
Image Compression 

CS 663, Ajit Rajwade 



Image Compression 

• Process of converting an image file into 
another image file that occupies less storage 
space, without sacrificing its visual content. 

 

• Useful for saving storage space, and 
transmission costs. 



Types of compression 

• Lossless: the compressed image can be 
converted back with zero error. 

 

• Lossy: the compressed image cannot be 
converted back to the original without error. 
The amount of error is inversely proportional 
to the storage space (usually) and can be 
controlled by the user. 



Lossless compression - examples 

• LZW method (used in Winzip) 

• Huffman encoding (part of the JPEG 
algorithm, although overall JPEG is lossy) 

• Run-length encoding (also part of the JPEG 
algorithm, although JPEG is lossy overall) 



Lossy compression 

• JPEG 

• MPEG (for video) 

• MP3 (for audio) 

• Machine learning based techniques for 
compression of images or video (not covered 
in this course). 

 



Lossy image compression 

• Compression of text files or exe files cannot 
afford to be lossy. 

• But some portion of image content is often 
not very noticeable to the human eye, 
especially the higher frequencies. Discarding 
this extraneous information leads to 
compression without significant loss of visual 
appeal.  



Source: Article on compressive sensing by Candes and Wakin, from IEEE Signal Processing 
Magazine, 2008 



JPEG compression method 

• JPEG = Joint Photographic Experts Group 
• One of the most popular standards for 

compression of photographic images – widely 
used on the internet. 

• Widely used in digital cameras. 
• Implemented in all standard image processing 

software (MATLAB, OpenCV, etc.) 
• Essentially lossy (though there are some lossless 

variants) 
• Applicable for color as well as grayscale images. 

 



JPEG image compression 

• A user-specified quality factor (Q) between 0 and 
100 (higher Q means better quality) 

• JPEG algorithm compresses the image based on 
the user-provided Q. 

• Higher the Q, less will be the compression rate 
(but higher image quality). Lower Q will give 
higher compression rate (but poorer image 
quality). 

• JPEG can achieve 1/10 or 1/15 compression rate 
with little loss of quality. 

 



JPEG image compression 

• How is the loss of quality measured? 

• As MSE between original (uncompressed) and 
reconstructed images: 
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Q = 100, 
compression 
rate = 1/2.6 

Q = 50, 
compression 
rate = 1/15 

Q = 25, 
compression 
rate = 1/23 

Q = 1, 
compression 
rate = 1/144 

Q = 10, 
compression 
rate = 1/46 

http://en.wikipedia.org/wiki/JPEG 

http://en.wikipedia.org/wiki/JPEG


Steps of the JPEG algorithm: Overview 
(approximate) 

1. Divide the image into non-overlapping 8 x 8 blocks and 
compute the discrete cosine transform (DCT) of each 
block. This produces a set of 64 “DCT coefficients” per 
block.  

2. Quantize these DCT coefficients, i.e. divide by some 
number and round off to nearest integer (that’s why it is 
lossy). Many coefficients now become 0 and need not be 
stored! 

3. Now run a lossless compression algorithm (typically 
Huffman encoding) on the entire set of integers.  

 
 We will go through each step in detail in the several slides 

to follow. 





STEP 1: Discrete Cosine 
Transform (DCT) 



Discrete Cosine Transform (DCT) in 1D 
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Discrete Cosine Transform (DCT) in 1D 
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DCT 

• Expresses a signal as a linear combination of 
cosine bases (as opposed to the complex 
exponentials as in the Fourier transform). The 
coefficients of this linear combination are 
called DCT coefficients. 

• Is real-valued unlike the Fourier transform! 

• Discovered by Ahmed, Natarajan and Rao 
(1974) 
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• DCT basis matrix is orthonormal. The dot product of any row (or column) with itself 
is 1. The dot product of any two different rows (or two different columns) is 0. The 
inverse is equal to the transpose. 
 
• Being orthonormal, it preserves the squared norm, i.e.  
 
• DCT is NOT the real part of the Fourier! 
 
• DCT basis matrix is NOT symmetric.  
 
• Columns of the DCT matrix are called the DCT basis vectors. 
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DCT in 2D 
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The DCT matrix is this case will have size 
MN x MN, and it will be the Kronecker 
product of two DCT matrices – one of size 
M x M, the other of size N x N. The DCT 
matrix for the 2D case is also 
orthonormal, it is NOT symmetric and it is 
NOT the real part of the 2D DFT. 



How do the DCT bases look like? (1D 
case) 



How do the DCT bases look like? (2D-
case)  

The DCT transforms an 8×8 block of 
input values to a linear 
combination of these 64 patterns. The 
patterns are referred to as the two-
dimensional DCT basis functions, and 
the output values are referred to as 
transform coefficients.  
 
Each image here is obtained from the 
8 x 8 outer product of a pair of DCT 
basis vectors. Each image is stretched 
between 0 and 255 – on a common 
scale. 

http://en.wikipedia.org/wiki/JPEG 

http://en.wikipedia.org/wiki/Linear_combination
http://en.wikipedia.org/wiki/Linear_combination
http://en.wikipedia.org/wiki/JPEG


Again: DCT is NOT the real part of the 
DFT 

http://en.wikipedia.org/wiki/JPEG 

Real part of DFT DCT 

http://en.wikipedia.org/wiki/JPEG


DCT on grayscale image patches 

• The DCT coefficients of image patches have an 
amazing property. Most of the signal energy is 
concentrated in only a small number of 
coefficients.  

• This is good news for compression! Store only 
a few coefficients, and throw away the rest.  
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 828.3750 -106.7827  126.4183   -8.2540  -57.3750   -0.5311   -2.1682   29.8472 
   -6.0004    2.5328    8.3779   -7.1377  -17.3419   -6.9695  -11.1366   22.7612 
   -6.5212  -56.2336   23.5930   16.3746   -5.5436   74.2016   23.1543   65.2328 
   17.2141   29.9058   91.3782  -19.9119  106.2541   37.4804   15.8409  -25.1828 
   14.1250   53.2562  -30.5477   -0.8891   30.8750  -23.2787   -9.4005  -41.8019 
    5.7938   -2.9468   10.0191    2.8929  -16.5056   -2.4595   -5.1284   12.7364 
   -3.6579    2.3417  -14.8457   -0.7304   34.6327  -10.3257   -7.3430   -5.6082 
   -1.7071   -9.8264   -6.4722   -1.3611  -10.5811   -4.5081   -0.4332  -20.6615 

DCT COEFFICIENTS 

HISTOGRAM OF DCT 
COEFFICIENTS 



Original image Image reconstructed after 
discarding all DCT coefficients 
of non-overlapping 8 x 8 
patches with absolute value 
less than 10, and then 
computing inverse DCT 

Number of DCT coefficients of non-
overlapping 8 x 8 patches with absolute 
value less than 10 was 34,377 out of a total 
of 65536 (64 coefficients for each 8 x 8 
patch, totally 1024 such patches). This is 
more than 50%. Corresponding percentage 
for DFT was 1%. 

Image reconstructed after 
discarding all DCT coefficients 
of non-overlapping 8 x 8 
patches with absolute value 
less than 20, and then 
computing inverse DCT 

Number of DCT coefficients of non-
overlapping 8 x 8 patches with absolute 
value less than 10 was 51,045 out of a 
total of 65536 (64 coefficients for each 8 
x 8 patch, totally 1024 such patches). 
This is more than 78%. Corresponding 
percentage for DFT was 7%. 



Why DCT? DFT and DCT comparison 

DFT DCT 

Orthonormal Yes Yes 

Real/complex Complex Real 

Separable in 2D Yes Yes 

Norm-
preserving 

Yes Yes 

Inverse exists Yes Yes 

Fast 
implementation 

Yes (fft) Yes (uses fft) 

Energy 
compaction for 
natural images 

Good/Fair Much Better 



DCT has better energy compaction 
than DFT because… 

In computing the DFT of a signal, there is the implicit extension of several copies of the signal 
placed one after the other (n-point periodicity). The resultant discontinuities require several 
frequencies for good representation. As against this, the discontinuities are reduced in a DCT 
because a reflected copy of the signal is appended to it (2n-point periodicity).  



DCT has better energy compaction 
than DFT because… 



DCT computational complexity 

• Naïve implementation (matrix times vector) is 
O(N2) for a vector of N elements. 

• You can speed this up to O(N log N) using the 
FFT as shown on next slide. 
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In MATLAB, you have the commands called dct and idct (in 1D) 
and dct2 and idct2 (in 2D). 

• Note: u is frequency 
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Replace n by 2N-n-1 

http://en.wikipedia.org/wiki/Discrete_cosine_transform
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clear; 
clc; 
  
N = 17; 
f = rand(1,N); 
ff = [f f(end:-1:1)]; 
  
fprintf ('\nDCT of f using dct command of MATLAB: '); 
df = dct(f); 
display(df); 
  
fprintf ('\nDCT of f derived from fft: '); 
facs = zeros(1,2*N); facs(2:2*N) = sqrt(2/N); facs(1) = sqrt(1/N); 
df2 = fft(ff).*exp(-1i*pi*(0:2*N-1)/(2*N)).*facs/2; 
% the second term above is exp(-j \pi u / N) from the previous slide. 
% facs refers to the constant factors with which you must multiply the 
% values to get the conventional DCT and then divide by 2 
df2 = df2(1:N); df2 = real(df2);  
% df2 is in theory real, but due to numerical issues, insignificant complex 
%parts arise. 
display(df2); 

Code to verify the previous relationship. Try it out! 

http://www.cse.iitb.ac.in/~ajitvr/CS663_Fall2014/dct_dft_relation.m  

http://www.cse.iitb.ac.in/~ajitvr/CS663_Fall2014/dct_dft_relation.m
http://www.cse.iitb.ac.in/~ajitvr/CS663_Fall2014/dct_dft_relation.m


Which is the best orthonormal basis? 

• Consider a set of M data-points (e.g. image 
patches in a vectorized form) represented as a 
linear combination of column vectors of an 
ortho-normal basis matrix: 

 

• Suppose we reconstruct each patch using only 
a subset of some k coefficients as follows: 
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Which is the best orthonormal basis? 

• For which orthonormal basis is the following 
error the lowest: 
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Which is the best orthonormal basis? 

• The answer is the PCA basis, i.e. the set of k 
eigenvectors of the correlation matrix C, 
corresponding to the k largest eigen-values. 
Here is C is defined as: 
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PCA: separable 2D version 
• Find the correlation matrix CR of row vectors from 

the patches. 

• Find the correlation matrix CC of column vectors 
from the patches. 

• The final PCA basis is the Kronecker product of the 
individual bases: 
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But PCA is not used in JPEG, because… 

• It is image-dependent, and the basis matrix 
would need to be computed afresh for each 
image. 

• The basis matrix would need to be stored for 
each image.  

• It is expensive to compute – O(n3) for a vector 
with n elements. 

 The DCT is used instead!  



DCT and PCA 

• DCT can be computed very fast using fft. 

• It is universal – no need to store the DCT bases 
explicitly. 

• DCT has very good energy compaction 
properties, only slightly worse than PCA. 

 



Experiment 

• Suppose you extract M ~ 100,000 small-sized (8 x 8) patches from a set of 
images. 

• Compute the column-column and row-row correlation matrices. 

  

 

 

 

 

 

• Compute their eigenvectors VR and VC. 

• The eigenvectors will be very similar to the columns of the 1D-DCT matrix! (as 
evidenced by dot product values). 

• Now compute the Kronecker product of VR and VC and call it V. Reshape each 
column of V to form an image. These images will appear very similar to the 
DCT bases from the 2D DCT matrix (Kronecker product of 2 1D DCT matrices). 
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Code: http://www.cse.iitb.ac.in/~ajitvr/CS663_Fall2014/dct_pca.m 

http://www.cse.iitb.ac.in/~ajitvr/CS663_Fall2014/dct_pca.m


 
    0.3536    0.4904    0.4619    0.4157    0.3536    0.2778    0.1913    0.0975 
    0.3536    0.4157    0.1913   -0.0975   -0.3536   -0.4904   -0.4619   -0.2778 
    0.3536    0.2778   -0.1913   -0.4904   -0.3536    0.0975    0.4619    0.4157 
    0.3536    0.0975   -0.4619   -0.2778    0.3536    0.4157   -0.1913   -0.4904 
    0.3536   -0.0975   -0.4619    0.2778    0.3536   -0.4157   -0.1913    0.4904 
    0.3536   -0.2778   -0.1913    0.4904   -0.3536   -0.0975    0.4619   -0.4157 
    0.3536   -0.4157    0.1913    0.0975   -0.3536    0.4904   -0.4619    0.2778 
    0.3536   -0.4904    0.4619   -0.4157    0.3536   -0.2778    0.1913   -0.0975 

DCT matrix: dctmtx 
command from MATLAB (see 
code on website) 

    0.3517   -0.4493   -0.4278    0.4230    0.3754    0.3247   -0.2250   -0.1245 
    0.3534   -0.4366   -0.2276   -0.0110   -0.3078   -0.4746    0.4732    0.2975 
    0.3543   -0.3101    0.1728   -0.4830   -0.3989    0.0498   -0.4299   -0.4109 
    0.3546   -0.1115    0.4799   -0.3005    0.3342    0.4102    0.1856    0.4761 
    0.3547    0.1141    0.4823    0.2944    0.3301   -0.4182    0.1745   -0.4771 
    0.3543    0.3104    0.1771    0.4834   -0.3977   -0.0322   -0.4308    0.4103 
    0.3535    0.4357   -0.2319    0.0143   -0.3009    0.4656    0.4851   -0.2975 
    0.3520    0.4468   -0.4328   -0.4204    0.3686   -0.3253   -0.2342    0.1261 

    0.3520   -0.4461   -0.4305    0.4224    0.3696    0.3247    0.2342    0.1283 
    0.3537   -0.4338   -0.2345   -0.0114   -0.3000   -0.4671   -0.4814   -0.3028 
    0.3545   -0.3086    0.1662   -0.4896   -0.4007    0.0359    0.4261    0.4102 
    0.3548   -0.1145    0.4763   -0.3031    0.3339    0.4198   -0.1800   -0.4713 
    0.3548    0.1056    0.4839    0.2926    0.3349   -0.4194   -0.1766    0.4733 
    0.3543    0.3043    0.1863    0.4833   -0.4028   -0.0354    0.4269   -0.4097 
    0.3532    0.4389   -0.2269    0.0180   -0.3008    0.4654   -0.4811    0.3037 
    0.3512    0.4562   -0.4300   -0.4126    0.3694   -0.3242    0.2335   -0.1319 

VC : Eigenvectors of column-
column correlation matrix 

VR : Eigenvectors of row-row 
correlation matrix 

    1.0000    0.0007    0.0032    0.0002    0.0013    0.0001    0.0005    0.0000 
    0.0007    0.9970    0.0097    0.0689    0.0009    0.0322    0.0003    0.0110 
    0.0033    0.0106    0.9968    0.0118    0.0713    0.0004    0.0334    0.0025 
    0.0002    0.0718    0.0124    0.9926    0.0007    0.0927    0.0017    0.0276 
    0.0010    0.0001    0.0737    0.0004    0.9942    0.0008    0.0780    0.0010 
    0.0000    0.0261    0.0015    0.0962    0.0005    0.9934    0.0011    0.0569 
    0.0003    0.0007    0.0276    0.0021    0.0802    0.0010    0.9964    0.0013 
    0.0000    0.0076    0.0026    0.0227    0.0012    0.0596    0.0015    0.9979 

   1.0000    0.0002    0.0029    0.0001    0.0010    0.0000    0.0004    0.0000 
    0.0002    0.9965    0.0028    0.0766    0.0005    0.0314    0.0009    0.0107 
    0.0029    0.0025    0.9969    0.0046    0.0728    0.0017    0.0304    0.0013 
    0.0001    0.0795    0.0044    0.9923    0.0029    0.0916    0.0015    0.0243 
    0.0008    0.0003    0.0747    0.0026    0.9948    0.0061    0.0696    0.0004 
    0.0000    0.0246    0.0021    0.0949    0.0069    0.9940    0.0131    0.0452 
    0.0003    0.0004    0.0252    0.0003    0.0715    0.0137    0.9970    0.0002 
    0.0000    0.0076    0.0013    0.0207    0.0001    0.0476    0.0009    0.9986 

Absolute value of dot products between the columns of DCT matrix and columns of VR (left) and VC (right) 



DCT bases 64 columns of V – each reshaped to form an 8 x 
8 image, and rescaled to fit in the 0-1 range. 
Notice the similarity between the DCT bases and 
the columns of V. Again, V is the Kronecker 
product of VR and VC. 



DCT and PCA 
• DCT basis is very close to PCA basis when the 

data-points come from what is called as a 
stationary first order Markov process when ρ 
(defined below) is close to 1, i.e. 
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Defn. of 1st order Markov process 

For this part, you may refer to section 
2.9 (equations 2.67 and 2.68) of the 
book “Fundamentals of Digital Image 
Processing” by Anil Jain.  Also read, 
section 5.6 (equations 5.95 and 5.96). 



DCT and PCA 

• One can show that the eigenvectors of the covariance 
matrix of the form seen on the previous slide are very 
close to the DCT basis vectors! 

 

• Natural images approximate this first order Markov 
model, and hence DCT is almost as good as PCA for 
compression of a large ensemble of image patches. 
DCT has the advantage of being a universal basis and 
also the DCT coefficients are more efficiently 
computable than PCA coefficients. 



   1.0000    0.9902    0.9795    0.9733    0.9682    0.9639    0.9604    0.9570 
    0.9902    1.0005    0.9908    0.9795    0.9734    0.9684    0.9643    0.9605 
    0.9795    0.9908    1.0010    0.9908    0.9796    0.9735    0.9689    0.9646 
    0.9733    0.9795    0.9908    1.0005    0.9904    0.9793    0.9735    0.9686 
    0.9682    0.9734    0.9796    0.9904    1.0004    0.9903    0.9794    0.9734 
    0.9639    0.9684    0.9735    0.9793    0.9903    1.0001    0.9903    0.9793 
    0.9604    0.9643    0.9689    0.9735    0.9794    0.9903    1.0004    0.9904 
    0.9570    0.9605    0.9646    0.9686    0.9734    0.9793    0.9904    1.0002 

 1.0000    0.9888    0.9770    0.9704    0.9648    0.9599    0.9554    0.9510 
    0.9888    1.0004    0.9891    0.9768    0.9703    0.9646    0.9596    0.9548 
    0.9770    0.9891    1.0004    0.9886    0.9764    0.9698    0.9640    0.9587 
    0.9704    0.9768    0.9886    0.9994    0.9878    0.9755    0.9687    0.9627 
    0.9648    0.9703    0.9764    0.9878    0.9986    0.9870    0.9746    0.9676 
    0.9599    0.9646    0.9698    0.9755    0.9870    0.9978    0.9861    0.9734 
    0.9554    0.9596    0.9640    0.9687    0.9746    0.9861    0.9967    0.9847 
    0.9510    0.9548    0.9587    0.9627    0.9676    0.9734    0.9847    0.9951 

CR/CR(1,1) -  
Notice it can be 
approximated by the 
form shown two slides 
before, with ρ~0.99 

CC/CC(1,1) -  
Notice it can be 
approximated by the 
form shown two slides 
before, with ρ~0.9888 

More results from the previous experiment.  

See code: http://www.cse.iitb.ac.in/~ajitvr/CS663_Fall2014/dct_pca.m 

http://www.cse.iitb.ac.in/~ajitvr/CS663_Fall2014/dct_pca.m


Computation of DCT coefficients in 
JPEG 

• Before computation, the value 128 (midpoint 
of the range 0 to 255) is subtracted from every 
pixel value. 

• This changes the range of intensity values 
from 0 to 255, to -128 to 127. 

• This also changes the range of DCT coefficient 
values from 0 to 2048, to -1024 to +1024. 



STEP 2: Quantization 



Quantization 

• The DCT coefficients are floating point 
numbers and storing them in a file will 
produce no compression. So they need to be 
quantized. 

• The human eye is not sensitive to changes in 
the higher frequency content. So we can have 
cruder quantization for the higher frequency 
coefficients and a finer one for the lower 
frequency coefficients. 

 



Quantization 

• Quantization is performed by dividing the DCT 
coefficients by a quantization matrix and rounding 
off to the nearest integer. 

• This is the lossy part of JPEG! 
• The quantization matrix on the next slide is for 

quality factor Q = 50.  
• Matrices for other Q values are obtained by scaling 

the Q = 50 matrix with a constant 50/Q. 
• This effectively increases the values of the matrix for 

lower values of Q, and reduces the values of the 
matrix for higher values of Q. 
 



)/(round uvuvuv MGB Quantization matrix for Q = 50: 
notice the higher values in the 
matrix for higher frequency 
coefficients 

M 

Most of the values in B are 0! 
They need not be stored! Only 
the non-zero values in B will be 
stored! 



How was this quantization matrix 
picked? 

• Picked from psychophysical studies having the 
goal of trying to maximize the amount of 
compression – but also trying to minimize 
perceptually significant errors. 



STEP 3: Lossless compression steps: 
Huffman encoding and Run length 

encoding  



Huffman encoding 

• Input: a set of non-zero quantized DCT coefficients from all 
the different blocks of the image (values lying between -
1024 to +1024). 

• Output: a set of encoded coefficients with length (in terms 
of number of bits) less than that of the original set. 

• Principles behind Huffman encoding: 
(1) Encode the more frequently occurring coefficients with 

fewer bits. Encode the rarely occurring coefficients with 
more bits. This will reduce the average bit-length.  

(2) Ensure that the encoding for no coefficient is a strict prefix 
of the encoding of any other coefficient (to be explained 
on next slide). This is called a “prefix-free code”. 



Huffman encoding example 

• Consider a set of alphabets {a,e,q}. Let the frequency of an 
alphabet ‘x’ be denoted as p(x).  

• Assume p(e) > p(a) > p(q) [actually true in the English 
language]. 

• Consider the following code-word assignment: e – 0, a – 1, 
q – 01 (note: we assigned more bits for q). Now consider 
the encoded stream: 001. It can be interpreted as ‘eea’ or 
‘eq’.  

• The reason for this ambiguity is that the code for ‘e’ is a 
strict prefix of the code for ‘q’.  

• For unambiguous decoding, we need prefix-free codes. 
Example e – 0, a – 10, q – 11 is one example of a prefix-free 
code. 



Huffman encoding example 

• The Huffman encoding algorithm asks the 
following question: 

 Given a set of n alphabets A = {ai} with 
corresponding frequencies {p(ai)} (each 
frequency lies from 0 to 1), what prefix-free 
encoding yields the least average bit length? 
That is, which set of code-words {λ(ai)} will 
minimize 

|)(|)()})(({
1
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n
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ii aapaL  
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 Length of the code-
word λ(ai)  



Algorithm 
1. Sort alphabets in increasing order of frequency. Create a leaf 

node from each alphabet. These leaf nodes will belong to a 
binary tree called the Huffman tree. 

2. Combine the two lowest frequency nodes s1 and s2 to create a 
parent node s12. s1 and s2 will be the left and right child of s12. 
The frequency of s12 is given by p(s12) = p(s1) + p(s2). 

3. Label the edge from s12 to s1 with a ‘0’ and the edge from s12 to 
s2 with a ‘1’. 

4. Delete s1 and s2 from the sorted list of alphabets and insert the 
node s12, i.e. root node of the tree (s12,s1,s2) in the correct 
place depending on the value of p(s12). 

5. Repeat steps 2 to 4 until there is only one node in the list. This 
will be the root node of the final Huffman tree. 

6. Traverse the tree from the root node until each leaf and collect 
all the binary symbols along every edge into a string. This string 
will form the code word for that symbol.  



Example 
www.cis.upenn.edu/~matuszek/cit594-2002/Slides/huffman.ppt‎ 
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A = 0 
B = 100 
C = 1010 
D = 1011 
R = 11 

This is a prefix-free code. No 
leaf node is on the path to 
any other node. 

0.4 0.2 0.1 0.1 0.2 

0.4 0.2 0.1 0.1 0.2 

0.4 0.2 0.1 0.1 0.2 

0.4 0.2 0.1 0.1 0.2 

0.2 

0.4 

0.6 

1.00 
0.4 

0.2 

0.2 

0.4 

0.6 

0 

0.2 

http://www.cis.upenn.edu/~matuszek/cit594-2002/Slides/huffman.ppt
http://www.cis.upenn.edu/~matuszek/cit594-2002/Slides/huffman.ppt
http://www.cis.upenn.edu/~matuszek/cit594-2002/Slides/huffman.ppt
http://www.cis.upenn.edu/~matuszek/cit594-2002/Slides/huffman.ppt
http://www.cis.upenn.edu/~matuszek/cit594-2002/Slides/huffman.ppt


1 

1 

1 

1 

0 

0 

0 

0.4 0.2 0.1 0.1 0.2 

0.2 

0.4 
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1.00 

A = 0 
B = 100 
C = 1010 
D = 1011 
R = 11 

Input string: RABBCDR 
Encoded bit stream:  
11-0-100-100-1010-1011-11 
Decoded string: RABBCDR 

To perform encoding, we maintain an initially empty encoded bit stream. Read a symbol 
from the input, traverse the Huffman tree from root node to the leaf node for that 
symbol, collecting all the bit labels on the traversed path, and appending them to the 
encoded bit stream. Repeat this for every symbol from the input. Example: for R, we 
write 11. 

To perform decoding, read the encoded bit stream, and traverse the Huffman tree from 
the root node toward a leaf node, following the path as indicated by the bit stream. For 
example, if you read in 11, you would travel to the leaf node R. When you reach a leaf 
node, append its associated symbol to the decoded output. Go back to the root node 
and traverse the tree as per the remaining bits from the encoded bit stream.   

0 

Average code length here 
= 1 * p(A) + 3 * p(B) + 4 * p(C) + 4*p(D) 
+ 2 *p(R) = 0.4 + 0.6 + 0.4 + 0.4 + 0.4 = 
2.2.   



About the algorithm 

• This is a greedy algorithm, which is guaranteed to 
produce the prefix-free code with minimal 
average length (proof beyond the scope of the 
course). 

• There could be multiple sets of code words with 
the same average bit length. Huffman encoding 
produces one of them, depending on the order in 
which the nodes were combined, and the 
convention for labeling the edges with a 0 or a 1. 



Zig-zag ordering 

• The quantized DCT coefficients are arranged 
now in a zigzag order as follows. The zig-zag 
pattern leaves a bunch of consecutive zeros at 
the end. 

−26 

−3 0 

−3 −2 −6 

2 −4 1 −3 

1 1 5 1 2 

−1 1 −1 2 0 0 

0 0 0 −1 −1 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 

0 0 0 

0 0 

0 



Run length encoding 

• The non-zero re-ordered quantized DCT 
coefficients (except for the DC coefficient) are 
written down in the following format:  

  • run-length (number of zeros before this coefficient),  
• size (no. of bits to store the Huffman code for the 
coefficient),  
• actual Huffman code of the coefficient 

4 bits each 

We refer to the above set as a triple. In case there are more than 15 zeros in between 
2 non-zero AC coefficients, a special triple is inserted. That triple is (15,0,0). If there 
are a large number of trailing zeros at the end of a block, we but in an “end of block” 
triple given as (0,0). 



−26 

−3 0 

−3 −2 −6 

2 −4 1 −3 

1 1 5 1 2 

−1 1 −1 2 0 0 

0 0 0 −1 −1 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 

0 0 0 

0 0 

0 

(0, 2)(-3); (1, 2)(-3); (0, 2)(-2); (0, 3)(-6); (0, 
2)(2); (0, 2)(-4); (0, 1)(1); (0, 2)(-3); (0, 1)(1); 
(0, 1)(1); (0, 3)(5); (0, 1)(1); (0, 2)(2); (0, 1)(-1); 
(0, 1)(1); (0, 2)(2); (5, 1)(-1); (0, 1)(-1); (0, 0). 



Encoding DC coefficients 

• The difference between the DC coefficient of 
the current and previous patch is encoded and 
stored.  

• These difference values are Huffman encoded 
using a separate table (different from the 
Huffman table used for AC coefficients). 

• The DC coefficient of the first patch is stored 
explicitly.  

 



JPEG encoded file 

• Begins with a header that contains 
information such as size of file, whether color 
or grayscale, the table of different alphabets 
(i.e. DCT coefficient values and their Huffman 
codes) and the quantization matrix. 

• This is followed by a bit stream containing 
triples of the form: (run-length, the length of 
the Huffman code of the coefficient, and the 
Huffman code for the coefficient).  



JPEG DECODER 



JPEG decoding 

• Perform Huffman decoding and obtain the DCT coefficients 
(AC).   

• Multiply the AC coefficients point-wise with the entries in the 
quantization matrix (this is sometimes called as de-
quantization).  

• Compute the DC coefficients for each patch using the 
differences between the DC coefficients of successive 
patches. Multiply by the appropriate entry from the 
quantization matrix. 

• Reconstruct the image patches of size 8 x 8 using the inverse 
DCT. Add 128 to the intensity values in the patch. 

• Note: During JPEG encoding, the round-off errors from the 
quantization step can never be recovered again. Hence JPEG 
is overall a lossy algorithm. 



JPEG on Color Images 



Color image spaces 

• Color values in a color image are most 
commonly defined as an (R,G,B) triple, i.e. in 
the RGB color space. 

• There are several other color spaces in which 
the colors can be represented, eg: HSV, YCbCr, 
Lab, Luv, CMY(K) and so on. 



JPEG for color images 

• The RGB values are converted to YCbCr using: 
 
 
 

• Encode the Y, Cb, and Cr channels separately, using the 
“grayscale” JPEG algorithm on each channel. The Cb 
and Cr channels (the chrominance channels) are down-
sampled by a factor of 2 in X and Y direction to further 
save storage space. 

• The Y channel (luminance) is not down-sampled. This is 
because the human eye is much more sensitive to 
luminance than to chrominance information. 
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Down-sampling of chrominance 
channel in X and Y directions by a 
factor of 2 

No down-sampling of 
chrominance or 
luminance channels 

Cb channel 



PCA on RGB values 

• Suppose you take N color images and extract 
RGB values of each pixel (3 x 1 vector at each 
location).  

• Now, suppose you build an eigenspace out of 
this – you get 3 eigenvectors, each 
corresponding to 3 different eigenvalues. 



PCA on RGB values 

• The eigenvectors will look typically as follows: 

0.5952    0.6619    0.4556 

0.6037    0.0059   -0.7972 

     0.5303   -0.7496    0.3961  

• Exact numbers are not important, but the first 
eigenvector is like an average of RGB. It is 
called as the Luminance Channel (Y).  

 



PCA on RGB values 

• The second eigenvector is like Y-B, and the third is 
like Y-G. These are called as the Chrominance 
Channels. 

• The Y-Cb-Cr color space is related to this PCA-
based space (though there are some details in 
the relative weightings of RGB to get Luminance 
denoted by Y, and Chrominance – denoted by Cb 
and Cr). 

• The values in the three channels Y, Cb and Cr are 
decorrelated, similar to the values projected onto 
the PCA-based channels.  
 



PCA on RGB values 

• The luminance channel (Y) carries most information 
from the point of view of human perception, and the 
human eye is less sensitive to changes in chrominance. 

• This fact can be used to assign coarser quantization 
levels (i.e. fewer bits) for storing or transmitting Cb and 
Cr values as compared to the Y channel. This improves 
the compression rate. 

• The JPEG standard for color image compression uses 
the YCbCr format. For an image of size M x N x 3, it 
stores Y with full resolution (i.e. as an M x N image), 
and Cb and Cr with 25% resolution, i.e. as M/2 x N/2 
images. 



R channel

G channel

B channel



Image containing eigencoefficient value corresponding to 1st eigenvector (with maximum eigenvalue)



Image containing eigencoefficient value corresponding to 2nd eigenvector (with second largest eigenvalue)



The variances of the three eigen-coefficient values:  
8411, 159.1, 71.7 

Image containing eigencoefficient value corresponding to 3rd eigenvector (with least eigenvalue)



Y channel



Cb channel



Cr channel



RGB, YCbCr and correlation 

• The R, G and B values of an image are typically 
highly correlated, as evidence by high values 
of the normalized correlation coefficient: 

 

 

• It is suboptimal to encode R,G,B separately. 

• The corresponding Y, Cb, Cr values are far less 
correlated, and can be independently encoded 
at lower costs of storage. 
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Modes of JPEG Compression 



Modes of JPEG compression 

• Sequential: encoding and decoding of patches 
takes place in left to right, top to bottom 
order. 

• Progressive: encoding and decoding in 
multiple scans, each one with finer 
quantization levels. 

• Hierarchical: encoding and decoding 
performed at different scales. 



http://www.cse.iitd.ernet.in/~pkalra/siv864/pdf/session-11-4.pdf 

Commonly seen in 
web applications (e.g.: 
Facebook) 
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JPEG artifacts 
• Seam artifacts at patch boundaries (more 

prominent for lower Q values). 

• Ringing artifacts around edges. 

• Some loss of edge and textural detail. 

• Color artifacts 
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A word about JPEG 2000 

• JPEG2000 (extension jp2) is the latest series of 
standards from the JPEG committee 
– Uses wavelet transform 

– Better compression than JPG 

– Superior lossless compression 

– Supports large images and images with many components 

– Region-of-interest coding 
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