Workflow: Patterns and Specifications

Seminar Presentation
by
Ahana Pradhan

Under the guidance of
Prof. Rushikesh K. Joshi

Department of Computer Science and Engineering
Indian Institute of Technology, Bombay
April 30, 2012
Outline

- Workflow concepts
- Petri nets & workflow process
- Workflow patterns
- Petri nets & workflow patterns
- YAWL & workflow patterns
- BPMN & workflow patterns
Introduction

- **Business Process**
 Sequence of activities to serve a purpose.
 e.g. Process of railway ticket reservation.

- **Workflow Process**
 Flow of work in a business process for a specific case.

- **Modeling and specifying processes**
 i.e. creating workflow definition.

 -- May be using graphical notation based languages.
 e.g. BPMN diagram.

 -- May be using XML based languages
 e.g. BPEL specification, YAWL specification.
Workflow definition example in YAWL
Workflow definition example in YAWL

...<task id="register_3">
 <name>register</name>
 <flowsInto>
 <nextElementRef id="book_flight_8" /><predicate>/Make_Trip_Process/registrInfo/want_flight='true'</predicate>
 </flowsInto>
 <flowsInto>
 <nextElementRef id="book_car_10" /><predicate>/Make_Trip_Process/registrInfo/want_car='true'</predicate>
 <isDefaultFlow />
 </flowsInto>
 <flowsInto>
 <nextElementRef id="book_hotel_9" /><predicate>/Make_Trip_Process/registrInfo/want_hotel='true'</predicate>
 </flowsInto>
 <join code="xor" />
 <split code="or" />
 <startingMappings>
 <mapping>
 <expression query="<customer>{/Make_Trip_Process/customer/text()}</customer>" />
 <mapsTo>customer</mapsTo>
 </mapping>
 </startingMappings>
 <completedMappings>
 <mapping>
 <expression query="<registrInfo>{/register/registrInfo/*}</registrInfo>" />
 <mapsTo>registrInfo</mapsTo>
 </mapping>
 <mapping>
 <expression query="<customer>{/register/customer/text()}</customer>" />
 <mapsTo>customer</mapsTo>
 </mapping>
 </completedMappings>
 <resourcing>
 <offer initiator="user" />
 <allocate initiator="user" />
 <start initiator="user" />
 </resourcing>
 <decomposesTo id="register" />
</task>
...
Workflow Terminologies

- **Task**
 Each atomic work to be done in a workflow definition is task.

- **Work Item**
 When a task is assigned to some resource it is then a work item.

- **Activity**
 When a work item is being executed by a resource in a workflow process, it is an activity.

- **Trigger**
 It is some external environmental condition that makes an activity started.
Workflow languages

- **Workflow language** is XML based notations that is used to describe inter-task dependencies in a workflow process i.e. create workflow specifications.

- **Workflow language formalism** is for expressing the dependencies of tasks. It may be graphical representation.

- **Petri net** is a very well-known workflow language formalism because:
 - Intuitive graphical representation
 - Formal theory provides convenient base for analysis
 - Abundance of analysis techniques
Petri Net

- A graph having circles and rectangles as nodes
- *Directed bipartite* graph
 - Edges are directed
 - Edge can be between either rectangle to circle or between circle to rectangle
- Circles are called *place*
- Rectangles are called *transition*
- Edges are called *arc/flow relation*
Token

- *Dot inside a* **place**
- Theoretical concept
- Used to represent **state** of the net
State transition by token firing
State transition by token firing
Petri net as workflow language

- **Place** is condition
- **Transition** is task
- **Token** corresponds to case

A petri net is a valid workflow net (WF-net) if and only if the following criterias are satisfied:

1. The net has one source place i.e. No transitions have it as output place.
2. The net has one sink place i.e. No transitions have it as input place.
3. If a transition is added to the net from sink place to source place, the net will be strongly connected.
Petri net as workflow language

- Petri nets do not have any abstraction that can map to triggers of workflow task. However, additional icons of triggers can be used to specify trigger.
Extension of petri nets and use of it in workflow specification

Colored petri net
Extension of petri nets and use of it in workflow specification

Hierarchical petri net
Workflow Patterns

• Some frequently observed routings sequences in the order of tasks in most of the workflow processes.

• Provides basis for assessing relative strength and weakness of workflow description languages.
Basic patterns

- Sequence
- Parallel split (AND-split)
- Synchronization (AND-join)
- Conditional split (XOR-split)
- Simple merge (XOR-join)
Advanced Branch and synchronization patterns

- Multi-choice
- Synchronizing merge
- Multi-merge
- Discrimination
Structural patterns

- Arbitrary cycle
- Implicit termination
Multiple instance patterns

- Multiple instance without synchronization
- Multiple instance with a priori design time knowledge
- Multiple instance with a priori runtime knowledge
- Multiple instance without priori runtime knowledge
State based patterns

- Deferred choice
- Interleaved parallel routing
- Milestone
Cancellation patterns

- Cancel activity
- Cancel case
Workflow patterns & petri nets

(Basic patterns)

- **Sequence**

- **AND-split/join**

- **XOR-split/join (explicit)**

- **XOR-split/join (implicit)**
Workflow patterns & petri nets

Possible implementation of OR-split
Workflow patterns & petri nets

Implementation of multi-merge
Workflow patterns & petri nets

Implementation of parallel interleaved
Workflow patterns & petri nets

Patterns involving multiple instances
Workflow patterns & petri nets

- Other than basic patterns are not trivially supported.
- Too much designer effort and result is very complex diagrams.
- Advanced branching & Synchronization patterns:
 -- OR split/marge sometimes behave like AND, sometimes like XOR, sometimes like n-out-of-m.
- Multiple-instance patterns:
 -- Burden of keeping track of active instances for synchronization.
- Cancellation patterns:
 -- Solution is not easy because of local nature of petri nets.
YAWL: yet another workflow language

- Similar (not the exact same) notations like petri nets
- Independent theory and semantics
- Can handle multi-instance and cancellation patterns effectively
Similarity with petri nets (WF-net)

- Conditions (includes start condition and end condition)
- Arcs
- Task
- Token
- Composite task (high-level petri net)
- Support for AND and XOR split/join
Extension over petri nets

- Multiple instances of task
- Directly connected tasks
- Cancellation set
- OR-split and Join attributes of task
Symbols

- Condition
- Input condition
- Output condition
- Atomic task
- Composite task
- Multiple instances of an atomic task
- Multiple instances of a composite task
- AND-split task
- XOR-split task
- OR-split task
- AND-join task
- XOR-join task
- OR-join task
- Remove tokens
Example of workflow in YAWL

Maketrip process (starting net)

Do itinerary segment task (subnet)
Task in YAWL
Composite task in YAWL
Workflow patterns using YAWL

(Advanced branching and synchronization)
Workflow patterns using YAWL

(Multi-instance patterns)
Workflow patterns using YAWL

(Cancellation patterns)
BPMN: Business Process Model & Notation

- Modeling notation for process specification by OMG.
- Execution semantics
- Have mapping to execution languages like BPEL, YAWL.

![BPMN Diagram](image-url)
BPMN: expressing workflow patterns

(Basic patterns)

- **Parallel split/synchronization with parallel gateway**
 - Process flow: A → B (Parallel split) → B1, B2 → C

- **Parallel split/synchronization by using sub-process**
 - Process flow: A → B (Sub-process) → B1, B2 → C

- **Implicit parallel split/merge**

- **Conditional choice and simple merge using conditional gateway**
 - Process flow: A → B (Conditional choice) → C, A → D (Default merge) → E
BPMN: expressing workflow patterns

(Multiple choice)

<table>
<thead>
<tr>
<th></th>
<th>a) with OR-gateway</th>
<th>b) without a gateway</th>
<th>c) with Complex gateway</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B, C, D</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>A</td>
<td>B, C, D</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>A</td>
<td>B, C, D</td>
<td></td>
<td>B</td>
</tr>
</tbody>
</table>

(Synchronizing merge)

Diagram:

```
A -> B (cond 1) -> C (cond 2) -> D
```
BPMN: expressing workflow patterns

(Multiple instance patterns)

(Cancellation patterns)
References

