
STAT 425: Introduction to Nonparametric Statistics Winter 2018

Lecture 6: Density Estimation: Histogram and Kernel Density Estimator
Instructor: Yen-Chi Chen

Reference: Section 6 of All of Nonparametric Statistics.

Density estimation is the problem of reconstructing the probability density function using a set of given data
points. Namely, we observe X1, · · · , Xn and we want to recover the underlying probability density function
generating our dataset.

6.1 Histogram

If the goal is to estimate the PDF, then this problem is called density estimation, which is a central topic in
statistical research. Here we will focus on the perhaps simplest approach: histogram.

For simplicity, we assume that Xi ∈ [0, 1] so p(x) is non-zero only within [0, 1]. We also assume that p(x) is
smooth and |p′(x)| ≤ L for all x (i.e. the derivative is bounded). The histogram is to partition the set [0, 1]
(this region, the region with non-zero density, is called the support of a density function) into several bins
and using the count of the bin as a density estimate. When we have M bins, this yields a partition:
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In such case, then for a given point x ∈ B`, the density estimator from the histogram will be

p̂n(x) =
number of observations within B`

n
× 1

length of the bin
=
M

n

n∑
i=1

I(Xi ∈ B`).

The intuition of this density estimator is that the histogram assign equal density value to every points within
the bin. So for B` that contains x, the ratio of observations within this bin is 1

n

∑n
i=1 I(Xi ∈ B`), which

should be equal to the density estimate times the length of the bin.

Now we study the bias of the histogram density estimator.
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.
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The last equality is done by the mean value theorem with F ′(x) = p(x). By the mean value theorem again,
there exists another point x∗∗ between x∗ and x such that

p(x∗)− p(x)

x∗ − x
= p′(x∗∗).

Thus, the bias
bias(p̂n(x)) = E (p̂n(x))− p(x)

= p(x∗)− p(x)

= p′(x∗∗) · (x∗ − x)

≤ |p′(x∗∗)| · |x∗ − x|

≤ L

M
.

(6.1)

Note that in the last inequality we use the fact that both x∗ and x are within B`, whose total length is 1/M ,
so the |x∗ − x| ≤ 1/M . The analysis of the bias tells us that the more bins we are using, the less bias the
histogram has. This makes sense because when we have many bins, we have a higher resolution so we can
approximate the fine density structure better.

Now we turn to the analysis of variance.

Var(p̂n(x)) = M2 · Var

(
1

n

n∑
i=1

I(Xi ∈ B`)

)

= M2 · P (Xi ∈ B`)(1− P (Xi ∈ B`))
n

.

By the derivation in the bias, we know that P (Xi ∈ B`) = p(x∗)
M , so the variance

Var(p̂n(x)) = M2 ·
p(x∗)
M ×

(
1− p(x∗)

M

)
n

= M · p(x
∗)

n
+
p2(x∗)

n
.

(6.2)

The analysis of the variance has an interesting result: the more bins we are using, the higher variance we
are suffering.

Now if we consider the MSE, the pattern will be more inspiring. The MSE is

MSE(p̂n(x)) = bias2(p̂n(x)) + Var(p̂n(x)) ≤ L2

M2
+M · p(x

∗)

n
+
p2(x∗)

n
. (6.3)

An interesting feature of the histogram is that: we can choose M , the number of bins. When M is too large,
the first quantity (bias) will be small while the second quantity (variance) will be large; this case is called
undersmoothing. When M is too small, the first quantity (bias) is large but the second quantity (variance)
is small; this case is called oversmoothing.

To balance the bias and variance, we choose M that minimizes the MSE, which leads to

Mopt =

(
n · L2

p(x∗)

)1/3

. (6.4)

Although in practice the quantity L and p(x∗) are unknown so we cannot chose the optimal Mopt, the rule in
equation (6.4) tells us how we should change the number of bins when we have more and more sample size.
Practical rule of selecting M is related to the problem of bandwidth selection, a research topic in statistics.



Lecture 6: Density Estimation: Histogram and Kernel Density Estimator 6-3

6.2 Kernel Density Estimator

Here we will talk about another approach–the kernel density estimator (KDE; sometimes called kernel density
estimation). The KDE is one of the most famous method for density estimation. The follow picture shows
the KDE and the histogram of the faithful dataset in R. The blue curve is the density curve estimated by
the KDE.
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Here is the formal definition of the KDE. The KDE is a function

p̂n(x) =
1

nh

n∑
i=1

K

(
Xi − x
h

)
, (6.5)

where K(x) is called the kernel function that is generally a smooth, symmetric function such as a Gaussian
and h > 0 is called the smoothing bandwidth that controls the amount of smoothing. Basically, the KDE
smoothes each data point Xi into a small density bumps and then sum all these small bumps together to
obtain the final density estimate. The following is an example of the KDE and each small bump created by
it:
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In the above picture, there are 6 data points located at where the black vertical segments indicate: 0.1, 0.2, 0.5, 0.7, 0.8, 0.15.
The KDE first smooth each data point into a purple density bump and then sum them up to obtain the final
density estimate–the brown density curve.

6.3 Bandwidth and Kernel Functions

The smoothing bandwidth h plays a key role in the quality of KDE. Here is an example of applying different
h to the faithful dataset:
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Clearly, we see that when h is too small (the green curve), there are many wiggly structures on our density
curve. This is a signature of undersmoothing–the amount of smoothing is too small so that some structures
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identified by our approach might be just caused by randomness. On the other hand, when h is too large (the
brown curve), we see that the two bumps are smoothed out. This situation is called oversmoothing–some
important structures are obscured by the huge amount of smoothing.

How about the choice of kernel function? A kernel function generally has two features:

1. K(x) is symmetric.

2.
∫
K(x)dx = 1.

3. limx→−∞K(x) = limx→+∞K(x) = 0.

In particular, the second requirement is needed to guarantee that the KDE p̂n(x) is a probability density
function. Note that most kernel functions are positive; however, kernel functions could be negative 1.

In theory, the kernel function does not play a key role (later we will see this). But sometimes in practice,
they do show some difference in the density estimator. In what follows, we consider three most common
kernel functions and apply them to the faithful dataset:
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Epanechnikov Kernel
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The top row displays the three kernel functions and the bottom row shows the corresponding density esti-

1Some special types of kernel functions, known as the higher order kernel functions, will take negative value at some regions.
These higher order kernel functions, though very counter intuitive, might have a smaller bias than the usual kernel functions.
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mators. Here is the form of the three kernels:

Gaussian K(x) =
1√
2π
e

−x2

2 ,

Uniform K(x) =
1

2
I(−1 ≤ x ≤ 1),

Epanechnikov K(x) =
3

4
·max{1− x2, 0}.

The Epanechnikov is a special kernel that has the lowest (asymptotic) mean square error.

Note that there are many many many other kernel functions such as triangular kernel, biweight kernel, cosine
kernel, ...etc. If you are interested in other kernel functions, please see https://en.wikipedia.org/wiki/

Kernel_(statistics).

6.4 Theory of the KDE

Now we will analyze the estimation error of the KDE. Assume that X1, · · · , Xn are IID sample from an
unknown density function p. In the density estimation problem, the parameter of interest is p, the true
density function.

To simplify the problem, assume that we focus on a given point x0 and we want to analyze the quality of
our estimator p̂n(x0).

Bias. We first analyze the bias. The bias of KDE is

E(p̂n(x0))− p(x0) = E

(
1

nh

n∑
i=1

K

(
Xi − x0

h

))
− p(x0)

=
1

h
E
(
K

(
Xi − x0

h

))
− p(x0)

=
1

h

∫
K

(
x− x0
h

)
p(x)dx− p(x0).

Now we do a change of variable y = x−x0

h so that dy = dx/h and the above becomes

E(p̂n(x0))− p(x0) =

∫
K

(
x− x0
h

)
p(x)

dx

h
− p(x0)

=

∫
K (y) p(x0 + hy)dy − p(x0) (using the fact that x = x0 + hy).

Now by Taylor expansion, when h is small,

p(x0 + hy) = p(x0)− hy · p′(x0) +
1

2
h2y2p′′(x0) + o(h2).

Note that o(h2) means that it is a smaller order term compared to h2 when h → 0. Plugging this back to

https://en.wikipedia.org/wiki/Kernel_(statistics)
https://en.wikipedia.org/wiki/Kernel_(statistics)


Lecture 6: Density Estimation: Histogram and Kernel Density Estimator 6-7

the bias, we obtain

E(p̂n(x0))− p(x0) =

∫
K (y) p(x0 − hy)dy − p(x0)

=

∫
K (y)

[
p(x0) + hy · p′(x0) +

1

2
h2y2p′′(x0) + o(h2)

]
dy − p(x0)

=

∫
K (y) p(x0)dy +

∫
K (y)hy · p′(x0)dy +

∫
K (y)

1

2
h2y2p′′(x0)dy + o(h2)− p(x0)

= p(x0)

∫
K (y) dy︸ ︷︷ ︸

=1

+hp′(x0)

∫
yK (y) dy︸ ︷︷ ︸

=0

+
1

2
h2p′′(x0)

∫
y2K (y) dy + o(h2)− p(x0)

= p(x0) +
1

2
h2p′′(x0)

∫
y2K (y) dy − p(x0) + o(h2)

=
1

2
h2p′′(x0)

∫
y2K (y) dy + o(h2)

=
1

2
h2p′′(x0)µK + o(h2),

where µK =
∫
y2K (y) dy. Namely, the bias of the KDE is

bias(p̂n(x0)) =
1

2
h2p′′(x0)µK + o(h2). (6.6)

This means that when we allow h → 0, the bias is shrinking at a rate O(h2). Equation (6.6) reveals an
interesting fact: the bias of KDE is caused by the curvature (second derivative) of the density function!
Namely, the bias will be very large at a point where the density function curves a lot (e.g., a very peaked
bump). This makes sense because for such a structure, KDE tends to smooth it too much, making the
density function smoother (less curved) than it used to be.

Variance. For the analysis of variance, we can obtain an upper bound using a straight forward calculation:

Var(p̂n(x0)) = Var

(
1

nh

n∑
i=1

K

(
Xi − x0

h

))

=
1

nh2
Var

(
K

(
Xi − x0

h

))
≤ 1

nh2
E
(
K2

(
Xi − x0

h

))
=

1

nh2

∫
K2

(
x− x0
h

)
p(x)dx

=
1

nh

∫
K2(y)p(x0 + hy)dy (using y = x−x0

h and dy = dx/h again)

=
1

nh

∫
K2(y) [p(x0) + hyp′(x0) + o(h)] dy

=
1

nh

(
p(x0) ·

∫
K2(y)dy + o(h)

)
=

1

nh
p(x0)

∫
K2(y)dy + o

(
1

nh

)
=

1

nh
p(x0)σ2

K + o

(
1

nh

)
,



6-8 Lecture 6: Density Estimation: Histogram and Kernel Density Estimator

where σ2
K =

∫
K2(y)dy. Therefore, the variance shrinks at rate O( 1

nh ) when n → ∞ and h → 0. An
interesting fact from the variance is that: at point where the density value is large, the variance is also large!

MSE. Now putting both bias and variance together, we obtain the MSE of the KDE:

MSE(p̂n(x0)) = bias2(p̂n(x0)) + Var(p̂n(x0))

=
1

4
h4|p′′(x0)|2µ2

K +
1

nh
p(x0)σ2

K + o(h4) + o

(
1

nh

)
= O(h4) +O

(
1

nh

)
.

The first two term, 1
4h

4|p′′(x0)|2µ2
K + 1

nhp(x0)σ2
K , is called the asymptotic mean square error (AMSE). In

the KDE, the smoothing bandwidth h is something we can choose. Thus, the bandwidth h minimizing the
AMSE is

hopt(x0) =

(
4

n
· p(x0)

|p′′(x0)|2
σ2
K

µ2
K

) 1
5

= C1 · n−
1
5 .

And this choice of smoothing bandwidth leads to a MSE at rate

MSEopt(p̂n(x0)) = O(n−
4
5 ).

Remarks.

• The optimal MSE of the KDE is at rate O(n−
4
5 ), which is faster than the optimal MSE of the histogram

O(n−
2
3 )! However, both are slower than the MSE of a MLE (O(n−1)). This reduction of error rate is

the price we have to pay for a more flexible model (we do not assume the data is from any particular
distribution but only assume the density function is smooth).

• In the above analysis, we only consider a single point x0. In general, we want to control the overall
MSE of the entire function. In this case, a straight forward generalization is the mean integrated square
error (MISE):

MISE(p̂n) = E
(∫

(p̂n(x)− p(x))2
)

=

∫
MSE(p̂n(x))dx.

Under a similar derivation, one can show that

MISE(p̂n) =
1

4
h4
∫
|p′′(x)|2dxµ2

K +
1

nh

∫
p(x)dx︸ ︷︷ ︸
=1

σ2
K + o(h4) + o

(
1

nh

)

=
µ2
K

4
· h4 ·

∫
|p′′(x)|2dx︸ ︷︷ ︸

Overall curvature

+
σ2
K

nh
+ o(h4) + o

(
1

nh

)

= O(h4) +O

(
1

nh

)
.

(6.7)

• The two dominating terms in equation (6.7),
µ2
K

4 ·h
4·
∫
|p′′(x)|2dx︸ ︷︷ ︸

Overall curvature

+
σ2
K

nh , is called the asymptotical mean

integrated square error (AMISE). The optimal smoothing bandwidth is often chosen by minimizing this
quantity. Namely,

hopt =

(
1

n
· 4∫
|p′′(x)|2dx

· σ
2
K

µ2
K

) 1
5

= C2 · n−
1
5 . (6.8)
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• However, the optimal smoothing bandwidth hopt cannot be used in practice because it involves the
unknown quantity

∫
|p′′(x)|2dx. Thus, how to choose h is an unsolved problem in statistics and is

known as bandwidth selection2. Most bandwidth selection approaches are either proposing an estimate
of AMISE and then minimizing the estimated AMISE or using an estimate of the curvature

∫
|p′′(x)|2dx

and choose hopt accordingly.

6.5 Confidence Interval using the KDE

In this section, we will discuss an interesting topic–confidence interval of the KDE. For simplicity, we will
focus on the CI of the density function at a given point x0. Recall from equation (6.5),

p̂n(x0) =
1

nh

n∑
i=1

K

(
Xi − x0

h

)
=

1

n

n∑
i=1

Yi,

where Yi = 1
hK

(
Xi−x0

h

)
. Thus, the KDE evaluated at x0 is actually a sample mean of Y1, · · · , Yn. By CLT,

√
n

(
p̂n(x0)− E(p̂n(x0))

Var(Yi)

)
D→ N(0, 1).

However, one has to be very careful when using this result because from the analysis of variance,

Var(Yi) = Var

(
1

h
K

(
Xi − x0

h

))
=

1

h
p(x0)σ2

K + o

(
1

h

)
diverges when h→ 0. Thus, when h→ 0, the asymptotic distribution of p̂n(x0) is

√
nh (p̂n(x0)− E(p̂n(x0)))

D→ N(0, p(x0)σ2
K).

Thus, a 1− α CI can be constructed using

p̂n(x0)± z1−α/2 ·
√
p(x0)σ2

K .

This CI cannot be used in practice because p(x0) is unknown to us. One solution to this problem is to
replace it by the KDE, leading to

p̂n(x0)± z1−α/2 ·
√
p̂n(x0)σ2

K .

There is another approach for constructing CIs called the bootstrap approach. However, this course is beyond
the scope of this course so we will not cover it here. If you are interested in it, you may take STAT 403 or
check the lecture notes in the past: http://faculty.washington.edu/yenchic/17Sp_stat403.html.

Remarks.

• A problem of these CI is that the theoretical guarantee of coverage is for the expectation of the KDE
E(p̂n(x0)) rather than the true density value p(x0)! Recall from the analysis of bias, the bias is at the
order of O(h2). Thus, if h is fixed or h converges to 0 slowly, the coverage of CI will be lower than the
nominal coverage (this is called undercoverage). Namely, even if we construct a 99% CI, the chance
that this CI covers the actual density value can be only 1% or even lower!

In particular, when we choose h = hopt, we always suffers from the problem of undercoverage because
the bias and stochastic variation is at a similar order.

2See https://en.wikipedia.org/wiki/Kernel_density_estimation#Bandwidth_selection for more details.

http://faculty.washington.edu/yenchic/17Sp_stat403.html
https://en.wikipedia.org/wiki/Kernel_density_estimation#Bandwidth_selection
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• To handle the problem of undercoverage, a most straight forward approach is to choose h → 0 faster
than the optimal rate. This method is called undersmoothing. However, when we undersmooth the
data, the MSE will be large (because the variance is going to get higher than the optimal case), meaning
that the accuracy of estimation decreases.

• Aside from the problem of bias, the CIs we construct are only for a single point x0 so the CI only has
a pointwise coverage. Namely, if we use the same procedure to construct a 1 − α CI of every point,
the probability that the entire density function is covered by the CI may be way less than the nominal
confidence level 1− α.

• There are approaches of constructing a CI such that it simultaneously covers the entire function. In this
case, the CI will be called a confidence band because it is like a band with the nominal probability of
covering the entire function. In general, how people construct a confidence band is via the bootstrap and
the band consists of two functions Lα(x), Uα(x) that can be constructed using the sample X1, · · · , Xn

such that

P (Lα(x) ≤ p(x) ≤ Uα(x) ∀ x) ≈ 1− α.

6.6 ♦ Advanced Topics

♦ Other error measurements. In the above analysis, we focus on the MISE, which is related to the
L2 error of estimating a function. In many theoretical analysis, researchers are often interested in Lq
errors: (∫

|p̂n(x)− p(x)|q dx
)1/q

.

In particular, the L∞ error, supx |p̂n(x) − p(x)|, is often used in many theoretical analysis. And the
L∞ error has an interesting error rate:

sup
x
|p̂n(x)− p(x)| = O(h2) +OP

(√
log n

nh

)
,

where the OP notation is a similar notation as O but is used for a random quantity. The extra
√

log n
term has many interesting stories and it comes from the empirical process theory. We will learn part
of this concept in the last few lectures.

♦ Derivative estimation. The KDE can also be used to estimate the derivative of a density function.
For example, when we use the Gaussian kernel, the first derivative p̂′n(x) is actually an estimator of the
first derivative of true density p′(x). Moreover, any higher order derivative can be estimated by the
corresponding derivatives of the KDE. The difference is, however, the MSE error rate will be different.
If we consider estimating the `-th derivative, p(`), the MISE will be

MISE(p̂(`)) = E
(∫

(p̂(`)n (x)− p(`)(x))2
)

= O(h2) +O

(
1

nh1+2`

)
under suitable conditions. The bias generally remains at a similar rate but the variance is now at rate
O
(

1
nh1+2`

)
. Namely, the variance converges at a slower rate. The optimal MISE for estimating the

`-th derivative of p will be

MISEopt(p̂
(`)) = O

(
n−

4
5+2`

)
, hopt,` = O(n−

1
5+2` ).
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♦ Multivariate density estimation. In addition to estimating the density function of a univariate
random variable, the KDE can be applied to estimate the density function of a multivariate random
variable. In this case, we need to use a multivariate kernel function. Generally, a multivariate kernel
function can be constructed using a radial basis approach or a product kernel. Assume our data is
d-dimensional. Let ~x = (x1, · · · , xd) be the vector of each coordinate. The former uses cd · K (‖~x‖)
as the kernel function (cd is a constant depending on d, the dimension of the data). The later uses
K(~x) = K(x1)K(x2) · · ·K(xd) as the kernel function. In multivariate case, the KDE has a slower
convergence rate:

MISE(p̂n) = O(h4) +O

(
1

nhd

)
=⇒MISEopt(p̂n) = O

(
n−

4
4+d

)
, hopt = O

(
n−

1
4+d

)
.

Here you see that when d is large, the optimal convergence rate is very very slow. This means that
we cannot estimate the density very well using the KDE when the dimension d of the data is large, a
phenomenon known as the curse of dimensionality3.

3There are many forms of curse of dimensionality; the KDE is just one instance. For other cases, see https://en.wikipedia.
org/wiki/Curse_of_dimensionality

https://en.wikipedia.org/wiki/Curse_of_dimensionality
https://en.wikipedia.org/wiki/Curse_of_dimensionality
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