amounts of synthesized image blur. We apply a similar varia-
tional scheme for natural images using image gradients in place of
intensities and augment the algorithm to achieve results for photo-
graphic images with significant blur.

3 Image model

Our algorithm takes as input a blurred input image B, which is as-
sumed to have been generated by convolution of a blur kernel K
with a latent image L plus noise:

B = K⊗L+N (1)

where ⊗ denotes discrete image convolution (with non-periodic
boundary conditions), and N denotes sensor noise at each pixel.
We assume that the pixel values of the image are linearly related to

0 50 100 150 200

0

Gradient

L
o

g
2
 p

ro
b

a
b

ili
ty

 d
e

n
si

ty

Heavy-tailed distribution on image gradients

Mixture of Gaussians fit
Empirical distribution

Figure 2: Left: A natural scene. Right: The distribution of gra-
dient magnitudes within the scene are shown in red. The y-axis
has a logarithmic scale to show the heavy tails of the distribution.
The mixture of Gaussians approximation used in our experiments
is shown in green.

the sensor irradiance. The latent image L represents the image we
would have captured if the camera had remained perfectly still; our
goal is to recover L from B without specific knowledge of K.

In order to estimate the latent image from such limited measure-
ments, it is essential to have some notion of which images are a-
priori more likely. Fortunately, recent research in natural image
statistics have shown that, although images of real-world scenes
vary greatly in their absolute color distributions, they obey heavy-
tailed distributions in their gradients [Field 1994]: the distribution
of gradients has most of its mass on small values but gives sig-
nificantly more probability to large values than a Gaussian distri-
bution. This corresponds to the intuition that images often con-
tain large sections of constant intensity or gentle intensity gradi-
ent interrupted by occasional large changes at edges or occlusion
boundaries. For example, Figure 2 shows a natural image and a
histogram of its gradient magnitudes. The distribution shows that
the image contains primarily small or zero gradients, but a few gra-
dients have large magnitudes. Recent image processing methods
based on heavy-tailed distributions give state-of-the-art results in
image denoising [Roth and Black 2005; Simoncelli 2005] and su-
perresolution [Tappen et al. 2003]. In contrast, methods based on
Gaussian prior distributions (including methods that use quadratic
regularizers) produce overly smooth images.

We represent the distribution over gradient magnitudes with a zero-
mean mixture-of-Gaussians model, as illustrated in Figure 2. This
representation was chosen because it can provide a good approxi-
mation to the empirical distribution, while allowing a tractable es-
timation procedure for our algorithm.

4 Algorithm

There are two main steps to our approach. First, the blur kernel
is estimated from the input image. The estimation process is per-
formed in a coarse-to-fine fashion in order to avoid local minima.
Second, using the estimated kernel, we apply a standard deconvo-
lution algorithm to estimate the latent (unblurred) image.

The user supplies four inputs to the algorithm: the blurred image
B, a rectangular patch within the blurred image, an upper bound
on the size of the blur kernel (in pixels), and an initial guess as to
orientation of the blur kernel (horizontal or vertical). Details of how
to specify these parameters are given in Section 4.1.2.

Additionally, we require input image B to have been converted to
a linear color space before processing. In our experiments, we ap-
plied inverse gamma-correction1 with γ = 2.2. In order to esti-
mate the expected blur kernel, we combine all the color channels
of the original image within the user specified patch to produce a
grayscale blurred patch P.

1Pixel value = (CCD sensor value)1/γ

4.1 Estimating the blur kernel

Given the grayscale blurred patch P, we estimate K and the la-
tent patch image Lp by finding the values with highest probabil-
ity, guided by a prior on the statistics of L. Since these statistics
are based on the image gradients rather than the intensities, we per-
form the optimization in the gradient domain, using ∇Lp and ∇P,
the gradients of Lp and P. Because convolution is a linear opera-
tion, the patch gradients ∇P should be equal to the convolution of
the latent gradients and the kernel: ∇P = ∇Lp ⊗K, plus noise. We
assume that this noise is Gaussian with variance σ 2.

As discussed in the previous section, the prior p(∇Lp) on the la-
tent image gradients is a mixture of C zero-mean Gaussians (with
variance vc and weight πc for the c-th Gaussian). We use a sparsity
prior p(K) for the kernel that encourages zero values in the kernel,
and requires all entries to be positive. Specifically, the prior on ker-
nel values is a mixture of D exponential distributions (with scale
factors λd and weights πd for the d-th component).

Given the measured image gradients ∇P, we can write the posterior
distribution over the unknowns with Bayes’ Rule:

p(K,∇Lp|∇P) ∝ p(∇P|K,∇Lp)p(∇Lp)p(K) (2)

= ∏
i
N(∇P(i)|(K⊗∇Lp(i)),σ2) (3)

∏
i

C

∑
c=1

πcN(∇Lp(i)|0,vc)∏
j

D

∑
d=1

πdE(K j|λd)

where i indexes over image pixels and j indexes over blur kernel
elements. N and E denote Gaussian and Exponential distributions
respectively. For tractability, we assume that the gradients in ∇P
are independent of each other, as are the elements in ∇Lp and K.

A straightforward approach to deconvolution is to solve for the
maximum a-posteriori (MAP) solution, which finds the kernel K
and latent image gradients ∇L that maximizes p(K,∇Lp|∇P). This
is equivalent to solving a regularized-least squares problem that at-
tempts to fit the data while also minimizing small gradients. We
tried this (using conjugate gradient search) but found that the algo-
rithm failed. One interpretation is that the MAP objective function
attempts to minimize all gradients (even large ones), whereas we
expect natural images to have some large gradients. Consequently,
the algorithm yields a two-tone image, since virtually all the gradi-
ents are zero. If we reduce the noise variance (thus increasing the
weight on the data-fitting term), then the algorithm yields a delta-
function for K, which exactly fits the blurred image, but without
any deblurring. Additionally, we find the MAP objective function
to be very susceptible to poor local minima.

Instead, our approach is to approximate the full posterior distri-
bution p(K,∇Lp|∇P), and then compute the kernel K with max-
imum marginal probability. This method selects a kernel that is
most likely with respect to the distribution of possible latent im-
ages, thus avoiding the overfitting that can occur when selecting a
single “best” estimate of the image.

In order to compute this approximation efficiently, we adopt a
variational Bayesian approach [Jordan et al. 1999] which com-
putes a distribution q(K,∇Lp) that approximates the posterior
p(K,∇Lp|∇P). In particular, our approach is based on Miskin and
MacKay’s algorithm [2000] for blind deconvolution of cartoon im-
ages. A factored representation is used: q(K,∇Lp) = q(K)q(∇Lp).
For the latent image gradients, this approximation is a Gaussian
density, while for the non-negative blur kernel elements, it is a rec-
tified Gaussian. The distributions for each latent gradient and blur
kernel element are represented by their mean and variance, stored
in an array.

Following Miskin and MacKay [2000], we also treat the noise vari-
ance σ 2 as an unknown during the estimation process, thus freeing
the user from tuning this parameter. This allows the noise variance
to vary during estimation: the data-fitting constraint is loose early
in the process, becoming tighter as better, low-noise solutions are
found. We place a prior on σ 2, in the form of a Gamma distribution
on the inverse variance, having hyper-parameters a,b: p(σ 2|a,b) =
Γ(σ−2|a,b). The variational posterior of σ 2 is q(σ−2), another
Gamma distribution.

The variational algorithm minimizes a cost function representing
the distance between the approximating distribution and the true
posterior, measured as: KL(q(K,∇Lp,σ−2)||p(K,∇Lp|∇P)). The
independence assumptions in the variational posterior allows the
cost function CKL to be factored:

<log
q(∇Lp)

p(∇Lp)
>q(∇Lp) + <log

q(K)

p(K)
>q(K) + <log

q(σ−2)

p(σ2)
>q(σ−2)

(4)
where <·>q(θ) denotes the expectation with respect to q(θ)2. For
brevity, the dependence on ∇P is omitted from this equation.

The cost function is then minimized as follows. The means of the
distributions q(K) and q(∇Lp) are set to the initial values of K and
∇Lp and the variance of the distributions set high, reflecting the
lack of certainty in the initial estimate. The parameters of the dis-
tributions are then updated alternately by coordinate descent; one
is updated by marginalizing out over the other whilst incorporat-
ing the model priors. Updates are performed by computing closed-
form optimal parameter updates, and performing line-search in the
direction of these updated values (see Appendix A for details). The
updates are repeated until the change in CKL becomes negligible.
The mean of the marginal distribution <K>q(K) is then taken as
the final value for K. Our implementation adapts the source code
provided online by Miskin and MacKay [2000a].

In the formulation outlined above, we have neglected the possibil-
ity of saturated pixels in the image, an awkward non-linearity which
violates our model. Since dealing with them explicitly is compli-
cated, we prefer to simply mask out saturated regions of the image
during the inference procedure, so that no use is made of them.

For the variational framework, C = D = 4 components were used in
the priors on K and ∇Lp. The parameters of the prior on the latent
image gradients πc,vc were estimated from a single street scene
image, shown in Figure 2, using EM. Since the image statistics vary
across scale, each scale level had its own set of prior parameters.
This prior was used for all experiments. The parameters for the
prior on the blur kernel elements were estimated from a small set of
low-noise kernels inferred from real images.

4.1.1 Multi-scale approach

The algorithm described in the previous section is subject to local
minima, particularly for large blur kernels. Hence, we perform es-
timation by varying image resolution in a coarse-to-fine manner. At
the coarsest level, K is a 3×3 kernel. To ensure a correct start to the
algorithm, we manually specify the initial 3× 3 blur kernel to one
of two simple patterns (see Section 4.1.2). The initial estimate for
the latent gradient image is then produced by running the inference
scheme, while holding K fixed.

We then work back up the pyramid running the inference at each
level; the converged values of K and ∇Lp being upsampled to act
as an initialization for inference at the next scale up. At the finest
scale, the inference converges to the full resolution kernel K.

2 For example, <σ−2>q(σ−2)=
∫

σ−2 σ−2Γ(σ−2|a,b) = b/a.

Figure 3: The multi-scale inference scheme operating on the foun-
tain image in Figure 1. 1st & 3rd rows: The estimated blur ker-
nel at each scale level. 2nd & 4th rows: Estimated image patch at
each scale. The intensity image was reconstructed from the gradi-
ents used in the inference using Poisson image reconstruction. The
Poisson reconstructions are shown for reference only; the final re-
construction is found using the Richardson-Lucy algorithm with the
final estimated blur kernel.

4.1.2 User supervision

Although it would seem more natural to run the multi-scale in-
ference scheme using the full gradient image ∇L, in practice we
found the algorithm performed better if a smaller patch, rich in
edge structure, was manually selected. The manual selection al-
lows the user to avoid large areas of saturation or uniformity, which
can be disruptive or uninformative to the algorithm. Examples of
user-selected patches are shown in Section 5. Additionally, the al-
gorithm runs much faster on a small patch than on the entire image.

An additional parameter is that of the maximum size of the blur
kernel. The size of the blur encountered in images varies widely,
from a few pixels up to hundreds. Small blurs are hard to resolve
if the algorithm is initialized with a very large kernel. Conversely,
large blurs will be cropped if too small a kernel is used. Hence, for
operation under all conditions, the approximate size of the kernel
is a required input from the user. By examining any blur artifact in
the image, the size of the kernel is easily deduced.

Finally, we also require the user to select between one of two ini-
tial estimates of the blur kernel: a horizontal line or a vertical line.
Although the algorithm can often be initialized in either state and
still produce the correct high resolution kernel, this ensures the al-
gorithm starts searching in the correct direction. The appropriate
initialization is easily determined by looking at any blur kernel ar-
tifact in the image.

4.2 Image Reconstruction

The multi-scale inference procedure outputs an estimate of the blur
kernel K, marginalized over all possible image reconstructions. To
recover the deblurred image given this estimate of the kernel, we
experimented with a variety of non-blind deconvolution methods,
including those of Geman [1992], Neelamani [2004] and van Cit-
tert [Zarowin 1994]. While many of these methods perform well in

synthetic test examples, our real images exhibit a range of non-
linearities not present in synthetic cases, such as non-Gaussian
noise, saturated pixels, residual non-linearities in tonescale and es-
timation errors in the kernel. Disappointingly, when run on our
images, most methods produced unacceptable levels of artifacts.

We also used our variational inference scheme on the gradients of
the whole image ∇B, while holding K fixed. The intensity image
was then formed via Poisson image reconstruction [Weiss 2001].
Aside from being slow, the inability to model the non-linearities
mentioned above resulted in reconstructions no better than other
approaches.

As L typically is large, speed considerations make simple methods
attractive. Consequently, we reconstruct the latent color image L
with the Richardson-Lucy (RL) algorithm [Richardson 1972; Lucy
1974]. While the RL performed comparably to the other methods
evaluated, it has the advantage of taking only a few minutes, even
on large images (other, more complex methods, took hours or days).
RL is a non-blind deconvolution algorithm that iteratively maxi-
mizes the likelihood function of a Poisson statistics image noise
model. One benefit of this over more direct methods is that it gives
only non-negative output values. We use Matlab’s implementation
of the algorithm to estimate L, given K, treating each color chan-
nel independently. We used 10 RL iterations, although for large
blur kernels, more may be needed. Before running RL, we clean
up K by applying a dynamic threshold, based on the maximum in-
tensity value within the kernel, which sets all elements below a cer-
tain value to zero, so reducing the kernel noise. The output of RL
was then gamma-corrected using γ = 2.2 and its intensity histogram
matched to that of B (using Matlab’s histeq function), resulting in
L. See pseudo-code in Appendix A for details.

5 Experiments

We performed an experiment to check that blurry images are mainly
due to camera translation as opposed to other motions, such as
in-plane rotation. To this end, we asked 8 people to photograph
a whiteboard3 which had small black dots placed in each corner
whilst using a shutter speed of 1 second. Figure 4 shows dots ex-
tracted from a random sampling of images taken by different peo-
ple. The dots in each corner reveal the blur kernel local to that
portion of the image. The blur patterns are very similar, showing
that our assumptions of spatially invariant blur with little in plane
rotation are valid.

We apply our algorithm to a number of real images with varying
degrees of blur and saturation. All the photos came from personal
photo collections, with the exception of the fountain and cafe im-
ages which were taken with a high-end DSLR using long exposures
(> 1/2 second). For each we show the blurry image, followed by
the output of our algorithm along with the estimated kernel.

The running time of the algorithm is dependent on the size of the
patch selected by the user. With the minimum practical size of
128× 128 it currently takes 10 minutes in our Matlab implemen-
tation. For a patch of N pixels, the run-time is O(N logN) owing
to our use of FFT’s to perform the convolution operations. Hence
larger patches will still run in a reasonable time. Compiled and
optimized versions of our algorithm could be expected to run con-
siderably faster.

Small blurs. Figures 5 and 6 show two real images degraded by
small blurs that are significantly sharpened by our algorithm. The

3Camera-to-whiteboard distance was ≈ 5m. Lens focal length was
50mm mounted on a 0.6x DSLR sensor.

Figure 4: Left: The whiteboard test scene with dots in each corner.
Right: Dots from the corners of images taken by different people.
Within each image, the dot trajectories are very similar suggesting
that image blur is well modeled as a spatially invariant convolution.

Figure 5: Top: A scene with a small blur. The patch selected by
the user is indicated by the gray rectangle. Bottom: Output of our
algorithm and the inferred blur kernel. Note the crisp text.

gray rectangles show the patch used to infer the blur kernel, chosen
to have many image details but few saturated pixels. The inferred
kernels are shown in the corner of the deblurred images.

Large blurs. Unlike existing blind deconvolution methods our
algorithm can handle large, complex blurs. Figures 7 and 9 show
our algorithm successfully inferring large blur kernels. Figure 1
shows an image with a complex tri-lobed blur, 30 pixels in size
(shown in Figure 10), being deblurred.

Figure 6: Top: A scene with complex motions. While the motion of
the camera is small, the child is both translating and, in the case of
the arm, rotating. Bottom: Output of our algorithm. The face and
shirt are sharp but the arm remains blurred, its motion not modeled
by our algorithm.

As demonstrated in Figure 8, the true blur kernel is occasionally
revealed in the image by the trajectory of a point light source trans-
formed by the blur. This gives us an opportunity to compare the
inferred blur kernel with the true one. Figure 10 shows four such
image structures, along with the inferred kernels from the respec-
tive images.

We also compared our algorithm against existing blind deconvo-
lution algorithms, running Matlab’s deconvblind routine, which
provides implementations of the methods of Biggs and Andrews
[1997] and Jansson [1997]. Based on the iterative Richardson-Lucy
scheme, these methods also estimate the blur kernel; alternating be-
tween holding the blur constant and updating the image and vice-
versa. The results of this algorithm, applied to the fountain and cafe
scenes are shown in Figure 11 and are poor compared to the output
of our algorithm, shown in Figures 1 and 13.

Images with significant saturation. Figures 12 and 13 con-
tain large areas where the true intensities are not observed, owing
to the dynamic range limitations of the camera. The user-selected
patch used for kernel analysis must avoid the large saturated re-
gions. While the deblurred image does have some artifacts near
saturated regions, the unsaturated regions can still be extracted.

Removing Camera Shake from a Single Photograph 
Fergus et al. 2006

Figure 7: Top: A scene with a large blur. Bottom: Output of our
algorithm. See Figure 8 for a closeup view.

Figure 8: Top row: Closeup of the man’s eye in Figure 7. The origi-
nal image (on left) shows a specularity distorted by the camera mo-
tion. In the deblurred image (on right) the specularity is condensed
to a point. The color noise artifacts due to low light exposure can
be removed by median filtering the chrominance channels. Bottom
row: Closeup of child from another image of the family (different
from Figure 7). In the deblurred image, the text on his jersey is now
legible.

Figure 9: Top: A blurry photograph of three brothers. Bottom: Out-
put of our algorithm. The fine detail of the wallpaper is now visible.

6 Discussion

We have introduced a method for removing camera shake effects
from photographs. This problem appears highly underconstrained
at first. However, we have shown that by applying natural im-
age priors and advanced statistical techniques, plausible results can
nonetheless be obtained. Such an approach may prove useful in
other computational photography problems.

Most of our effort has focused on kernel estimation, and, visually,
the kernels we estimate seem to match the image camera motion.
The results of our method often contain artifacts; most prominently,
ringing artifacts occur near saturated regions and regions of signif-
icant object motion. We suspect that these artifacts can be blamed
primarily on the non-blind deconvolution step. We believe that
there is significant room for improvement by applying modern sta-
tistical methods to the non-blind deconvolution problem.

There are a number of common photographic effects that we do not
explicitly model, including saturation, object motion, and compres-
sion artifacts. Incorporating these factors into our model should
improve robustness. Currently we assume images to have a linear
tonescale, once the gamma correction has been removed. How-
ever, cameras typically have a slight sigmoidal shape to their tone
response curve, so as to expand their dynamic range. Ideally, this
non-linearity would be removed, perhaps by estimating it during
inference, or by measuring the curve from a series of bracketed

Figure 10: Top row: Inferred blur kernels from four real images (the
cafe, fountain and family scenes plus another image not shown).
Bottom row: Patches extracted from these scenes where the true
kernel has been revealed. In the cafe image, two lights give a dual
image of the kernel. In the fountain scene, a white square is trans-
formed by the blur kernel. The final two images have specularities
transformed by the camera motion, revealing the true kernel.

Figure 11: Baseline experiments, using Matlab’s blind deconvolu-
tion algorithm deconvblind on the fountain image (top) and cafe
image (bottom). The algorithm was initialized with a Gaussian blur
kernel, similar in size to the blur artifacts.

exposures. Additionally, our method could be extended to make
use of more advanced natural image statistics, such as correlations
between color channels, or the fact that camera motion traces a con-
tinuous path (and thus arbitrary kernels are not possible). There is
also room to improve the noise model in the algorithm; our current
approach is based on Gaussian noise in image gradients, which is
not a very good model for image sensor noise.

Although our method requires some manual intervention, we be-
lieve these steps could be eliminated by employing more exhaustive
search procedures, or heuristics to guess the relevant parameters.

Figure 12: Top: A blurred scene with significant saturation. The
long thin region selected by the user has limited saturation. Bottom:
output of our algorithm. Note the double exposure type blur kernel.

Figure 13: Top: A blurred scene with heavy saturation, taken with
a 1 second exposure. Bottom: output of our algorithm.

Removing Camera Shake from a Single Photograph 
Fergus et al. 2006

Acknowledgements
We are indebted to Antonio Torralba, Don Geman and Fredo Du-
rand for their insights and suggestions. We are most grateful to
James Miskin and David MacKay, for making their code available
online. We would like the thank the following people for supply-
ing us with blurred images for the paper: Omar Khan, Reinhard
Klette, Michael Lewicki, Pietro Perona and Elizabeth Van Ruiten-
beek. Funding for the project was provided by NSERC, NGA
NEGI-1582-04-0004 and the Shell Group.

References

APOSTOLOFF, N., AND FITZGIBBON, A. 2005. Bayesian video matting using learnt
image priors. In Conf. on Computer Vision and Pattern Recognition, 407–414.

BASCLE, B., BLAKE, A., AND ZISSERMAN, A. 1996. Motion Deblurring and Super-
resolution from an Image Sequence. In ECCV (2), 573–582.

BEN-EZRA, M., AND NAYAR, S. K. 2004. Motion-Based Motion Deblurring. IEEE
Trans. on Pattern Analysis and Machine Intelligence 26, 6, 689–698.

BIGGS, D., AND ANDREWS, M. 1997. Acceleration of iterative image restoration
algorithms. Applied Optics 36, 8, 1766–1775.

CANON INC., 2006. What is optical image stabilizer? http://www.canon.com/

bctv/faq/optis.html.
CARON, J., NAMAZI, N., AND ROLLINS, C. 2002. Noniterative blind data restoration

by use of an extracted filter function. Applied Optics 41, 32 (November), 68–84.
FIELD, D. 1994. What is the goal of sensory coding? Neural Computation 6, 559–601.
GEMAN, D., AND REYNOLDS, G. 1992. Constrained restoration and the recovery of

discontinuities. IEEE Trans. on Pattern Analysis and Machine Intelligence 14, 3,
367–383.

GULL, S. 1998. Bayesian inductive inference and maximum entropy. In Maximum
Entropy and Bayesian Methods, J. Skilling, Ed. Kluwer, 54–71.

JALOBEANU, A., BLANC-FRAUD, L., AND ZERUBIA, J. 2002. Estimation of blur
and noise parameters in remote sensing. In Proc. of Int. Conf. on Acoustics, Speech
and Signal Processing.

JANSSON, P. A. 1997. Deconvolution of Images and Spectra. Academic Press.
JORDAN, M., GHAHRAMANI, Z., JAAKKOLA, T., AND SAUL, L. 1999. An intro-

duction to variational methods for graphical models. In Machine Learning, vol. 37,
183–233.

KUNDUR, D., AND HATZINAKOS, D. 1996. Blind image deconvolution. IEEE Signal
Processing Magazine 13, 3 (May), 43–64.

LEVIN, A., AND WEISS, Y. 2004. User Assisted Separation of Reflections from a
Single Image Using a Sparsity Prior. In ICCV, vol. 1, 602–613.

LEVIN, A., ZOMET, A., AND WEISS, Y. 2003. Learning How to Inpaint from Global
Image Statistics. In ICCV, 305–312.

LIU, X., AND GAMAL, A. 2001. Simultaneous image formation and motion blur
restoration via multiple capture. In Proc. Int. Conf. Acoustics, Speech, Signal Pro-
cessing, vol. 3, 1841–1844.

LUCY, L. 1974. Bayesian-based iterative method of image restoration. Journal of
Astronomy 79, 745–754.

MISKIN, J., AND MACKAY, D. J. C. 2000. Ensemble Learning for Blind Im-
age Separation and Deconvolution. In Adv. in Independent Component Analysis,
M. Girolani, Ed. Springer-Verlag.

MISKIN, J., 2000. Train ensemble library. http://www.inference.phy.cam.ac.
uk/jwm1003/train_ensemble.tar.gz.

MISKIN, J. W. 2000. Ensemble Learning for Independent Component Analysis. PhD
thesis, University of Cambridge.

NEELAMANI, R., CHOI, H., AND BARANIUK, R. 2004. Forward: Fourier-wavelet
regularized deconvolution for ill-conditioned systems. IEEE Trans. on Signal Pro-
cessing 52 (Feburary), 418–433.

RAV-ACHA, A., AND PELEG, S. 2005. Two motion-blurred images are better than
one. Pattern Recognition Letters, 311–317.

RICHARDSON, W. 1972. Bayesian-based iterative method of image restoration. Jour-
nal of the Optical Society of America A 62, 55–59.

ROTH, S., AND BLACK, M. J. 2005. Fields of Experts: A Framework for Learning
Image Priors. In CVPR, vol. 2, 860–867.

SIMONCELLI, E. P. 2005. Statistical modeling of photographic images. In Handbook
of Image and Video Processing, A. Bovik, Ed. ch. 4.

TAPPEN, M. F., RUSSELL, B. C., AND FREEMAN, W. T. 2003. Exploiting the sparse
derivative prior for super-resolution and image demosaicing. In SCTV.

TSUMURAYA, F., MIURA, N., AND BABA, N. 1994. Iterative blind deconvolution
method using Lucy’s algorithm. Astron. Astrophys. 282, 2 (Feb), 699–708.

WEISS, Y. 2001. Deriving intrinsic images from image sequences. In ICCV, 68–75.
ZAROWIN, C. 1994. Robust, noniterative, and computationally efficient modification

of van Cittert deconvolution optical figuring. Journal of the Optical Society of
America A 11, 10 (October), 2571–83.

Appendix A

Here we give pseudo code for the algorithm, Image Deblur. This
calls the inference routine, Inference, adapted from Miskin and
MacKay [2000a; 2000]. For brevity, only the key steps are de-
tailed. Matlab notation is used. The Matlab functions imresize,
edgetaper and deconvlucy are used with their standard syntax.

Algorithm 1 Image Deblur

Require: Blurry image B; selected sub-window P; maximum blur size φ ; overall blur
direction o (= 0 for horiz., = 1 for vert.); parameters for prior on ∇L: θL = {πs

c ,vs
c};

parameters for prior on K: θK = {πd ,λd}.
Convert P to grayscale.
Inverse gamma correct P (default γ = 2.2).
∇Px = P⊗ [1,−1]. % Compute gradients in x
∇Py = P⊗ [1,−1]T . % Compute gradients in y
∇P = [∇Px,∇Py]. % Concatenate gradients
S = ⌈−2 log2 (3/φ) ⌉. % # of scales, starting with 3×3 kernel
for s = 1 to S do % Loop over scales, starting at coarsest

∇Ps =imresize(∇P,(1√
2
)S−s,‘bilinear’). % Rescale gradients

if (s==1) then % Initial kernel and gradients
Ks = [0,0,0;1,1,1;0,0,0]/3. If (o == 1), Ks = (Ks)T .
[Ks,∇Ls

p] = Inference(∇Ps,Ks,∇Ps,θ s
K ,θ s

L), keeping Ks fixed.
else % Upsample estimates from previous scale

∇Ls
p = imresize(∇Ls−1

p ,
√

2,‘bilinear’).
Ks = imresize(Ks−1,

√
2,‘bilinear’).

end if
[Ks,∇Ls

p] = Inference(∇Ps,Ks,∇Ls
p,θ s

K ,θ s
L). % Run inference

end for
Set elements of KS that are less than max(KS)/15 to zero. % Threshold kernel
B = edgetaper(B,KS). % Reduce edge ringing
L = deconvlucy(B,KS,10). % Run RL for 10 iterations
Gamma correct L (default γ = 2.2).
Histogram match L to B using histeq.
Output: L, KS .

Algorithm 2 Inference (simplified from Miskin and MacKay [2000])

Require: Observed blurry gradients ∇P; initial blur kernel K; initial latent gradients
∇Lp; kernel prior parameters θK ; latent gradient prior θL.
% Initialize q(K), q(∇Lp) and q(σ−2)
For all m,n, E[kmn] = K(m,n), V[kmn] = 104.
For all i, j, E[li j] = ∇Lp(i, j), V[li j] = 104.
E[σ−2] = 1; % Set initial noise level
ψ = {E[σ−2],E[kmn],E[k2

mn],E[li j],E[l2
i j]} % Initial distribution

repeat
ψ∗ =Update(ψ ,∇Lp,θK ,θL) % Get new distribution
∆ψ=ψ∗-ψ % Get update direction
α∗ = argminα CKL(ψ +α ·∆ψ) % Line search

% CKL computed using [Miskin 2000b], Eqn.’s 3.37–3.39
ψ = ψ +α∗ ·∆ψ % Update distribution

until Convergence: ∆CKL < 5×10−3

Knew = E[k], ∇Lnew
p = E[l]. % Max marginals

Output: Knew and ∇Lnew
p .

ψ∗ =function Update(ψ ,∇Lp,θK ,θL)
% Sub-routine to compute optimal update

% Contribution of each prior mixture component to posterior

umnd = πd λd e−λd E[kmn]; wi jc = πce−(E[l2i j]/(2vc))
/
√

vc
umnd = umnd/∑d umnd ; wi jc = wi jc/∑c wi jc
k′mn = E[σ−2]∑i j <l2i−m, j−n>q(l) % Sufficient statistics for q(K)

k
′′
mn = E[σ−2]∑i j <(∇Pi j −∑m′n′ ̸=i−m, j−n km′n′ li−m′ , j−n′)li−m, j−n>q(,l) −∑d umnd 1/λd

l′i j = ∑c wi jc/vc +E[σ−2]∑mn <k2m,n>q(k) % Sufficient statistics for q(∇Lp)

l
′′
i j = E[σ−2]∑mn <(∇Pi+m, j+n −∑m′n′ ̸=m,n km′n′ li+m−m′ , j+n−n′)km,n>q(k)

a = 10−3 + 1
2 ∑i j(∇P−(K⊗∇Lp))2

i j ; b = 10−3 + IJ/2 % S.S. for q(σ−2)
% Update parameters of q(K)
Semi-analytic form: see [Miskin 2000b], page 199, Eqns A.8 and A.9
E[li j] = l′′i j/l′i j ; E[l2

i j] = (l′′i j/l′i j)
2 +1/l′i j . % Update parameters of q(∇Lp)

E[σ−2] = b/a. % Update parameters of q(σ−2)
ψ∗ = {E[σ−2],E[kmn],E[k2

mn],E[li j],E[l2
i j]} % Collect updates

Return: ψ∗

Removing Camera Shake from a Single Photograph 
Fergus et al. 2006

Other Writing Tips (I)

• Good resource on mathematical writing: 
“Mathematical Writing”, Donald E. Knuth, Tracy Larrabee and Paul M.
Roberts, 1989

• Several specific stylistic (mathematical/prose) elements listed

• Use consistent notation for the same thing when it appears
in several places.

• Don’t just list a sequence of formulas. Tie concepts together
with a running commentary.

• Don’t be too generous with using notation. Sometimes prose
is better.

Other Writing Tips (II)

• Avoid zig-zagging

• Minimize the number of subject changes. Otherwise, it can be
distracting to the reader.

• Only the central idea(s) should appear multiple times in the
paper.

• Bulleted lists are your friend, but don’t go overboard with their use!

• Use examples to illustrate your model/algorithm, especially if it has
many moving parts.

Useful tools to write a paper in CS

• LaTeX: Powerful document processor. Superior aesthetics
in print. Very good at typesetting equations.

• Good beginner’s tutorial: http://www.docs.is.ed.ac.uk/
skills/documents/3722/3722-2014.pdf

• Online, real-time collaborative LaTeX tools like
overleaf.com and sharelatex.com are popular

• Compile list of references using a reference management
software like BibTeX.

http://overleaf.com
http://sharelatex.com

LaTeX tips

• Pay attention to typesetting

• E.g., make sure mathematical symbols are typeset in mathematical
fonts even within text

• Use macros to make your formulas easier to write (and rewrite)
consistently

• Use labels for references 
e.g. Section~\ref{sec:model} rather than Section 2

• Use appropriate packages

• A good online resource: https://en.wikibooks.org/wiki/LaTeX

Let n be an integer

Let 𝒢 be a class

\newcommand{\G}{\ensuremath{\mathcal{G}}\xspace}  
…  
Let \G be a class

https://en.wikibooks.org/wiki/LaTeX

Reviewing Process

• Anonymous peer review

• In conferences: Reviewing is either blind (only reviewers
are anonymous) or double-blind (both authors and
reviewers are anonymous)

• 70-80% of papers are rejected at top-tier conferences

• A poorly written paper almost never makes the cut

Where should I submit my work?

• Important to submit to the right venue. Consult with your
advisor.

• You should have read dozens of papers submitted to a
venue to understand it better.

• What does the audience expect?

• What are the conventions adopted here?

• What is their process of selection?

Deciding the author list

• Who are the authors? Everyone who made a significant
contribution.

• Author order:

• Some communities (TCS) use alphabetical order

• Some communities use descending order of
contribution

Rewriting: Lather, Rinse, Repeat

• Writing is an iterative process

• Don’t get too attached to your words. Rewriting typically
produces better text.

• To allow time for rewrites, start writing your paper early!

• Spend time “debugging” your paper. Use a spell-checker, if
needed. Otherwise, very tedious for the reviewer.

• Tip: Spend more time on the important parts of the paper
(introduction, overall organisation, key technical aspects)

Unfortunately, deadlines loom…

Final Takeaways

• The reader is the boss. Always keep your reader in mind
when structuring your paper.

• Spend time planning your paper. Organisation is key.  
Let good work not sink due to poor writing.

• Rewriting is good writing. Your words are very likely to
improve over multiple iterations.

• The old adage “practice makes perfect” holds value when it
comes to technical writing.

