
Final exam: CS 663, Digital Image Processing, 21st November

Instructions: There are 180 minutes for this exam (5:30 pm to 8:30 pm). Answer all 8 questions. This exam
is worth 25% of the final grade. Some formulae are listed at the end of the paper.

1. Image Compression: Consider an image whose intensity values are integers from 0 to 7, occurring with
frequencies 0.1, 0.1, 0.2, 0.2, 0.2, 0.15, 0.025, 0.025 respectively (note: there are 8 intensity values). Construct
a Huffman tree for encoding these intensity values and find the corresponding average bit length (exact
numerical values are not important, but show your steps clearly). [8 points]

2. Color Imaging: In color images, the hue θ at a pixel is calculated from the R,G,B values at that pixel,

using the formula θ = cos−1
( 0.5(2R−G−B)√

(R−G)2 + (R−B)(G−B)

)
. What are the advantages and disadvantages

of using hue in color image applications? [8 points]

3. SVD: Consider a matrix A of size m× n. Explain how will you compute the SVD of A, if you had access
to a software routine that computed the eigenvectors and eigenvalues of a square matrix (and assuming you
had no access to any software function that directly computed the SVD). State the time complexity of your
procedure. [12 points]

4. Color/Multichannel Imaging: Consider a grayscale image I(x, y). You know that the squared intensity
change at point (x, y) along a direction v ∈ R2 is given by E(v) = (∇I(x, y) · v)2. Deduce along what
direction v, E(v) is the maximum. Now consider a multichannel image J(x, y, l) with L > 1 channels where
l is an index for the channel. The squared intensity change at (spatial) point (x, y) along a direction v ∈ R2

is given by E(v) =
∑L

l=1(∇I(x, y, l) ·v)2. Deduce along which direction v, E(v) will be the maximum. Show
how this expression reduces to your earlier answer when L = 1. Note that v in either case is a vector of unit
magnitude. When L > 1, is v always guaranteed to be unique (upto a sign change)? Explain. [3+6+3+2=14
points]

5. Fourier Transforms and More: Consider a function f(x, y) defined over a bounded rectangular domain.
Consider the quantity g(ρ, θ) =

∫ +∞
−∞

∫ +∞
−∞ f(x, y)δ(x cos θ + y sin θ − ρ)dxdy where x cos θ + y sin θ = ρ

is the equation of a line in normal form and δ(z) is the Dirac delta function (i.e. δ(z) = ∞ if z = 0,
otherwise δ(z) = 0). This quantity is called as the projection of f(x, y) over the angle θ, and represents
the measurements taken by modern day X Ray machines or CT scanners. Consider the quantity G(ω, θ),
defined as the 1D Fourier transform of g(ρ, θ) w.r.t. ρ where ω is a frequency variable. We have G(ω, θ) =∫ +∞
−∞ g(ρ, θ)e−j2πωρdρ. Starting from this, derive an expression for G(ω, θ) in terms of F (u, v), the Fourier

transform of f(x, y) where (u, v) stands for the frequency variables. Now, let us define the first order
projection moment of g(ρ, θ) as mθ =

∫∞
−∞ g(ρ, θ)ρdρ, and let us define the (p, q)-order moment of the image

f as Mpq =
∫ +∞
−∞

∫ +∞
−∞ xpyqf(x, y)dxdy. Then derive a relation between mθ and (M0,1,M1,0). [7 + 7 = 14

points]

6. PCA: Consider a set of N vectors X = {x1,x2, ...,xN} each in Rd, with average vector x̄. We have seen in
class that the direction e such that

∑N
i=1 ‖xi− x̄− (e · (xi− x̄))e‖2 is minimized, is obtained by maximizing

etCe, where C is the covariance matrix of the vectors in X . This vector e is the eigenvector of matrix C
with the highest eigenvalue. Prove that the direction f perpendicular to e for which f tCf is maximized, is
the eigenvector of C with the second highest eigenvalue. For simplicity, assume that all non-zero eigenvalues
of C are distinct and that rank(C) > 2. [12 points]
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7. Image Restoration: Given a blurred and noisy image g, an inquisitive student wants to know how to
determine the blur kernel k besides the underlying image f . (Recall that in class, we assumed that k was
known). For this, (s)he tries to minimize the objective function E1(k, f) = ‖g− k ∗ f‖2 +

∑N
i=1 f

2
x(i) + f2y (i),

where N is the number of image pixels, i is an index for a pixel location, and fx(i) and fy(i) represent the
gradients of image f at location i, in X and Y directions respectively. What answer will the student obtain?
Do not worry about the exact procedure/algorithm for minimization, just assume that there was a magic
routine that did the job for you. [12 points]

8. Compression: Consider a set of N vectors X = {x1,x2, ...,xN} each in Rd (N > d). Assume their
mean vector is 0. Let V ∈ Rd×d be the orthonormal matrix containing the principal components of this
dataset arranged in descending order of the eigenvalues (assume all eigenvalues are distinct). Let us denote

the order k (k < d) linear approximation of vector xi using V as L(xi
(k); V) = Vkα

(k)
i where Vk is a

d × k matrix containing the first k columns of V, and α
(k)
i = Vk

txi. Let us denote the order k (k < d)
non-linear approximation of vector xi using V as N(xi

(k); V) = Vαi where αi = arg minci‖xi − Vci‖2
subject to the constraint that vector ci has at the most k non-zero elements. The total reconstruction
errors for the linear and non-linear approximations are respectively EL(V) =

∑N
i=1 ‖xi − L(xi

(k); V)‖2 and

EN (V) =
∑N

i=1 ‖xi −N(xi
(k); V)‖2. Which of the following statements is true and why:

(a) EL(V) ≤ EN (V)

(b) EL(V) ≥ EN (V)

(c) EL(V) = EN (V)

(d) One cannot make a conclusion about which error is greater.

Also devise an efficient algorithm to obtain the order k non-linear approximation of xi given V, and state
its time complexity. Argue why your algorithm is correct.

Based on what you have studied about PCA in class, can you conclude the following: There cannot ex-
ist an orthonormal basis W such that EN (W) < EN (V) for some fixed k. Justify your answer. [8 + 8 + 4
= 20 points]

LIST OF FORMULAE:

1. Gaussian pdf in 1D centered at µ and having standard deviation σ: p(x) = 1√
2πσ

e−(x−µ)
2/(2σ2).

2. 1D Fourier transform and inverse Fourier transform:
F (u) =

∫ +∞
−∞ f(x)e−j2πuxdx, f(x) =

∫ +∞
−∞ F (u)ej2πuxdu

3. 2D Fourier transform and inverse Fourier transform:
F (u, v) =

∫ +∞
−∞

∫ +∞
−∞ f(x, y)e−j2π(ux+vy)dxdy, f(x, y) =

∫ +∞
−∞

∫ +∞
−∞ F (u, v)ej2π(ux+vy)dudv

4. Convolution theorem: F(f(x) ∗ g(x))(u) = F (u)G(u);F(f(x)g(x))(u) = F (u) ∗G(u)

5. Fourier transform of g(x−a) is e−j2πuaG(u). Fourier transform of df
n(x)
dxn = (j2πu)nF (u) (n > 0 is an integer).

6. 1D DFT: F (u) =
1√
N

∑N−1
x=0 f(x)e−j2πux/N , f(x) =

1√
N

∑N−1
u=0 F (u)ej2πux/N

7. 2D DFT: F (u, v) =
1

N

∑N−1
x=0

∑N−1
y=0 f(x, y)e−j2π(ux+vy)/N , f(x, y) =

1

N

∑N−1
u=0

∑N−1
v=0 F (u, v)ej2π(ux+vy)/N
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