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Problem statements

* Consider a set of N points {(x,y.)}, 1 <i<N.

e Suppose we know that these points actually
lie on a function of the form y = f(x;a) where
f(.) represents a function family and a
represents a set of parameters.

* For example: f(x) is a linear function of x, i.e.
of the form y = f(x) = mx+c. In this case, a =
(m,c).



Problem statements

Example 2: f(x) is a quadratic function of x, i.e. of the
form y = f(x) = px?+gx+r. In this case, a = (p,q,r).

Example 3: f(x) is a trigonometric function of x, i.e. of
the form f(x) = p sin(gx+r). In this case, a = (p,q,r).

In each case, we assume knowledge of the function
family. But we do not know the function parameters,
and would like to estimate them from {(x,y:)}.

This is the problem of fitting a function (of known
family) to a set of points.



Problem statements

* |n function regression (or approximation), we
want to find a such that for all i, f(x;;a)=y..

* |n function interpolation, we want to fit some
function such that f(x;a)=y..



Polynomial Regression

* A polynomial of degree n is a function of the
form:

n
y=> aXx =a;+ax+a,x’ +..+ax"
1=0

* Polynomial regression is the task of fitting a
polynomial function to a set of points.



Polynomial regression

e Let us assume that x is the independent
variable, and y is the dependent variable.

* In the point set {(x,y;)} containing N points, we
will assume that the x-coordinates of the
points are available accurately, whereas the y-
coordinates are affected by measurement
error — called as noise.



20 30 40 50 60

Il[jl

10

20



Least Squares Polynomial regression

* |f we assume the polynomial is linear, we have
Y. = mx. + c + e, where e, is the noise iny.. We
want to estimate m and c.

 We will do so by minimizing the following
w.r.t. m and c:

Z(yi —MX; — C)Z

* This is called as least squares regression.



Least Squares Polynomial regression

* |[n matrix, form we can write the following
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The solution will exist
provided there are at
least 2 non-coincident
points. Basically, X'X
must be non-singular.



Least Squares Polynomial regression

* For higher order polynomials, we have:
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The solution
will exist
provided
there are at
least n non-
coincident,
non-collinear
points.
Basically, X™X
must be non-
singular.



Least Squares Polynomial regression

* Regardless of the order of the polynomial, we
are dealing with a linear form of regression —
because in each case, we are solving an
equation of the form y = Xa.

* There are some assumptions made on the
errors in the measurement of y. We will not
go into those details.



Least Squares Polynomial Regression:

Geometric Interpretation
* The least squares solution seeks a set of polynomial
coefficients that minimize the sum of the squared

difference between the measured y coordinate of
each point and the y coordinate if the assumed

polynomial model was s yb/eyed, l.e.
N

min{a}Hy _XaH v




Least Squares Polynomial Regression:
Geometric Interpretation

* The least squares solution seeks a set of polynomial
coefficients that minimize the sum of the squared
difference between the measured y coordinate of
each point and the y coordinate if the assumed
polynomial model was strictly obeyed, i.e. we are
trying to find a model that will minimize vertical
distances (distances along the Y axis).
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Weighted least squares: Row weighting
min{(,ij}ZN:(yi—Zn:ajxij °

. 2
min {a}Hy B XaHZ Different instances of y get different weights

(higher the weight the more the importance to
that instance!)

Wy = WXa
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e }ZW i Za N B ((WX)"WX) ™ (WX)" Wy

ming;[W( y-Xa ),
W =diag(w,,W,,...,W, )



Regularization

In some cases, the system of equations may be ill-
conditioned.

In such cases, there may be more than one
solution.

It is common practice to choose a “simple” or
“smooth” solution.

This practice of choosing a “smooth” solution is
called as regularization.

Regularization is a common method used in
several problems in machine learning, computer
vision and statistics.



Regularization: Ridge regression

. 2 2 Penalize (or discourage) solutions in which the
mm{a}Hy - Xa”2 + X’Hauz magnitude of vector a is too high. The parameter A

\ is called the regularization parameter. Larger the
value of A, the greater the encouragement to find a

smooth solution.

Taking derivative w.r.t. a, we get this regularized

(XX +Ala=X"y < solution fora.
X =USV'

(VS?VT + alja=VSU'y

V(S2+ AIVTa=VSUTy
(S2+AVTa=S Uy

" S.U'y
VTa: Thadl
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Regularization: Tikhonov regularization
min g,y — Xa’ + A|Bal mmm=) (X"X+ iB'Bja=X"y

Penalize (or discourage) solutions in which the magnitude of vector Ba is too high. The
parameter A is called the regularization parameter. Larger the value of A, the greater the
encouragement to find a smooth solution. The matrix B can be chosen in different ways
—very commonly, one penalizes large values of the gradient of vector a, given as

follows:
va=(a, a,-a a-a . . 8,-8, a-a,)

In such a case, B is given as follows:

1 0 00 0 0 O
-1 1.0 . . .0
11 . . .0
B—
0 . . 0-110
o . . . 0 -11




Total Least Squares

e There are situations when there are errors in
not just the y, values, but in the x. values as
well.

* |[n such a situations, least squares is not
applicable — instead a method called total
least squares is used.

* Total least squares solutions heavily use the
SVD - so this is one more application of the
SVD for you!



Total Least Squares

Consider the equation y = Xa for polynomial
regression.

We want to find a, in the case where both y
and X have errors (in the earlier case, only y
had errors).

So we seek to find a new version of y (denoted
v*) close to y, and a new version of X
(denoted X*) close to X, such that y*=X*a.

Thus we want (see next slide):



Find (y*,X*) to minimize
ly-y *Hi +[X =X *HZF such thaty*=X*a.
Define Z*+{ X*|y*) .Z« X|y)

a
M inimizeHZ—Z*H2F such thatZ*( J =0.
Sizeof X*isN x(n+1). Sizeof Z*is N x(n+2).

a
As the vector(

j IS not all zeros,

thecolumn rank of Z* is less than n + 2.

Tominimize |Z-Z *HZF ,Z* is the best rank n +1approximation to Z, given by

n+1

Z* = Zaiuiv} from SVD of Z (Eckhart - Young Theorem).
=1

a : V.,
Also oV, ,,ie a=——E
1 v

n+2,n+2



Interpolation

* |n the case of interpolation, we want the

function being fit to pass through the given
data-points exactly.

* The type of interpolation is determined by
whether it is a function of one or more
variables, as well as the type of function.

* Let us consider lower-order polynomial
interpolation in 1D.



Interpolation

* Given a set of N points lying on a curve, we
can perform linear interpolation by simply
joining consecutive points with a line.
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Interpolation

 The problem with this approach is that the slopes
of adjacent lines change abruptly at each data-
point — called as C, discontinuity.

* This can be resolved by stitching piecewise
guadratic polynomials between consecutive point
pairs and requiring that

v Adjacent polynomials actually pass through the
point (interpolatory condition)

v Adjacent polynomials have the same slope at
that point (C, continuity condition)




Interpolation

 We could go one step further and require that

v Adjacent polynomials have the same second derivative
at that point (C, continuity condition)

* This requires that the polynomials be piecewise cubic
(degree 3) at least.

* This type of interpolation is called cubic-spline
interpolation and is very popular in graphics and image
processing.

* The data-points (where the continuity conditions) are
imposed are called as knots or control points.

* A cubic spline is a piecewise polynomial that is twice
continuously differentiable (including at the knots).



Cubic spline interpolation

A curve is parameterized as y = f(t) where ‘t’ is
the independent variable.

Consider N points (t,y;) where i ranges from 1
to N.

We will have N-1 cubic polynomials, each of
the formy(t)=a.+b;t +c; t* + d. t> where i
ranges from 1 to N-1.

Thus the overall function y(t) is equal to y(t)
where t lies in between t;and t, ;.



Cubic spline interpolation

 The total number of unknowns here is 4(N-1)
(why?).

* To determine them, we need to specify 4(N-1)
equations.

* As the curve must pass through the N points,
we get N equations as follows:

Yi=q + b1t1 + Cltlz + d1t13
Y, =a + b1t2 + C1t22 + d1t§

Y, =a +ht + Ci—ltiz + di—lti3

2 3
Yn =y T bN —1tN + CN—ltN + dN—ltN



Cubic spline interpolation

* The interpolatory conditions at the N-2
interior points yield N-2 equations of the
form:

Y, =a,+bt, +ct2 +d.t; =a, +bt, +c,t> +d,t
y; =8, + bt +ctf +dt =a, +bt +ct’ +dt

2 3 2 3
yN—l = a'N—2 + bN—2tN—1 + CN—ZtN—l + dN—ZtN—l = aN—1 + bN—ltN—l + CN—ltN—l + dN—ltN—l



Cubic spline interpolation

* The C, continuity conditions at the N-2
interior points yield N-2 equations of the

form:
b, +2¢ct, +3d,t; =, +2c,t, +3d,t2

b, +2c t +3d t>=b +2ct +3dt’

by_, +2Cy ,ty, +3d N—2tl%l—1 = by +2Cy 4ty +3d N—1t|%l—1



Cubic spline interpolation

* The C, continuity conditions at the N-2
interior points yield N-2 equations of the
form:

2¢, +6d;t, =2c, +6d,t,
2c._,+6d _t =2c +6dt
2¢C,_, +6d, _t,, =2¢c,_, +6d .ty

* The total number of equations is N+3(N-2) =
4AN-6 whereas there are 4N-4 unknowns.



Cubic spline interpolation

We need two more equations.

One possible set of conditions is to impose that the
second derivative of the curve at the two end-points be
zero. This gives two more equations of the form:
2¢c,+6dt, =0

2¢,_, +6d, ,t, =0

A cubic spline with these two conditions is called a
natural cubic spline and these conditions are called
natural boundary conditions.

We now have 4(N-1) linear equations and 4(N-1)
unknowns.

Solving the linear system gives us the cubic spline!



Cubic spline interpolation

* For the case of N = 3 points, the system of
equations looks as follows:

1t ¢t ¢ 00 0 0 Ya) (v
1t &t t 0 0 0 0 b, Y,
00 0 0 1t ¢t t C, Y,
00 0 0 1 t ¢t t330d1:y3
0 1 2t, 3t 0 -1 -2t, -3t | a, 0
0 0 2 6, 0 0 -2 -6t |b 0
00 2 6, 0 0 O 0 C, 0
o0 0O 0 0 0 2 6t )d 0
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A cubic-spline fit to three points (1,10), (2,18) and
(3,11) — marked with red asterisks.
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