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Problem statements

• Consider a set of N points {(xi,yi)}, 1 ≤ i ≤ N.

• Suppose we know that these points actually 
lie on a function of the form y = f(x;a) where 
f(.) represents a function family and a
represents a set of parameters.

• For example: f(x) is a linear function of x, i.e. 
of the form y = f(x) = mx+c. In this case, a = 
(m,c).
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Problem statements

• Example 2: f(x) is a quadratic function of x, i.e. of the 
form y = f(x) = px2+qx+r. In this case, a = (p,q,r).

• Example 3: f(x) is a trigonometric function of x, i.e. of 
the form f(x) = p sin(qx+r). In this case, a = (p,q,r).

• In each case, we assume knowledge of the function 
family. But we do not know the function parameters, 
and would like to estimate them from {(xi,yi)}.

• This is the problem of fitting a function (of known 
family) to a set of points.
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Problem statements

• In function regression (or approximation), we 
want to find a such that for all i, f(xi;a)≈yi.

• In function interpolation, we want to fit some 
function such that f(xi;a)=yi. 
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Polynomial Regression

• A polynomial of degree n is a function of the 
form:

• Polynomial regression is the task of fitting a 
polynomial function to a set of points.
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Polynomial regression

• Let us assume that x is the independent 
variable, and y is the dependent variable.

• In the point set {(xi,yi)} containing N points, we 
will assume that the x-coordinates of the 
points are available accurately, whereas the y-
coordinates are affected by measurement 
error – called as noise. 
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Least Squares Polynomial regression

• If we assume the polynomial is linear, we have 
yi = mxi + c + ei, where ei is the noise in yi. We 
want to estimate m and c.

• We will do so by minimizing the following 
w.r.t. m and c: 

• This is called as least squares regression.
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Least Squares Polynomial regression

• In matrix, form we can write the following
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Least Squares Polynomial regression

• For higher order polynomials, we have:
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Least Squares Polynomial regression

• Regardless of the order of the polynomial, we 
are dealing with a linear form of regression –
because in each case, we are solving an 
equation of the form y ≈ Xa. 

• There are some assumptions made on the 
errors in the measurement of y. We will not 
go into those details.
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Least Squares Polynomial Regression: 
Geometric Interpretation

• The least squares solution seeks a set of polynomial 
coefficients that minimize the sum of the squared 
difference between the measured y coordinate of 
each point and the y coordinate if  the assumed 
polynomial model was strictly obeyed, i.e.
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Least Squares Polynomial Regression: 
Geometric Interpretation

• The least squares solution seeks a set of polynomial 
coefficients that minimize the sum of the squared 
difference between the measured y coordinate of 
each point and the y coordinate if  the assumed 
polynomial model was strictly obeyed, i.e. we are 
trying to find a model that will minimize vertical 
distances (distances along the Y axis).
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Weighted least squares: Row weighting
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Regularization

• In some cases, the system of equations may be ill-
conditioned.

• In such cases, there may be more than one 
solution.

• It is common practice to choose a “simple” or 
“smooth” solution.

• This practice of choosing a “smooth” solution is 
called as regularization.

• Regularization is a common method used in 
several problems in machine learning, computer 
vision and statistics.
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Regularization: Ridge regression
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magnitude of vector a is too high. The parameter λ
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smooth solution.
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Regularization: Tikhonov regularization
2
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Penalize (or discourage) solutions in which the magnitude of vector Ba is too high. The 
parameter λ is called the regularization parameter. Larger the value of λ, the greater the 
encouragement to find a smooth solution. The matrix B can be chosen in different ways 
– very commonly, one penalizes large values of the gradient of vector a, given as 
follows:
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Total Least Squares

• There are situations when there are errors in 
not just the yi values, but in the xi values as 
well.

• In such a situations, least squares is not 
applicable – instead a method called total 
least squares is used.

• Total least squares solutions heavily use the 
SVD – so this is one more application of the 
SVD for you!
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Total Least Squares

• Consider the equation y ≈ Xa for polynomial 
regression. 

• We want to find a, in the case where both y
and X have errors (in the earlier case, only y
had errors).

• So we seek to find a new version of y (denoted 
y*) close to y, and a new version of X
(denoted X*) close to X, such that y*=X*a.  

• Thus we want (see next slide):
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Interpolation

• In the case of interpolation, we want the 
function being fit to pass through the given 
data-points exactly.

• The type of interpolation is determined by 
whether it is a function of one or more 
variables, as well as the type of function.

• Let us consider lower-order polynomial 
interpolation in 1D.
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Interpolation
• Given a set of N points lying on a curve, we 

can perform linear interpolation by simply 
joining consecutive points with a line. 
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Interpolation

• The problem with this approach is that the slopes 
of adjacent lines change abruptly at each data-
point – called as C1 discontinuity.

• This can be resolved by stitching piecewise 
quadratic polynomials between consecutive point 
pairs and requiring that

 Adjacent polynomials actually pass through the 
point (interpolatory condition)

 Adjacent polynomials have the same slope at 
that point (C1 continuity condition)
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Interpolation

• We could go one step further and require that
 Adjacent polynomials have the same second derivative 

at that point (C2 continuity condition)
• This requires that the polynomials be piecewise cubic

(degree 3) at least.
• This type of interpolation is called cubic-spline

interpolation and is very popular in graphics and image 
processing. 

• The data-points (where the continuity conditions) are 
imposed are called as knots or control points. 

• A cubic spline is a piecewise polynomial that is twice 
continuously differentiable (including at the knots). 
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Cubic spline interpolation

• A curve is parameterized as y = f(t) where ‘t’ is 
the independent variable.

• Consider N points (ti,yi) where i ranges from 1 
to N. 

• We will have N-1 cubic polynomials, each of 
the form yi(t) = ai + bi t + ci t2 + di t3 where i
ranges from 1 to N-1.

• Thus the overall function y(t) is equal to yi(t)
where t lies in between ti and ti+1.
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Cubic spline interpolation
• The total number of unknowns here is 4(N-1) 

(why?).

• To determine them, we need to specify 4(N-1) 
equations.

• As the curve must pass through the N points, 
we get N equations as follows:
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Cubic spline interpolation

• The interpolatory conditions at the N-2 
interior points yield N-2 equations of the 
form:
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Cubic spline interpolation

• The C1 continuity conditions at the N-2 
interior points yield N-2 equations of the 
form:
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Cubic spline interpolation

• The C2 continuity conditions at the N-2 
interior points yield N-2 equations of the 
form:

• The total number of equations is N+3(N-2) = 
4N-6 whereas there are 4N-4 unknowns. 
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Cubic spline interpolation

• We need two more equations. 
• One possible set of conditions is to impose that the 

second derivative of the curve at the two end-points be 
zero. This gives two more equations of the form:

• A cubic spline with these two conditions is called a 
natural cubic spline and these conditions are called 
natural boundary conditions.

• We now have 4(N-1) linear equations and 4(N-1) 
unknowns.

• Solving the linear system gives us the cubic spline!
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Cubic spline interpolation

• For the case of N = 3 points, the system of 
equations looks as follows:
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A cubic-spline fit to three points (1,10), (2,18) and 
(3,11) – marked with red asterisks.
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