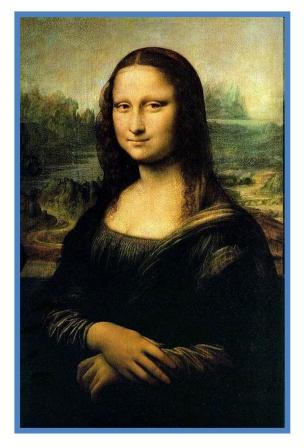
Wherever there are sensations, ideas, emotions, there must be words.

Swami Vivekananda

Acknowledgment: Pushpak Bhattacharyya

This is a talk on 'New Horizons of Sentiment Analysis (SA): SA Research at IIT Bombay' All images in this presentation are from Wikimedia Commons. Citations missing.



Mona Lisa

16th Century Portrait Artist: Leonardo di ser Piero da Vinci Country of Origin: Florence, Italy

Humans learn all the time

- We learn to drive a car
- We learn to cook Maggi
- We learn to speak

• How does a child learn language?

The story of my year-old nephew

- According to a baby, the first meaning of their name is...?*
- The Kaka anecdote

* : Child language Acquisition; Jean Piaget

How did we learn things?

- The first time we turned a computer on
 - A teacher told me exactly which switch to press, the first time.
 - Later...?

Tell me exactly what to do **Programming**

The first time I came to PICT (in 2012)
– Google maps or ...?
I will do a task based on

Similar tasks in the past: Learning!

The first time my father used Internet banking

- Step-by-step: one feature att artimpeh time I do Something new: Online learning!

Sentiment Analysis (SA): Definition

Given a piece of text, **Is she smiling or frowning?** Detect the polarity of opinion expressed by the speaker

Positive?

Negative?

Objective?

This movie has twenty songs. This movie is pathetic.

New Horizons of Sentiment Analysis

SA research at IIT Bombay

Aditya Joshi

IIT Bombay | Monash University adityaj@cse.iitb.ac.in

First presented at DKTE, Ichalkaranji on 10th April, 2015

Outline

- Background
- SA for English, Hindi and Marathi
- Emotion analysis for mental health monitoring
- Sarcasm detection

Outline

- Background
- SA for English, Hindi and Marathi
- Emotion analysis for mental health monitoring
- Sarcasm detection

Image source: Wikimedia commons

Challenges

Well-known challenges [8]

- Sarcasm
- Domain Dependence
- Thwarting

Other challenges

- Implicit Polarity
- Interjections/extensions
- Entity Identification

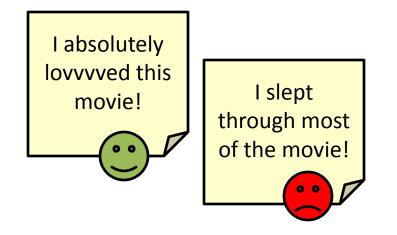
Casablanca and a lunch comprising of rice and fish: a good Sunday

Entity: Casablanca

A basic SA pipeline

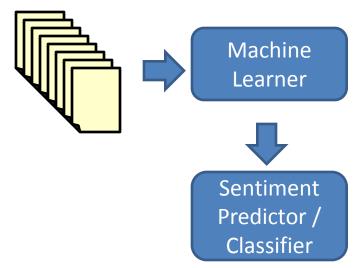
• What is it?

Automatic prediction of opinion in text



• How is it done?

Use machine learning techniques to learn rules



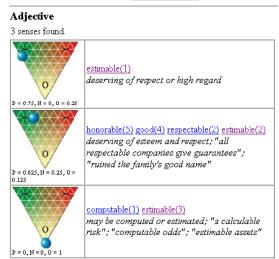
Excellent & rib-tickling -> positive Boring & predictable -> negative

Outline

- Background
- SA for English, Hindi and Marathi
 - Hindi SentiWordnet
 - Using word senses
- Emotion analysis for mental health monitoring
- Sarcasm detection

Hindi SentiWordnet

 SentiWordnet is a lexical resource that assigns a positive, negative and objective score for synsets in Wordnet



 Originally in English, our Hindi SentiWordnet is the first Hindi adaptation

Creation

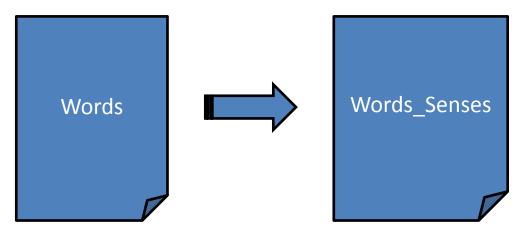
- Creation of Hindi SentiWordNet (H-SWN):
 - 1. For each synset in the SWN, repeat 2 to 3:
 - 2. Find corresponding synset in Hindi WordNet using Multidict.
 - 3. Project the scores in SWN to the synset in Hindi WordNet.
 - 4. The resultant is H-SWN (16,253 synsets) with sentiment-related scores associated with synsets in the form of triples.

Application

- Using H-SWN for SA:
- For each word in the document,
 - 1. Apply stop word removal and stemming
 - 2. Look up the sentiment triple for each word in the H-SWN.
 - 3. Assign to a word the polarity whose score is the highest.
- Assign to a document the polarity which majority of its words possess.

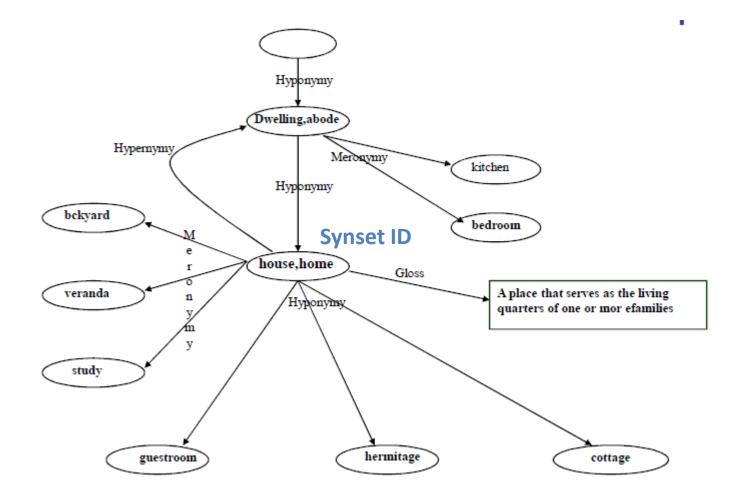
SA of English, Hindi, Marathi using Word Senses

Document containing words are annotated with word senses



Goal: To understand how word senses perform as features

Digression: Word senses and Wordnet



Motivation

1. A word may have some sentiment-bearing and some non-sentiment-bearing senses

2. A word may have senses that bear sentiments of opposite polarity

3. A sense can be manifested using different words

Instead of using words as features, we use Wordnet synset identifiers corresponding to words

"He speaks a **vulgar** language." "Now that's real **crude** behavior!"

Lexical space v/s sense space

There are also fire-pits available if you want to have a bonfire with your friends. There are also_347757 fire_pits_19147259 available_4203394 if you want_21808093 to have a bonfire_17203241 with your friends_19962226.

Lexical Space

Sense Space

Manually annotated Senses Automatically

, annotated Senses

fire_pits: 19147259 (1: POS identifier : Noun, 9147259: Wordnet Synset offset)

Experiment Setup

Data set

- Dataset: Travel Domain Corpus by [33]
- 600 positive and 591 negative travel reviews
- Manual Sense Annotation

Classifier

- C-SVM from Lib-SVM
- Five-fold cross-validation

Results: Overall Classification

Feature Represe ntation	Accuracy	PF	NF	РР	NP	PR	NR
W	84.90	85.07	84.76	84.95	84.92	85.19	84.60
М	89.10	88.22	89.11	91.50	87.07	85.18	91.24
W+S(M)	90.20	89.81	90.43	92.02	88.55	87.71	92.39

- Senses give better overall accuracy
- Negative Recall increases

Using Word Senses for Hindi and Marathi

- SA of Hindi & Marathi How could it be done?
 - Lack of resources and classifiers

Sentiment Predictor / Classifier

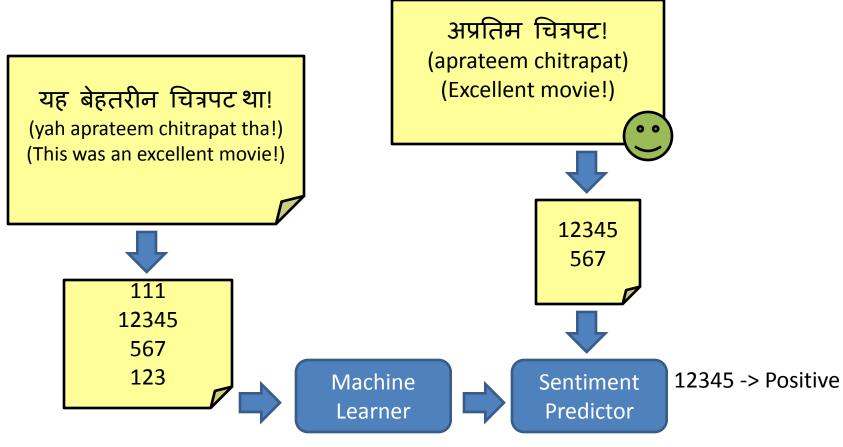
बेहतरीन (behtareen) (excellent)-> positive बकवास (bakwaas) (bad) -> negative

- Translation
- Cross-lingual SA using Wordnet senses

Dummy entries in Wordnet

How can Hindi and Marathi help each other?

Learn the sentiment predictor using 'Wordnet meaning identifiers' instead of words



Cross-lingual SA Results

• Target Language: Marathi

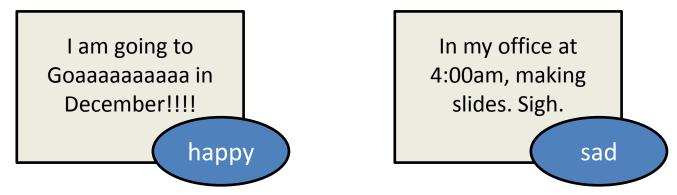
Feature Representation	Accuracy	PF	NF	PP	NP	PR	NR
Translation	71.64	72.22	62.86	75.36	67.69	69.33	58.67
Senses (M)	84.00	81.54	85.88	96.36	76.84	70.67	97.33

Outline

- Background
- SA for English, Hindi and Marathi
- Emotion analysis for mental health monitoring
- Sarcasm detection

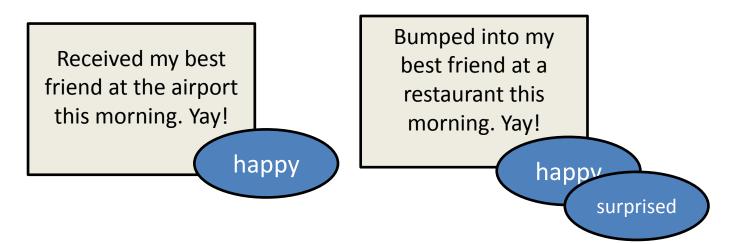
Emotion Analysis (EA): Definition

Emotion analysis of text is defined as the task of predicting emotion expressed in the text



Emotion Analysis and Sentiment Analysis?

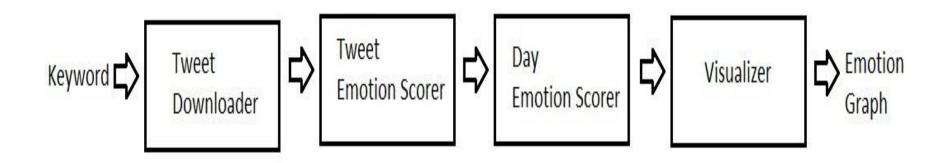
- Labels: SA : positive/negative, EA: Finer labels like Anger, Disgust, Happiness, etc.
- Singularity:



EmoEngine 1.0

- An emotion engine pivoted on the time axis.
- A web-based portal that displays sentiment in tweets on a time-based axis.
- Rule based system which makes use of LIWC emotion lexicon.
- Keywords based search and generate emotions.
- Keyword can be emotion holder or emotion target. (Emotions "of" Vs. Emotion "about")

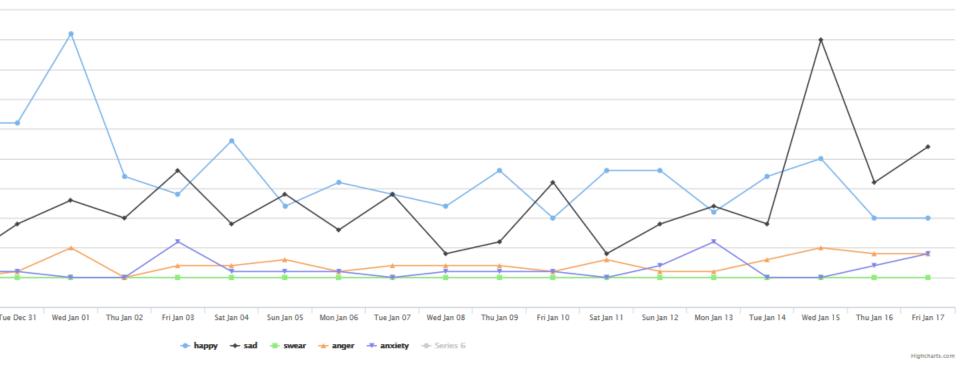
EmoEngine 1.0 : Architecture (1/2)



EmoEngine 1.0 : Architecture (2/2)

- **Twitter Downloader:** Downloads tweets based on the option selected and the keyword
- Tweet Emotion Scorer: Assigns an emotion score to each tweet
- Day Emotion Scorer: That assigns an overall emotion score to a day
- Visualizer: That represents emotion lines on the visual output

Emotion Trends



Currently hosted at: www.cse.iitb.ac.in/~ravisoni/emotions.htm

EmoEngine: Applications

- Keep track of mental health of person. Useful for her closed ones. (Friends, family, doctor)
- Enhanced version of the engine can effectively be used to understand suicide risks or symptoms of mental health concerns.
- Can be used in advertisement and businesses for customer retention.

Outline

- Background
- SA for English, Hindi and Marathi
- Emotion analysis for mental health monitoring
- Sarcasm detection

Sarcasm Detection

• Sarcasm is the presence of words of one polarity in a sentence with another implied polarity.

Example: Being stranded in traffic is the best way to start the week.

- Sarcasm is a challenge to SA
- Hypothesis: Sarcasm can be identified using a `sentiment flip'
- We present a sarcasm detection system based on sentiment flip features

Sentiment Flip

Sentiment flip is the inversion in sentiment over the sequence of words in text (tweet in our case)

Implicit Flip

- Sentiment words not used. The sentiment is implied.
- E.g. I love visiting the dentist twelve times in a month
- Implicit Flip features are based on prior work in rule-based sarcasm detection.

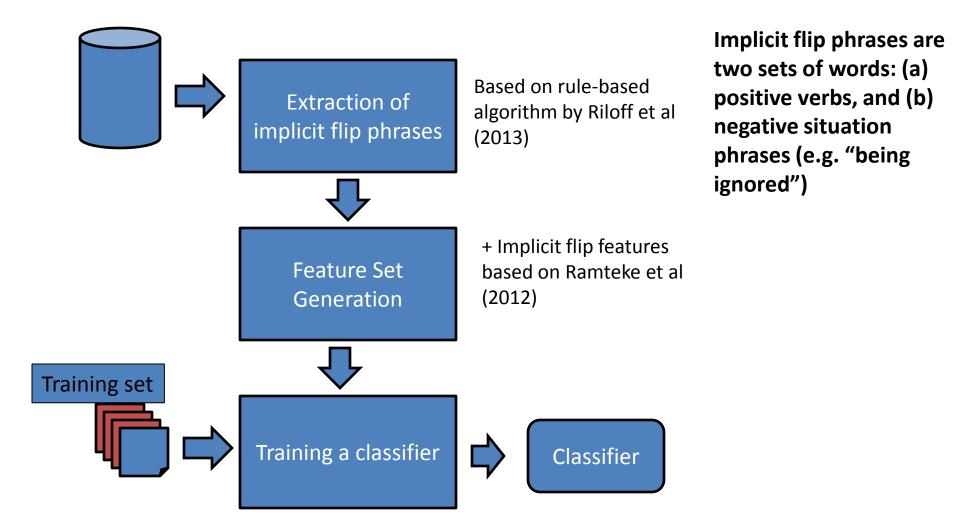
Explicit Flip

Sentiment words of both polarity are used.

E.g. I love being ignored

Explicit flip features are based on prior work in thwarting.

Our Sarcasm Detection System



Datasets

- Dataset A (4000 tweets, 50% sarcastic) : To extract implicit flip features
- Dataset B (5208 tweets, 4170 sarcastic): Using #sarcasm and related hashtags
- Dataset C (15930 tweets, 7218 sarcastic): Using #sarcasm and related hashtags
- Dataset D (2278 tweets, 506 sarcastic): Manually annotated by Riloff et al. (2013).

Evaluation

LibSVM with linear kernel,
5-fold cross-validation

System	Precision
System by Riloff et al. (2013)	0.70
(Best value reported)	
Our system (all features)	0.772

Features	Р	R	Α	
D	Dataset B			
Lexical (Base-	0.820	0.867	0.741	
line)				
Lexical+Implicit	0.822	0.887	0.755	
flip				
Lexical+Explicit	0.807	0.985	0.801	
flip				
Lexical+Implicit	0.813	0.978	0.801	
flip+Explicit flip				
Lexical+Implicit	0.812	0.977	0.801	
flip+Explicit				
flip+Polarity				
Lexical+Implicit	0.814	0.976	0.803	
flip+Explicit				
flip+Polarity+				
Pragmatic				
Dataset C				
Lexical+Implicit	0.767	0.753	0.763	
flip+Explicit				
flip+Polarity+				
Pragmatic				

Outline

- Background
- SA for English, Hindi and Marathi
- Emotion analysis for mental health monitoring
- Sarcasm detection

Conclusion

Conclusion

- Traditional approaches to SA use statistical classifiers using unigrams (words), etc.
- We explored use of word senses that enabled SA for Hindi and Marathi
- We developed EmoEngine 1.0: an emotion analysis engine that predicts emotional wellbeing of a person
- We discussed an approach to sarcasm detection based on sentiment flips

thank you.

http://www.cse.iitb.ac.in/~adityaj

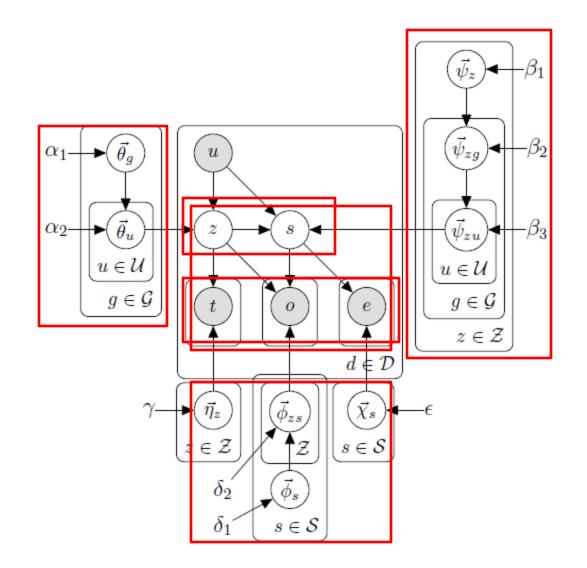
adityaj@cse.iitb.ac.in

Extra slides

Political Topic Model

- **Goal:** To understand how political issues divide people on Twitter
 - People are divided into "groups": a group often shares an ideology towards an issue, with some variance among followers of the group
 - We wish to understand: (A) What are the political issues, (B) In what way are groups divided on these issues
- Sentiment-based Political Issue Extraction (SPIE) model

SPIE Model



Dataset Creation

1) US Political Tweets

- 32 Republicans and 46 Democrats
- Expand them by selecting friends
- Complete timeline of users is downloaded
- 24 million tweets

2) IN Political Tweets

• 0.5 million tweets

3) PK Controversy (In progress)

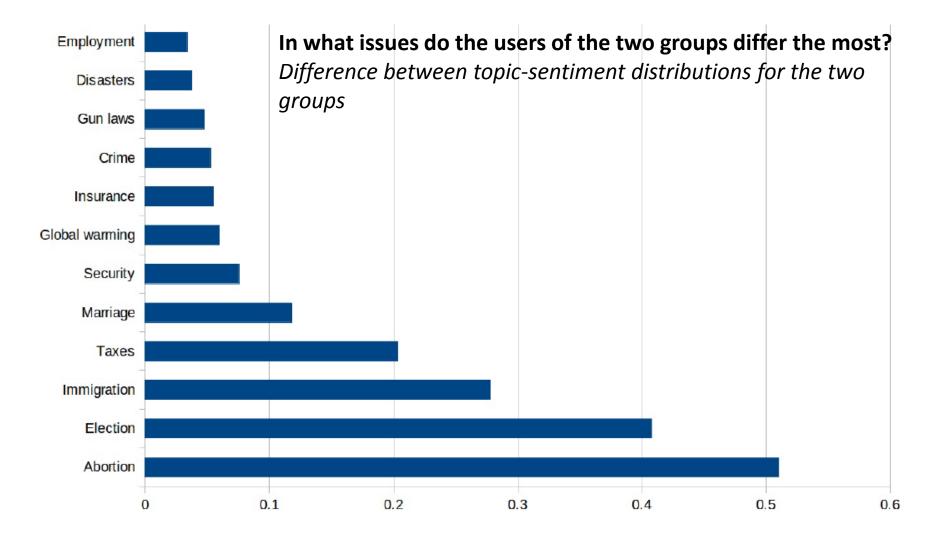
Political Issues Extracted (1/2)

Insurance	Abortion	Security/War	Employment
health	abortion	attack	workers
insurance	baby	video	job
people	babies	security	wages
care	freedom	police	jobs
plan	women	forces	people
Gun laws	Immigration	Economy	Climate
people	workers	tax	climate
gun	immigration	jobs	people
laws	stories	debt	change
guns	patriot	taxes	warming
control	politics	spending	years
Marriage	Election	Disasters	Crime
people	bill	acres	scene
freedom	vote	fire	police
marriage	campaign	weather	man
rights	state	snow	fire
women	election	storm	suspect

Political Issues Extracted (2/2)

Abortion		Security/War	
Join	Prolife	Killed	Military
Religious	Killed	Syrian	Illegal
Stand	Born	Military	Russian
Support	Unborn	Fast	Targeting
Conservative	Aborted	Furious	Back
Gun laws		Immigration	
Illegal	Don	Join	Тор
Free	Free	Support	Enter
Don	Stop	Back	Check
Vote	Illegal	Stand	Stop
Stop	Give	Proud	Join
Insurance		Mai	riage
Pay	Check	Back	Gay
Federal	Hear	Don	Religious
Signed	Here	Lost	Political
Paid	Call	Liberal	Free
Uninsured	Hope	Great	**

Qualitative Evaluation: What are the most "controversial" political issues?



Quantitative evaluation: Effect of individual/group distributions

	Average cosine similarity		
	With polit-	Without	
	ical affilia-	political	
	tion infor-	affiliation	
	mation	informa-	
		tion	
Within members of the same group			
Democrat-	0.261	0.253	
Democrat			
Republican-	0.014	0.013	
Republican			
Within members of different groups			
Democrat-	0.108	0.113	
Republican			
Republican-	0.040	0.042	
Democrat			

Pilot study: To predict political affiliation

CosineSim(AuthOpsineSim(Autho		
	Democrats)	
Actual Group Label: Democrats		
U1	0.772	0.751
U2	0.787	0.727
U3	0.827	0.818
U4	0.75	0.827
U5	0.771	0.764
U6	0.804	0.764
Actual Group Label: Republicans		
U7	0.755	0.818
U8	0.791	0.828
U9	0.803	0.825
U10	0.866	0.84
U11	0.763	0.78
U12	0.813	0.812
U13	0.835	0.788
U14	0.842	0.843
U15	0.839	0.782
U16	0.826	0.795
U17	0.876	0.82
U18	0.736	0.713
U19	0.794	0.805
U20	0.744	0.755
U21	0.769	0.715
U22	0.824	0.798
U23	0.808	0.811
U24	0.8	0.85
U25	0.774	0.785

Political Topic Model: Summary

- We implemented SPIE model and tested it on multiple datasets
- Our qualitative and quantitative evaluation shows that the model performs well
- We also ran a pilot experiment to see how this model can be used to predict political orientation