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Problem statements

• Consider a set of N points {(xi,yi)}, 1 ≤ i ≤ N.

• Suppose we know that these points actually 
lie on a function of the form y = f(x;a) where 
f(.) represents a function family and a
represents a set of parameters.

• For example: f(x) is a linear function of x, i.e. 
of the form y = f(x) = mx+c. In this case, a = 
(m,c).
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Problem statements

• Example 2: f(x) is a quadratic function of x, i.e. of the 
form y = f(x) = px2+qx+r. In this case, a = (p,q,r).

• Example 3: f(x) is a trigonometric function of x, i.e. of 
the form f(x) = p sin(qx+r). In this case, a = (p,q,r).

• In each case, we assume knowledge of the function 
family. But we do not know the function parameters, 
and would like to estimate them from {(xi,yi)}.

• This is the problem of fitting a function (of known 
family) to a set of points.
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Problem statements

• In function regression (or approximation), we 
want to find a such that for all i, f(xi;a)≈yi.

• In function interpolation, we want to fit some 
function such that f(xi;a)=yi. 
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Polynomial Regression

• A polynomial of degree n is a function of the 
form:

• Polynomial regression is the task of fitting a 
polynomial function to a set of points.

n

n

i
n

i

i xaxaxaaxay 


...2

210

0

5



Polynomial regression

• Let us assume that x is the independent 
variable, and y is the dependent variable.

• In the point set {(xi,yi)} containing N points, we 
will assume that the x-coordinates of the 
points are available accurately, whereas the y-
coordinates are affected by measurement 
error – called as noise. 
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Least Squares Polynomial regression

• If we assume the polynomial is linear, we have 
yi = mxi + c + ei, where ei is the noise in yi. We 
want to estimate m and c.

• We will do so by minimizing the following 
w.r.t. m and c: 

• This is called as least squares regression.
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Least Squares Polynomial regression

• In matrix, form we can write the following
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1 The solution will exist 
provided there are at 
least 2 non-coincident 
points. Basically, XTX
must be non-singular.
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Least Squares Polynomial regression

• For higher order polynomials, we have:
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The solution 
will exist 
provided 
there are at 
least n non-
coincident, 
non-collinear 
points. 
Basically, XTX
must be non-
singular.
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Least Squares Polynomial regression

• Regardless of the order of the polynomial, we 
are dealing with a linear form of regression –
because in each case, we are solving an 
equation of the form y ≈ Xa. 

• There are some assumptions made on the 
errors in the measurement of y. We will not 
go into those details.
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Least Squares Polynomial Regression: 
Geometric Interpretation

• The least squares solution seeks a set of polynomial 
coefficients that minimize the sum of the squared 
difference between the measured y coordinate of 
each point and the y coordinate if  the assumed 
polynomial model was strictly obeyed, i.e.

2

2}{

0

2

0

}{

min

)(min

Xay

xy

a 



 
 

N

i

n

j

j

ijia a
j

12



Least Squares Polynomial Regression: 
Geometric Interpretation

• The least squares solution seeks a set of polynomial 
coefficients that minimize the sum of the squared 
difference between the measured y coordinate of 
each point and the y coordinate if  the assumed 
polynomial model was strictly obeyed, i.e. we are 
trying to find a model that will minimize vertical 
distances (distances along the Y axis).
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Weighted least squares: Row weighting
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Regularization

• In some cases, the system of equations may be ill-
conditioned.

• In such cases, there may be more than one 
solution.

• It is common practice to choose a “simple” or 
“smooth” solution.

• This practice of choosing a “smooth” solution is 
called as regularization.

• Regularization is a common method used in 
several problems in machine learning, computer 
vision and statistics.
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Regularization: Ridge regression
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Penalize (or discourage) solutions in which the 
magnitude of vector a is too high. The parameter λ
is called the regularization parameter. Larger the 
value of λ, the greater the encouragement to find a 
smooth solution.
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Regularization: Tikhonov regularization
2
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Penalize (or discourage) solutions in which the magnitude of vector Ba is too high. The 
parameter λ is called the regularization parameter. Larger the value of λ, the greater the 
encouragement to find a smooth solution. The matrix B can be chosen in different ways 
– very commonly, one penalizes large values of the gradient of vector a, given as 
follows:

 12123121 ..   nnnn aaaaaaaaaa

In such a case, B is given as follows:
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Total Least Squares

• There are situations when there are errors in 
not just the yi values, but in the xi values as 
well.

• In such a situations, least squares is not 
applicable – instead a method called total 
least squares is used.

• Total least squares solutions heavily use the 
SVD – so this is one more application of the 
SVD for you!
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Total Least Squares

• Consider the equation y ≈ Xa for polynomial 
regression. 

• We want to find a, in the case where both y
and X have errors (in the earlier case, only y
had errors).

• So we seek to find a new version of y (denoted 
y*) close to y, and a new version of X
(denoted X*) close to X, such that y*=X*a.  

• Thus we want (see next slide):
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Interpolation

• In the case of interpolation, we want the 
function being fit to pass through the given 
data-points exactly.

• The type of interpolation is determined by 
whether it is a function of one or more 
variables, as well as the type of function.

• Let us consider lower-order polynomial 
interpolation in 1D.
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Interpolation
• Given a set of N points lying on a curve, we 

can perform linear interpolation by simply 
joining consecutive points with a line. 
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Interpolation

• The problem with this approach is that the slopes 
of adjacent lines change abruptly at each data-
point – called as C1 discontinuity.

• This can be resolved by stitching piecewise 
quadratic polynomials between consecutive point 
pairs and requiring that

 Adjacent polynomials actually pass through the 
point (interpolatory condition)

 Adjacent polynomials have the same slope at 
that point (C1 continuity condition)
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Interpolation

• We could go one step further and require that
 Adjacent polynomials have the same second derivative 

at that point (C2 continuity condition)
• This requires that the polynomials be piecewise cubic

(degree 3) at least.
• This type of interpolation is called cubic-spline

interpolation and is very popular in graphics and image 
processing. 

• The data-points (where the continuity conditions) are 
imposed are called as knots or control points. 

• A cubic spline is a piecewise polynomial that is twice 
continuously differentiable (including at the knots). 
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Cubic spline interpolation

• A curve is parameterized as y = f(t) where ‘t’ is 
the independent variable.

• Consider N points (ti,yi) where i ranges from 1 
to N. 

• We will have N-1 cubic polynomials, each of 
the form yi(t) = ai + bi t + ci t2 + di t3 where i
ranges from 1 to N-1.

• Thus the overall function y(t) is equal to yi(t)
where t lies in between ti and ti+1.
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Cubic spline interpolation
• The total number of unknowns here is 4(N-1) 

(why?).

• To determine them, we need to specify 4(N-1) 
equations.

• As the curve must pass through the N points, 
we get N equations as follows:
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Cubic spline interpolation

• The interpolatory conditions at the N-2 
interior points yield N-2 equations of the 
form:
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Cubic spline interpolation

• The C1 continuity conditions at the N-2 
interior points yield N-2 equations of the 
form:
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Cubic spline interpolation

• The C2 continuity conditions at the N-2 
interior points yield N-2 equations of the 
form:

• The total number of equations is N+3(N-2) = 
4N-6 whereas there are 4N-4 unknowns. 
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Cubic spline interpolation

• We need two more equations. 
• One possible set of conditions is to impose that the 

second derivative of the curve at the two end-points be 
zero. This gives two more equations of the form:

• A cubic spline with these two conditions is called a 
natural cubic spline and these conditions are called 
natural boundary conditions.

• We now have 4(N-1) linear equations and 4(N-1) 
unknowns.

• Solving the linear system gives us the cubic spline!
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Cubic spline interpolation

• For the case of N = 3 points, the system of 
equations looks as follows:
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A cubic-spline fit to three points (1,10), (2,18) and 
(3,11) – marked with red asterisks.
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