
Image Compression

CS 663, Ajit Rajwade

Image Compression

• Process of converting an image file into
another image file that occupies less storage
space, without sacrificing its visual content.

• Useful for saving storage space, and
transmission costs.

Types of compression

• Lossless: the compressed image can be
converted back with zero error.

• Lossy: the compressed image cannot be
converted back to the original without error.
The amount of error is inversely proportional
to the storage space (usually) and can be
controlled by the user.

Lossless compression - examples

• LZW method (used in Winzip)

• Huffman encoding (part of the JPEG
algorithm, although overall JPEG is lossy)

• Run-length encoding (also part of the JPEG
algorithm, although JPEG is lossy overall)

Lossy compression

• JPEG

• MPEG (for video)

• MP3 (for audio)

• Machine learning based techniques for
compression of images or video (not covered
in this course).

Lossy image compression

• Compression of text files or exe files cannot
afford to be lossy.

• But some portion of image content is often
not very noticeable to the human eye,
especially the higher frequencies. Discarding
this extraneous information leads to
compression without significant loss of visual
appeal.

Source: Article on compressive sensing by Candes and Wakin, from IEEE Signal Processing
Magazine, 2008

JPEG compression method

• JPEG = Joint Photographic Experts Group
• One of the most popular standards for

compression of photographic images – widely
used on the internet.

• Widely used in digital cameras.
• Implemented in all standard image processing

software (MATLAB, OpenCV, etc.)
• Essentially lossy (though there are some lossless

variants)
• Applicable for color as well as grayscale images.

JPEG image compression

• A user-specified quality factor (Q) between 0 and
100 (higher Q means better quality)

• JPEG algorithm compresses the image based on
the user-provided Q.

• Higher the Q, less will be the compression rate
(but higher image quality). Lower Q will give
higher compression rate (but poorer image
quality).

• JPEG can achieve 1/10 or 1/15 compression rate
with little loss of quality.

JPEG image compression

• How is the loss of quality measured?

• As MSE between original (uncompressed) and
reconstructed images:











 
 

MSE
PSNR

jiIjiI
HW

IIMSE
H

i

W

j

2

10

2

1 1

compressedorigcompressedorig

255
log10 RatioNoise toSignalPeak

)),(),((
1

),(

Q = 100,
compression
rate = 1/2.6

Q = 50,
compression
rate = 1/15

Q = 25,
compression
rate = 1/23

Q = 1,
compression
rate = 1/144

Q = 10,
compression
rate = 1/46

http://en.wikipedia.org/wiki/JPEG

http://en.wikipedia.org/wiki/JPEG

Steps of the JPEG algorithm: Overview
(approximate)

1. Divide the image into non-overlapping 8 x 8 blocks and
compute the discrete cosine transform (DCT) of each
block. This produces a set of 64 “DCT coefficients” per
block.

2. Quantize these DCT coefficients, i.e. divide by some
number and round off to nearest integer (that’s why it is
lossy). Many coefficients now become 0 and need not be
stored!

3. Now run a lossless compression algorithm (typically
Huffman encoding) on the entire set of integers.

 We will go through each step in detail in the several slides

to follow.

STEP 1: Discrete Cosine
Transform (DCT)

Discrete Cosine Transform (DCT) in 1D
















1

0

1

0

~)()(

)()(

N

u

un

N

N

n

un

N

auFnf

anfuF

un

N

un

N

un

N

un

N

aa

Nu
N

un

N
a

u
N

aDCT










 




~

1...1,
2

)12(
cos

2

0,
1

:


conjugate)complex (~

:

*

2

un

N
un

N

N

un
j

un

N

aa

eaDFT




 

Discrete Cosine Transform (DCT) in 1D






































































 



)1(

.

.

.

)0(

...

.....

.....

.....

...

)1(

.

.

.

)0(

1,10,1

1,00,0

Nf

f

aa

aa

NF

F

NN

N

N

N

N

NN

IAA

A



 

T

NNR






































































 



)1(

.

.

.

)0(

...

.....

.....

.....

...

)1(

.

.

.

)0(

1,10,1

1,00,0

NF

F

aa

aa

Nf

f

NN

N

N

N

N

NN

IAA

A



 

T

NN DCTR
~~

 Matrix) Basis(
~n

u

u

n

) transposeconjugate(
~

:

~
:

*T

T

DFT

DCT

AA

AA





DCT

• Expresses a signal as a linear combination of
cosine bases (as opposed to the complex
exponentials as in the Fourier transform). The
coefficients of this linear combination are
called DCT coefficients.

• Is real-valued unlike the Fourier transform!

• Discovered by Ahmed, Natarajan and Rao
(1974)






































































 



)1(

.

.

.

)0(

...

.....

.....

.....

...

)1(

.

.

.

)0(

1,10,1

1,00,0

NF

F

aa

aa

Nf

f

NN

N

N

N

N

NN

IAA

A



 

T

NN DCTR
~~

 Matrix) Basis(
~u

n

• DCT basis matrix is orthonormal. The dot product of any row (or column) with itself
is 1. The dot product of any two different rows (or two different columns) is 0. The
inverse is equal to the transpose.

• Being orthonormal, it preserves the squared norm, i.e.

• DCT is NOT the real part of the Fourier!

• DCT basis matrix is NOT symmetric.

• Columns of the DCT matrix are called the DCT basis vectors.

22
Ff 

DCT in 2D




















1

0

1

0

1

0

~),(),(

),(),(

N

u

unvm

NM

N

n

unvm

NM

M

m

avuFmnf

amnfvuF

unvm

NM

unvm

NM

unvm

NM

aa

Mv)(vMv

Nu)(uNu

MvNu
M

vm

N

un
vua

DCT














 







 


~

/2)(else ,0 /1)(

/2)(else ,0 /1)(

1...0,1...0,
2

)12(
cos

2

)12(
cos)()(

:








The DCT matrix is this case will have size
MN x MN, and it will be the Kronecker
product of two DCT matrices – one of size
M x M, the other of size N x N. The DCT
matrix for the 2D case is also
orthonormal, it is NOT symmetric and it is
NOT the real part of the 2D DFT.

How do the DCT bases look like? (1D
case)

How do the DCT bases look like? (2D-
case)

The DCT transforms an 8×8 block of
input values to a linear
combination of these 64 patterns. The
patterns are referred to as the two-
dimensional DCT basis functions, and
the output values are referred to as
transform coefficients.

Each image here is obtained from the
8 x 8 outer product of a pair of DCT
basis vectors. Each image is stretched
between 0 and 255 – on a common
scale.

http://en.wikipedia.org/wiki/JPEG

http://en.wikipedia.org/wiki/Linear_combination
http://en.wikipedia.org/wiki/Linear_combination
http://en.wikipedia.org/wiki/JPEG

Again: DCT is NOT the real part of the
DFT

http://en.wikipedia.org/wiki/JPEG

Real part of DFT DCT

http://en.wikipedia.org/wiki/JPEG

DCT on grayscale image patches

• The DCT coefficients of image patches have an
amazing property. Most of the signal energy is
concentrated in only a small number of
coefficients.

• This is good news for compression! Store only
a few coefficients, and throw away the rest.

149 74 92 74 74 74 149 162
 87 74 117 30 74 105 180 130
 30 117 105 43 105 130 149 105
 74 162 105 74 105 117 105 105
 117 149 74 117 74 105 74 149
 149 87 74 87 74 74 117 180
 105 74 105 43 61 117 180 149
 74 74 105 74 105 130 149 105

IMAGE PATCH

 828.3750 -106.7827 126.4183 -8.2540 -57.3750 -0.5311 -2.1682 29.8472
 -6.0004 2.5328 8.3779 -7.1377 -17.3419 -6.9695 -11.1366 22.7612
 -6.5212 -56.2336 23.5930 16.3746 -5.5436 74.2016 23.1543 65.2328
 17.2141 29.9058 91.3782 -19.9119 106.2541 37.4804 15.8409 -25.1828
 14.1250 53.2562 -30.5477 -0.8891 30.8750 -23.2787 -9.4005 -41.8019
 5.7938 -2.9468 10.0191 2.8929 -16.5056 -2.4595 -5.1284 12.7364
 -3.6579 2.3417 -14.8457 -0.7304 34.6327 -10.3257 -7.3430 -5.6082
 -1.7071 -9.8264 -6.4722 -1.3611 -10.5811 -4.5081 -0.4332 -20.6615

DCT COEFFICIENTS

HISTOGRAM OF DCT
COEFFICIENTS

Original image Image reconstructed after
discarding all DCT coefficients
of non-overlapping 8 x 8
patches with absolute value
less than 10, and then
computing inverse DCT

Number of DCT coefficients of non-
overlapping 8 x 8 patches with absolute
value less than 10 was 34,377 out of a total
of 65536 (64 coefficients for each 8 x 8
patch, totally 1024 such patches). This is
more than 50%. Corresponding percentage
for DFT was 1%.

Image reconstructed after
discarding all DCT coefficients
of non-overlapping 8 x 8
patches with absolute value
less than 20, and then
computing inverse DCT

Number of DCT coefficients of non-
overlapping 8 x 8 patches with absolute
value less than 10 was 51,045 out of a
total of 65536 (64 coefficients for each 8
x 8 patch, totally 1024 such patches).
This is more than 78%. Corresponding
percentage for DFT was 7%.

Why DCT? DFT and DCT comparison

DFT DCT

Orthonormal Yes Yes

Real/complex Complex Real

Separable in 2D Yes Yes

Norm-
preserving

Yes Yes

Inverse exists Yes Yes

Fast
implementation

Yes (fft) Yes (uses fft)

Energy
compaction for
natural images

Good/Fair Much Better

DCT has better energy compaction
than DFT because…

In computing the DFT of a signal, there is the implicit extension of several copies of the signal
placed one after the other (n-point periodicity). The resultant discontinuities require several
frequencies for good representation. As against this, the discontinuities are reduced in a DCT
because a reflected copy of the signal is appended to it (2n-point periodicity).

DCT has better energy compaction
than DFT because…

DCT computational complexity

• Naïve implementation (matrix times vector) is
O(N2) for a vector of N elements.

• You can speed this up to O(N log N) using the
FFT as shown on next slide.

: thatshown be canIt

12),12()(
~

10),()(
~





NnNnNfnf

Nnnfnf

DCT of f is computed from the DFT of the sequence of double length as f.
Only the first N frequencies are picked, i.e. u lies from 0 to N-1.

f
~

Reflected version of f, appended to f.

uN

uNu

NuufDFTeuuFufDCT Nuj

 of esother valufor ,2//2

0for ,2//1)(

 where

10),)(
~

()()())(()2/(





 



 

In MATLAB, you have the commands called dct and idct (in 1D)
and dct2 and idct2 (in 2D).

• Note: u is frequency











 
12

2/2
1

0

2/2)12()()))((
~

(
N

Nn

Nunj
N

n

Nunj enNfenfunfDFT 

1

You would noticed that the constant
factors sqrt(1/N) and sqrt(2/N) are
missing in this expression. These
factors are essential for the DCT
matrix to be orthonormal, but their
presence doesn’t allow for this
relationship between DCT and DFT.

http://en.wikipedia.org/wiki/Discrete_
cosine_transform
http://www.ecsutton.ece.ufl.edu/dip/h
andouts/dct.pdf











 
1

0

2/)12(2
1

0

2/2)()(
N

n

NnNuj
N

n

Nunj enfenf 

 

 


















1

0

2/22/24/24/22/2

1

0

2/22/22/)2(24/24/22/2

)(

)(

N

n

NujNunjNujNujNunj

N

n

NujNunjNNujNujNujNunj

eeeeenf

eeeeeenf





 




 
1

0

2/)12(22/2)(
N

n

NnNujNunj eenf 

 
























 




1

0

2/)2/1(22/)2/1(2
2/

1

0

4/22/24/22/24/2

2
)(2

)(

N

n

NnujNnuj
Nuj

N

n

NujNunjNujNunjNuj

ee
nfe

eeeenfe






)))((
~

(
2

)12(
cos)(2

2

)12(
cos)(2

2/
1

0

1

0

2/

unfDFTe
N

nu
nf

N

nu
nfe

Nuj
N

n

N

n

Nuj

























 









 






Replace n by 2N-n-1

http://en.wikipedia.org/wiki/Discrete_cosine_transform
http://en.wikipedia.org/wiki/Discrete_cosine_transform
http://www.ecsutton.ece.ufl.edu/dip/handouts/dct.pdf
http://www.ecsutton.ece.ufl.edu/dip/handouts/dct.pdf

clear;
clc;

N = 17;
f = rand(1,N);
ff = [f f(end:-1:1)];

fprintf ('\nDCT of f using dct command of MATLAB: ');
df = dct(f);
display(df);

fprintf ('\nDCT of f derived from fft: ');
facs = zeros(1,2*N); facs(2:2*N) = sqrt(2/N); facs(1) = sqrt(1/N);
df2 = fft(ff).*exp(-1i*pi*(0:2*N-1)/(2*N)).*facs/2;
% the second term above is exp(-j \pi u / N) from the previous slide.
% facs refers to the constant factors with which you must multiply the
% values to get the conventional DCT and then divide by 2
df2 = df2(1:N); df2 = real(df2);
% df2 is in theory real, but due to numerical issues, insignificant complex
%parts arise.
display(df2);

Code to verify the previous relationship. Try it out!

http://www.cse.iitb.ac.in/~ajitvr/CS663_Fall2014/dct_dft_relation.m

http://www.cse.iitb.ac.in/~ajitvr/CS663_Fall2014/dct_dft_relation.m
http://www.cse.iitb.ac.in/~ajitvr/CS663_Fall2014/dct_dft_relation.m

Which is the best orthonormal basis?

• Consider a set of M data-points (e.g. image
patches in a vectorized form) represented as a
linear combination of column vectors of an
ortho-normal basis matrix:

• Suppose we reconstruct each patch using only
a subset of some k coefficients as follows:

IUUUUθqUθq   TTN

i

N

iii RR ,,, 11

patches) allfor retained are tscoefficien same (the tscoefficien except

 all 0 tosettingby obtained is
~
 where,

~~)(

kk

ii

k

i θθUq 

Which is the best orthonormal basis?

• For which orthonormal basis is the following
error the lowest:





M

i

i

k

i

1

2
)(~ qq

Which is the best orthonormal basis?

• The answer is the PCA basis, i.e. the set of k
eigenvectors of the correlation matrix C,
corresponding to the k largest eigen-values.
Here is C is defined as:

ilk

M

i

iklkl

T

i

M

i

i

qq
M

C

M















1

1

1

1

,
1

1
qqC

PCA: separable 2D version
• Find the correlation matrix CR of row vectors from

the patches.

• Find the correlation matrix CC of column vectors
from the patches.

• The final PCA basis is the Kronecker product of the
individual bases:

nnnnnnnnT

thn

i

M

i

n

j

ii

thn

i

M

i

n

j

ii

RRRRI

jRjqeig

jqjq
M

jRjqeig

jqjq
M





 



 

















iCRCR

iCCC

C

iRRR

R

qVVVVVVVV

qCD,V

C

qCD,V

C

,,,;;

 of vector column)(:,);(][

;)'(:,)(:,
1

1

 of row vector :),();(][

;:),(:)',(
1

1

22

1

1 1

1

1 1

But PCA is not used in JPEG, because…

• It is image-dependent, and the basis matrix
would need to be computed afresh for each
image.

• The basis matrix would need to be stored for
each image.

• It is expensive to compute – O(n3) for a vector
with n elements.

 The DCT is used instead!

DCT and PCA

• DCT can be computed very fast using fft.

• It is universal – no need to store the DCT bases
explicitly.

• DCT has very good energy compaction
properties, only slightly worse than PCA.

Experiment

• Suppose you extract M ~ 100,000 small-sized (8 x 8) patches from a set of
images.

• Compute the column-column and row-row correlation matrices.

• Compute their eigenvectors VR and VC.

• The eigenvectors will be very similar to the columns of the 1D-DCT matrix! (as
evidenced by dot product values).

• Now compute the Kronecker product of VR and VC and call it V. Reshape each
column of V to form an image. These images will appear very similar to the
DCT bases from the 2D DCT matrix (Kronecker product of 2 1D DCT matrices).





 

 













M

i j

ii

M

i

T

M

i j

ii

M

i

T

i

jPjP
MM

jPjP
MM

1

8

11

1

8

11

:);,(:)',(
1

1

1

1

 ;)'(:,)(:,
1

1

1

1

iiR

iC

PPC

PPC

Code: http://www.cse.iitb.ac.in/~ajitvr/CS663_Fall2014/dct_pca.m

http://www.cse.iitb.ac.in/~ajitvr/CS663_Fall2014/dct_pca.m

 0.3536 0.4904 0.4619 0.4157 0.3536 0.2778 0.1913 0.0975
 0.3536 0.4157 0.1913 -0.0975 -0.3536 -0.4904 -0.4619 -0.2778
 0.3536 0.2778 -0.1913 -0.4904 -0.3536 0.0975 0.4619 0.4157
 0.3536 0.0975 -0.4619 -0.2778 0.3536 0.4157 -0.1913 -0.4904
 0.3536 -0.0975 -0.4619 0.2778 0.3536 -0.4157 -0.1913 0.4904
 0.3536 -0.2778 -0.1913 0.4904 -0.3536 -0.0975 0.4619 -0.4157
 0.3536 -0.4157 0.1913 0.0975 -0.3536 0.4904 -0.4619 0.2778
 0.3536 -0.4904 0.4619 -0.4157 0.3536 -0.2778 0.1913 -0.0975

DCT matrix: dctmtx
command from MATLAB (see
code on website)

 0.3517 -0.4493 -0.4278 0.4230 0.3754 0.3247 -0.2250 -0.1245
 0.3534 -0.4366 -0.2276 -0.0110 -0.3078 -0.4746 0.4732 0.2975
 0.3543 -0.3101 0.1728 -0.4830 -0.3989 0.0498 -0.4299 -0.4109
 0.3546 -0.1115 0.4799 -0.3005 0.3342 0.4102 0.1856 0.4761
 0.3547 0.1141 0.4823 0.2944 0.3301 -0.4182 0.1745 -0.4771
 0.3543 0.3104 0.1771 0.4834 -0.3977 -0.0322 -0.4308 0.4103
 0.3535 0.4357 -0.2319 0.0143 -0.3009 0.4656 0.4851 -0.2975
 0.3520 0.4468 -0.4328 -0.4204 0.3686 -0.3253 -0.2342 0.1261

 0.3520 -0.4461 -0.4305 0.4224 0.3696 0.3247 0.2342 0.1283
 0.3537 -0.4338 -0.2345 -0.0114 -0.3000 -0.4671 -0.4814 -0.3028
 0.3545 -0.3086 0.1662 -0.4896 -0.4007 0.0359 0.4261 0.4102
 0.3548 -0.1145 0.4763 -0.3031 0.3339 0.4198 -0.1800 -0.4713
 0.3548 0.1056 0.4839 0.2926 0.3349 -0.4194 -0.1766 0.4733
 0.3543 0.3043 0.1863 0.4833 -0.4028 -0.0354 0.4269 -0.4097
 0.3532 0.4389 -0.2269 0.0180 -0.3008 0.4654 -0.4811 0.3037
 0.3512 0.4562 -0.4300 -0.4126 0.3694 -0.3242 0.2335 -0.1319

VC : Eigenvectors of column-
column correlation matrix

VR : Eigenvectors of row-row
correlation matrix

 1.0000 0.0007 0.0032 0.0002 0.0013 0.0001 0.0005 0.0000
 0.0007 0.9970 0.0097 0.0689 0.0009 0.0322 0.0003 0.0110
 0.0033 0.0106 0.9968 0.0118 0.0713 0.0004 0.0334 0.0025
 0.0002 0.0718 0.0124 0.9926 0.0007 0.0927 0.0017 0.0276
 0.0010 0.0001 0.0737 0.0004 0.9942 0.0008 0.0780 0.0010
 0.0000 0.0261 0.0015 0.0962 0.0005 0.9934 0.0011 0.0569
 0.0003 0.0007 0.0276 0.0021 0.0802 0.0010 0.9964 0.0013
 0.0000 0.0076 0.0026 0.0227 0.0012 0.0596 0.0015 0.9979

 1.0000 0.0002 0.0029 0.0001 0.0010 0.0000 0.0004 0.0000
 0.0002 0.9965 0.0028 0.0766 0.0005 0.0314 0.0009 0.0107
 0.0029 0.0025 0.9969 0.0046 0.0728 0.0017 0.0304 0.0013
 0.0001 0.0795 0.0044 0.9923 0.0029 0.0916 0.0015 0.0243
 0.0008 0.0003 0.0747 0.0026 0.9948 0.0061 0.0696 0.0004
 0.0000 0.0246 0.0021 0.0949 0.0069 0.9940 0.0131 0.0452
 0.0003 0.0004 0.0252 0.0003 0.0715 0.0137 0.9970 0.0002
 0.0000 0.0076 0.0013 0.0207 0.0001 0.0476 0.0009 0.9986

Absolute value of dot products between the columns of DCT matrix and columns of VR (left) and VC (right)

DCT bases 64 columns of V – each reshaped to form an 8 x
8 image, and rescaled to fit in the 0-1 range.
Notice the similarity between the DCT bases and
the columns of V. Again, V is the Kronecker
product of VR and VC.

DCT and PCA
• DCT basis is very close to PCA basis when the

data-points come from what is called as a
stationary first order Markov process when ρ
(defined below) is close to 1, i.e.

)(,

1...

.....

....

...1

.1

1||,)(,...,)(,)(

)|(),...,,|(

)|(),...,,|(

1

2

12

1

1

2

21

121

121

jiij

n

n

n

niiiiii

iiniiii

iiniiii

qqECC

qqEqqEqqE

qqEqqqqE

qqPqqqqP























































Defn. of 1st order Markov process

For this part, you may refer to section
2.9 (equations 2.67 and 2.68) of the
book “Fundamentals of Digital Image
Processing” by Anil Jain. Also read,
section 5.6 (equations 5.95 and 5.96).

DCT and PCA

• One can show that the eigenvectors of the covariance
matrix of the form seen on the previous slide are very
close to the DCT basis vectors!

• Natural images approximate this first order Markov
model, and hence DCT is almost as good as PCA for
compression of a large ensemble of image patches.
DCT has the advantage of being a universal basis and
also the DCT coefficients are more efficiently
computable than PCA coefficients.

 1.0000 0.9902 0.9795 0.9733 0.9682 0.9639 0.9604 0.9570
 0.9902 1.0005 0.9908 0.9795 0.9734 0.9684 0.9643 0.9605
 0.9795 0.9908 1.0010 0.9908 0.9796 0.9735 0.9689 0.9646
 0.9733 0.9795 0.9908 1.0005 0.9904 0.9793 0.9735 0.9686
 0.9682 0.9734 0.9796 0.9904 1.0004 0.9903 0.9794 0.9734
 0.9639 0.9684 0.9735 0.9793 0.9903 1.0001 0.9903 0.9793
 0.9604 0.9643 0.9689 0.9735 0.9794 0.9903 1.0004 0.9904
 0.9570 0.9605 0.9646 0.9686 0.9734 0.9793 0.9904 1.0002

 1.0000 0.9888 0.9770 0.9704 0.9648 0.9599 0.9554 0.9510
 0.9888 1.0004 0.9891 0.9768 0.9703 0.9646 0.9596 0.9548
 0.9770 0.9891 1.0004 0.9886 0.9764 0.9698 0.9640 0.9587
 0.9704 0.9768 0.9886 0.9994 0.9878 0.9755 0.9687 0.9627
 0.9648 0.9703 0.9764 0.9878 0.9986 0.9870 0.9746 0.9676
 0.9599 0.9646 0.9698 0.9755 0.9870 0.9978 0.9861 0.9734
 0.9554 0.9596 0.9640 0.9687 0.9746 0.9861 0.9967 0.9847
 0.9510 0.9548 0.9587 0.9627 0.9676 0.9734 0.9847 0.9951

CR/CR(1,1) -
Notice it can be
approximated by the
form shown two slides
before, with ρ~0.99

CC/CC(1,1) -
Notice it can be
approximated by the
form shown two slides
before, with ρ~0.9888

More results from the previous experiment.

See code: http://www.cse.iitb.ac.in/~ajitvr/CS663_Fall2014/dct_pca.m

http://www.cse.iitb.ac.in/~ajitvr/CS663_Fall2014/dct_pca.m

Computation of DCT coefficients in
JPEG

• Before computation, the value 128 (midpoint
of the range 0 to 255) is subtracted from every
pixel value.

• This changes the range of intensity values
from 0 to 255, to -128 to 127.

• This also changes the range of DCT coefficient
values from 0 to 2048, to -1024 to +1024.

STEP 2: Quantization

Quantization

• The DCT coefficients are floating point
numbers and storing them in a file will
produce no compression. So they need to be
quantized.

• The human eye is not sensitive to changes in
the higher frequency content. So we can have
cruder quantization for the higher frequency
coefficients and a finer one for the lower
frequency coefficients.

Quantization

• Quantization is performed by dividing the DCT
coefficients by a quantization matrix and rounding
off to the nearest integer.

• This is the lossy part of JPEG!
• The quantization matrix on the next slide is for

quality factor Q = 50.
• Matrices for other Q values are obtained by scaling

the Q = 50 matrix with a constant 50/Q.
• This effectively increases the values of the matrix for

lower values of Q, and reduces the values of the
matrix for higher values of Q.

)/(round uvuvuv MGB Quantization matrix for Q = 50:
notice the higher values in the
matrix for higher frequency
coefficients

M

Most of the values in B are 0!
They need not be stored! Only
the non-zero values in B will be
stored!

How was this quantization matrix
picked?

• Picked from psychophysical studies having the
goal of trying to maximize the amount of
compression – but also trying to minimize
perceptually significant errors.

STEP 3: Lossless compression steps:
Huffman encoding and Run length

encoding

Huffman encoding

• Input: a set of non-zero quantized DCT coefficients from all
the different blocks of the image (values lying between -
1024 to +1024).

• Output: a set of encoded coefficients with length (in terms
of number of bits) less than that of the original set.

• Principles behind Huffman encoding:
(1) Encode the more frequently occurring coefficients with

fewer bits. Encode the rarely occurring coefficients with
more bits. This will reduce the average bit-length.

(2) Ensure that the encoding for no coefficient is a strict prefix
of the encoding of any other coefficient (to be explained
on next slide). This is called a “prefix-free code”.

Huffman encoding example

• Consider a set of alphabets {a,e,q}. Let the frequency of an
alphabet ‘x’ be denoted as p(x).

• Assume p(e) > p(a) > p(q) [actually true in the English
language].

• Consider the following code-word assignment: e – 0, a – 1,
q – 01 (note: we assigned more bits for q). Now consider
the encoded stream: 001. It can be interpreted as ‘eea’ or
‘eq’.

• The reason for this ambiguity is that the code for ‘e’ is a
strict prefix of the code for ‘q’.

• For unambiguous decoding, we need prefix-free codes.
Example e – 0, a – 10, q – 11 is one example of a prefix-free
code.

Huffman encoding example

• The Huffman encoding algorithm asks the
following question:

 Given a set of n alphabets A = {ai} with
corresponding frequencies {p(ai)} (each
frequency lies from 0 to 1), what prefix-free
encoding yields the least average bit length?
That is, which set of code-words {λ(ai)} will
minimize

|)(|)()})(({
1

i

n

i

ii aapaL  


 Length of the code-
word λ(ai)

Algorithm
1. Sort alphabets in increasing order of frequency. Create a leaf

node from each alphabet. These leaf nodes will belong to a
binary tree called the Huffman tree.

2. Combine the two lowest frequency nodes s1 and s2 to create a
parent node s12. s1 and s2 will be the left and right child of s12.
The frequency of s12 is given by p(s12) = p(s1) + p(s2).

3. Label the edge from s12 to s1 with a ‘0’ and the edge from s12 to
s2 with a ‘1’.

4. Delete s1 and s2 from the sorted list of alphabets and insert the
node s12, i.e. root node of the tree (s12,s1,s2) in the correct
place depending on the value of p(s12).

5. Repeat steps 2 to 4 until there is only one node in the list. This
will be the root node of the final Huffman tree.

6. Traverse the tree from the root node until each leaf and collect
all the binary symbols along every edge into a string. This string
will form the code word for that symbol.

Example
www.cis.upenn.edu/~matuszek/cit594-2002/Slides/huffman.ppt‎

1

2

3

4

1 0

1 0

0

1

0

0
1

1
1

0

1

1

1

1

0

0

0

A = 0
B = 100
C = 1010
D = 1011
R = 11

This is a prefix-free code. No
leaf node is on the path to
any other node.

0.4 0.2 0.1 0.1 0.2

0.4 0.2 0.1 0.1 0.2

0.4 0.2 0.1 0.1 0.2

0.4 0.2 0.1 0.1 0.2

0.2

0.4

0.6

1.00
0.4

0.2

0.2

0.4

0.6

0

0.2

http://www.cis.upenn.edu/~matuszek/cit594-2002/Slides/huffman.ppt
http://www.cis.upenn.edu/~matuszek/cit594-2002/Slides/huffman.ppt
http://www.cis.upenn.edu/~matuszek/cit594-2002/Slides/huffman.ppt
http://www.cis.upenn.edu/~matuszek/cit594-2002/Slides/huffman.ppt
http://www.cis.upenn.edu/~matuszek/cit594-2002/Slides/huffman.ppt

1

1

1

1

0

0

0

0.4 0.2 0.1 0.1 0.2

0.2

0.4

0.6

1.00

A = 0
B = 100
C = 1010
D = 1011
R = 11

Input string: RABBCDR
Encoded bit stream:
11-0-100-100-1010-1011-11
Decoded string: RABBCDR

To perform encoding, we maintain an initially empty encoded bit stream. Read a symbol
from the input, traverse the Huffman tree from root node to the leaf node for that
symbol, collecting all the bit labels on the traversed path, and appending them to the
encoded bit stream. Repeat this for every symbol from the input. Example: for R, we
write 11.

To perform decoding, read the encoded bit stream, and traverse the Huffman tree from
the root node toward a leaf node, following the path as indicated by the bit stream. For
example, if you read in 11, you would travel to the leaf node R. When you reach a leaf
node, append its associated symbol to the decoded output. Go back to the root node
and traverse the tree as per the remaining bits from the encoded bit stream.

0

Average code length here
= 1 * p(A) + 3 * p(B) + 4 * p(C) + 4*p(D)
+ 2 *p(R) = 0.4 + 0.6 + 0.4 + 0.4 + 0.4 =
2.2.

About the algorithm

• This is a greedy algorithm, which is guaranteed to
produce the prefix-free code with minimal
average length (proof beyond the scope of the
course).

• There could be multiple sets of code words with
the same average bit length. Huffman encoding
produces one of them, depending on the order in
which the nodes were combined, and the
convention for labeling the edges with a 0 or a 1.

Zig-zag ordering

• The quantized DCT coefficients are arranged
now in a zigzag order as follows. The zig-zag
pattern leaves a bunch of consecutive zeros at
the end.

−26

−3 0

−3 −2 −6

2 −4 1 −3

1 1 5 1 2

−1 1 −1 2 0 0

0 0 0 −1 −1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0

0 0

0

Run length encoding

• The non-zero re-ordered quantized DCT
coefficients (except for the DC coefficient) are
written down in the following format:

 • run-length (number of zeros before this coefficient),
• size (no. of bits to store the Huffman code for the
coefficient),
• actual Huffman code of the coefficient

4 bits each

We refer to the above set as a triple. In case there are more than 15 zeros in between
2 non-zero AC coefficients, a special triple is inserted. That triple is (15,0,0). If there
are a large number of trailing zeros at the end of a block, we but in an “end of block”
triple given as (0,0).

−26

−3 0

−3 −2 −6

2 −4 1 −3

1 1 5 1 2

−1 1 −1 2 0 0

0 0 0 −1 −1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0

0 0

0

(0, 2)(-3); (1, 2)(-3); (0, 2)(-2); (0, 3)(-6); (0,
2)(2); (0, 2)(-4); (0, 1)(1); (0, 2)(-3); (0, 1)(1);
(0, 1)(1); (0, 3)(5); (0, 1)(1); (0, 2)(2); (0, 1)(-1);
(0, 1)(1); (0, 2)(2); (5, 1)(-1); (0, 1)(-1); (0, 0).

Encoding DC coefficients

• The difference between the DC coefficient of
the current and previous patch is encoded and
stored.

• These difference values are Huffman encoded
using a separate table (different from the
Huffman table used for AC coefficients).

• The DC coefficient of the first patch is stored
explicitly.

JPEG encoded file

• Begins with a header that contains
information such as size of file, whether color
or grayscale, the table of different alphabets
(i.e. DCT coefficient values and their Huffman
codes) and the quantization matrix.

• This is followed by a bit stream containing
triples of the form: (run-length, the length of
the Huffman code of the coefficient, and the
Huffman code for the coefficient).

JPEG DECODER

JPEG decoding

• Perform Huffman decoding and obtain the DCT coefficients
(AC).

• Multiply the AC coefficients point-wise with the entries in the
quantization matrix (this is sometimes called as de-
quantization).

• Compute the DC coefficients for each patch using the
differences between the DC coefficients of successive
patches. Multiply by the appropriate entry from the
quantization matrix.

• Reconstruct the image patches of size 8 x 8 using the inverse
DCT. Add 128 to the intensity values in the patch.

• Note: During JPEG encoding, the round-off errors from the
quantization step can never be recovered again. Hence JPEG
is overall a lossy algorithm.

JPEG on Color Images

Color image spaces

• Color values in a color image are most
commonly defined as an (R,G,B) triple, i.e. in
the RGB color space.

• There are several other color spaces in which
the colors can be represented, eg: HSV, YCbCr,
Lab, Luv, CMY(K) and so on.

JPEG for color images

• The RGB values are converted to YCbCr using:

• Encode the Y, Cb, and Cr channels separately, using the
“grayscale” JPEG algorithm on each channel. The Cb
and Cr channels (the chrominance channels) are down-
sampled by a factor of 2 in X and Y direction to further
save storage space.

• The Y channel (luminance) is not down-sampled. This is
because the human eye is much more sensitive to
luminance than to chrominance information.

)214.18786.93112(128

)112203.7479.37(128

)966.24553.128481.65(16

BGRC

BGRC

BGRY

R

B







http://www.cse.iitd.ernet.in/~pkalra/siv864/pdf/session-11-4.pdf

http://www.cse.iitd.ernet.in/~pkalra/siv864/pdf/session-11-4.pdf
http://www.cse.iitd.ernet.in/~pkalra/siv864/pdf/session-11-4.pdf
http://www.cse.iitd.ernet.in/~pkalra/siv864/pdf/session-11-4.pdf
http://www.cse.iitd.ernet.in/~pkalra/siv864/pdf/session-11-4.pdf
http://www.cse.iitd.ernet.in/~pkalra/siv864/pdf/session-11-4.pdf

Down-sampling of chrominance
channel in X and Y directions by a
factor of 2

No down-sampling of
chrominance or
luminance channels

Cb channel

PCA on RGB values

• Suppose you take N color images and extract
RGB values of each pixel (3 x 1 vector at each
location).

• Now, suppose you build an eigenspace out of
this – you get 3 eigenvectors, each
corresponding to 3 different eigenvalues.

PCA on RGB values

• The eigenvectors will look typically as follows:

0.5952 0.6619 0.4556

0.6037 0.0059 -0.7972

 0.5303 -0.7496 0.3961

• Exact numbers are not important, but the first
eigenvector is like an average of RGB. It is
called as the Luminance Channel (Y).

PCA on RGB values

• The second eigenvector is like Y-B, and the third is
like Y-G. These are called as the Chrominance
Channels.

• The Y-Cb-Cr color space is related to this PCA-
based space (though there are some details in
the relative weightings of RGB to get Luminance
denoted by Y, and Chrominance – denoted by Cb
and Cr).

• The values in the three channels Y, Cb and Cr are
decorrelated, similar to the values projected onto
the PCA-based channels.

PCA on RGB values

• The luminance channel (Y) carries most information
from the point of view of human perception, and the
human eye is less sensitive to changes in chrominance.

• This fact can be used to assign coarser quantization
levels (i.e. fewer bits) for storing or transmitting Cb and
Cr values as compared to the Y channel. This improves
the compression rate.

• The JPEG standard for color image compression uses
the YCbCr format. For an image of size M x N x 3, it
stores Y with full resolution (i.e. as an M x N image),
and Cb and Cr with 25% resolution, i.e. as M/2 x N/2
images.

R channel

G channel

B channel

Image containing eigencoefficient value corresponding to 1st eigenvector (with maximum eigenvalue)

Image containing eigencoefficient value corresponding to 2nd eigenvector (with second largest eigenvalue)

The variances of the three eigen-coefficient values:
8411, 159.1, 71.7

Image containing eigencoefficient value corresponding to 3rd eigenvector (with least eigenvalue)

Y channel

Cb channel

Cr channel

RGB, YCbCr and correlation

• The R, G and B values of an image are typically
highly correlated, as evidence by high values
of the normalized correlation coefficient:

• It is suboptimal to encode R,G,B separately.

• The corresponding Y, Cb, Cr values are far less
correlated, and can be independently encoded
at lower costs of storage.

)()(

)()(

gf

gf











gf

gf

Modes of JPEG Compression

Modes of JPEG compression

• Sequential: encoding and decoding of patches
takes place in left to right, top to bottom
order.

• Progressive: encoding and decoding in
multiple scans, each one with finer
quantization levels.

• Hierarchical: encoding and decoding
performed at different scales.

http://www.cse.iitd.ernet.in/~pkalra/siv864/pdf/session-11-4.pdf

Commonly seen in
web applications (e.g.:
Facebook)

http://www.cse.iitd.ernet.in/~pkalra/siv864/pdf/session-11-4.pdf
http://www.cse.iitd.ernet.in/~pkalra/siv864/pdf/session-11-4.pdf
http://www.cse.iitd.ernet.in/~pkalra/siv864/pdf/session-11-4.pdf
http://www.cse.iitd.ernet.in/~pkalra/siv864/pdf/session-11-4.pdf
http://www.cse.iitd.ernet.in/~pkalra/siv864/pdf/session-11-4.pdf

JPEG artifacts
• Seam artifacts at patch boundaries (more

prominent for lower Q values).

• Ringing artifacts around edges.

• Some loss of edge and textural detail.

• Color artifacts

http://www.sitepoint.com/sharper-gif-jpeg-
png-images/

http://www.sitepoint.com/sharper-gif-jpeg-png-images/
http://www.sitepoint.com/sharper-gif-jpeg-png-images/
http://www.sitepoint.com/sharper-gif-jpeg-png-images/
http://www.sitepoint.com/sharper-gif-jpeg-png-images/
http://www.sitepoint.com/sharper-gif-jpeg-png-images/
http://www.sitepoint.com/sharper-gif-jpeg-png-images/
http://www.sitepoint.com/sharper-gif-jpeg-png-images/
http://www.sitepoint.com/sharper-gif-jpeg-png-images/
http://www.sitepoint.com/sharper-gif-jpeg-png-images/
http://www.sitepoint.com/sharper-gif-jpeg-png-images/

A word about JPEG 2000

• JPEG2000 (extension jp2) is the latest series of
standards from the JPEG committee
– Uses wavelet transform

– Better compression than JPG

– Superior lossless compression

– Supports large images and images with many components

– Region-of-interest coding

http://www.cse.iitd.ernet.in/~pkalra/siv864/pdf/session-11-4.pdf

http://www.cse.iitd.ernet.in/~pkalra/siv864/pdf/session-11-4.pdf
http://www.cse.iitd.ernet.in/~pkalra/siv864/pdf/session-11-4.pdf
http://www.cse.iitd.ernet.in/~pkalra/siv864/pdf/session-11-4.pdf
http://www.cse.iitd.ernet.in/~pkalra/siv864/pdf/session-11-4.pdf
http://www.cse.iitd.ernet.in/~pkalra/siv864/pdf/session-11-4.pdf

References

• Image compression chapter of the book by
Gonzalez

• Section 2.9 and 5.6 of the book by Anil Jain

• Wikipedia article on JPEG

• Image compression slides by Prof. Prem Kalra
(IIT Delhi):
http://www.cse.iitd.ernet.in/~pkalra/siv864/p
df/session-11-4.pdf

http://www.cse.iitd.ernet.in/~pkalra/siv864/pdf/session-11-4.pdf
http://www.cse.iitd.ernet.in/~pkalra/siv864/pdf/session-11-4.pdf
http://www.cse.iitd.ernet.in/~pkalra/siv864/pdf/session-11-4.pdf
http://www.cse.iitd.ernet.in/~pkalra/siv864/pdf/session-11-4.pdf
http://www.cse.iitd.ernet.in/~pkalra/siv864/pdf/session-11-4.pdf
http://www.cse.iitd.ernet.in/~pkalra/siv864/pdf/session-11-4.pdf

