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The use of multi-scale decompositions has led to significant advances
in representation, compression, restoration, analysis, and synthesis of sig-
nals. The fundamental reason for these advances is that the statistics of
many natural signals, when decomposed in such bases, are substantially
simplified. Choosing a basis that is adapted to statistical properties of the
input signal is a classical problem. The traditional solution is principal
components analysis (PCA), in which a linear decomposition is chosen to
diagonalize the covariance structure of the input. The most well-known
description of image statistics is that their Fourier spectra take the form
of a power law [e.g., 1, 2, 3]. Coupled with a constraint of translation-
invariance, this suggests that the Fourier transform is an appropriate PCA
representation. Fourier and related representations are widely used in im-
age processing applications. For example, the classical solution to the noise
removal problem is the Wiener filter, which can be derived by assuming a
signal model of decorrelated Gaussian-distributed coefficients in the Fourier
domain.

Recently a number of authors have noted that statistics of order greater
than two can be utilized in choosing a basis for images. Field [2, 4] noted
that the coefficients of frequency subbands of natural scenes have much
higher kurtosis than a Gaussian density. Recent work on so-called “in-
dependent components analysis” (ICA) has sought linear bases that opti-
mize higher-order statistical measures [e.g., 5, 6]. Several authors have con-
structed optimal bases for images by optimizing such information-theoretic
criterion [7, 8]. The resulting basis functions are oriented and have roughly
octave bandwidth, similar to many of the most common multi-scale de-
compositions. A number of authors have explored the optimal choice of
a basis from a library of functions based on entropy or other statistical
criterion [e.g. 9, 10, 11, 12, 13].

In this chapter, we examine the empirical statistical properties of visual
images within two fixed multi-scale bases, and describe two statistical mod-
els for the coefficients in these bases. The first is a non-Gaussian marginal
model, previously described in [14]. The second is a joint non-Gaussian
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Markov model for wavelet subbands, previous versions of which have been
described in [15, 16]. We demonstrate the use of each of these models in
Bayesian estimation of an image contaminated by additive Gaussian white
noise.

1 Marginal Statistical Model

A number of authors have observed that wavelet subband coefficients have
highly non-Gaussian statistics [e.g., 17, 4, 14]. The intuitive explanation
for this is that images typically have spatial structure consisting of smooth
areas interspersed with occasional edges or other abrupt transitions. The
smooth regions lead to near-zero coefficients, and the structures give occa-
sional large-amplitude coefficients.

As an example, histograms for subbands of separable wavelet decomposi-
tions of several images are plotted in figure 11. These densities may be accu-
rately modeled with a two-parameter density function of the form [17, 14]:

Pc(c; s, p) =
e−|c/s|p

Z(s, p)
, (1.1)

where the normalization constant is Z(s, p) = 2 s
pΓ( 1

p ). Each graph in fig-
ure 1 includes a dashed curve corresponding to the best fitting instance
of this density function, with the parameters {s, p} estimated by maximiz-
ing the likelihood of the data under the model. For subbands of images in
our collection, values of the exponent p typically lie in the range [0.5, 0.8].
The density model fits the histograms remarkably well, as indicated by the
relative entropy measures given below each plot.

1.1 Bayesian denoising: Marginal model

Consider an image whose pixels are contaminated with i.i.d. samples of
additive Gaussian noise. Because the wavelet transform is orthonormal,
the noise is also Gaussian and white in the wavelet domain. Thus, each
coefficient in the wavelet expansion of the noisy image is written as y =
c + n, where c is drawn from the marginal density given in equation (1.1),
and n is Gaussian.

A standard estimator for c given the corrupted observation y is the max-
imum a posteriori (MAP) estimator:

ĉ(y) = arg max
c

Pc|y(c|y) (1.2)

1The specific wavelet decomposition used for these examples is described in sec-

tion 2.2.
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FIGURE 1. Examples of 256-bin coefficient histograms for a single ver-
tical wavelet subband of three images, plotted in the log domain. All im-
ages are size 512x512. Also shown (dashed lines) are fitted model densities
corresponding to equation (1.1). Below each histogram is the maximum-
likelihood value of p used for the fitted model density, and the relative
entropy (Kullback-Leibler divergence) of the model and histogram, as a
fraction of the total entropy of the histogram.

= arg max
c

Py|c(y|c)Pc(c) (1.3)

= arg max
c

Pn(y − c)Pc(c) (1.4)

where Bayes’ rule allows us to write this in terms of the probability densities
of the noise (Pn) and the prior density of the signal coefficient (Pc). In order
to use this equation to estimate the original signal value c, we must know
both density functions.

Figure 2 shows a set of (numerically computed) MAP estimators for the
model in equation (1.1) with different values of the exponent p, assuming
a Gaussian noise density. In the special case of p = 2 (i.e., Gaussian source
density), the estimator assumes the well-known linear form:

ĉ(y) =
σ2

c y

σ2
c + σ2

n

, (1.5)

estimators for other values of p are nonlinear: the p = 0.5 function resembles
a hard thresholding operator, and p = 1 resembles a soft thresholding oper-
ator. Donoho has shown that these types of shrinkage operator are nearly
minimax optimal for some classes of regular function (e.g., Besov) [18].
Other authors have established connections of these these results with sta-
tistical models [19, 20]. In addition, thresholding techniques are widely used
in the television and video engineering community, where they are known
as “coring” [e.g., 21, 22, 23]. For example, most consumer VCR’s use a
simple coring technique to remove magnetic tape noise.

If one wishes to minimize squared error, the mean of the posterior distri-
bution provides an optimal estimate of the coefficient c, given a measure-
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p = 0.5 p = 1.0 p = 2.0

FIGURE 2. MAP estimators for the model given in equation (1.1),
with three different exponents. The noise is additive and Gaussian, with
variance one third that of the signal. Dashed line indicates the identity
function.

ment of y:

ĉ(y) =

∫

dc Pc|y(c|y) c

=

∫

dc Py|c(y|c) Pc(c) c
∫

dc Py|c(y|c) Pc(c)

=

∫

dc Pn(y − c) Pc(c) c
∫

dc Pn(y − c) Pc(c)
. (1.6)

The denominator is the pdf of the noisy observation y, computed by marginal-
izing the convolution of the noise and signal pdf’s.

Figure 3 shows (numerically computed) Bayesian least-squares estima-
tors for the model of equation (1.1), with three different values of the ex-
ponent p. Again, for the special case of p = 2 the estimator is linear and of
the form of equation (1.5). As with the MAP estimators, smaller values of
p produce a nonlinear shrinkage operator, somewhat smoothed in compar-
ison to those of figure 2. In particular, for p = 0.5 (which is well-matched
to wavelet marginals such as those shown in figure 1), the estimator pre-
serves large amplitude values and suppresses small amplitude values. This
is intuitively sensible: given the substantial prior probability mass at c = 0,
small values of y are assumed to have arisen from a value of c = 0.

The quality of a denoising algorithm will depend on the exponent p. To
quantify this, figure 4 shows the (numerically computed) error variance for
the Bayesian least-squares estimate (see figure 3), as a function of p. Note
that the error variance drops significantly for values of p less than one.

In practice, one must estimate the parameters {s, p} and σn from the
noisy collection of coefficients {yk}. A simple solution is a maximum like-
lihood estimator:

{ŝ, p̂, σ̂n} = arg max
{s,p,σn}

∏

k

Py(yk; s, p, σn)



1. Bayesian Denoising of Visual Images in the Wavelet Domain 5

p = 0.5 p = 1.0 p = 2.0

FIGURE 3. Bayesian least-squares estimators for the model given in
equation (1.1), with three different exponents, p. The noise is additive
and Gaussian, with variance one third that of the signal. Dashed line
indicates the identity function.
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FIGURE 4. Error variance of the Bayes least-squares estimator relative
to the noise variance, as a function of the model parameter p of equa-
tion (1.1). Noise variance σn was held constant at one third of the signal
variance.

= arg max
{s,p,σn}

∏

k

∫

dc e−|c/s|p e−(yk−c)2/2σ2
n (1.7)

where the product is taken over all coefficients within the subband. In prac-
tice, both the integration and the optimization are performed numerically.
Furthermore, in the examples shown in section 3, we assume σn is known,
and optimize only over {s, p}. As a starting point for the optimization, we
solve for the parameter pair {s, p} corresponding to a density with kurtosis
and variance matching those of the histogram [as in 14].

2 Joint Statistical Model

In the model of the previous section, we treated the wavelet coefficients
as if they were independent. Empirically, orthonormal wavelet coefficients
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FIGURE 5. Coefficient magnitudes of a wavelet decomposition. Shown
are absolute values of subband coefficients at three scales, and three ori-
entations of a separable wavelet decomposition of the “Einstein” image.

are found to be fairly well decorrelated. Nevertheless, it is quite evident
that wavelet coefficients of images are not statistically independent. Fig-
ure 5 shows the magnitudes (absolute values) of coefficients in a four-level
separable wavelet decomposition. In particular, previous work has shown
that large-magnitude coefficients tend to occur near each other within sub-
bands, and also occur at the same relative spatial locations in subbands at
adjacent scales, and orientations [e.g., 15, 16].

As an example, consider two coefficients representing horizontal informa-
tion at adjacent scales, but the same spatial location of the “Boats” image.
Figure 6A shows the conditional histogram H (c|p) of the “child” coeffi-
cient conditioned on a coarser-scale “parent” coefficient. The histogram
illustrates several important aspects of the relationship between the two
coefficients. First, they are (second-order) decorrelated, since the expected
value of c is approximately zero for all values of p. Second, the variance
of the conditional histogram of c clearly depends the value of p. Thus,
although c and p are uncorrelated, they are still statistically dependent.
Furthermore, this dependency cannot be eliminated through further linear
transformation.

The structure of the relationship between c and p becomes more apparent
upon transforming to the log domain. Figure 6B shows the conditional his-
togram H

(

log2(c
2)| log2(p

2)
)

The right side of the distribution is unimodal
and concentrated along a unit-slope line. This suggests that in this region,
the conditional expectation, IE(c2|p2), is approximately proportional to p2.
Furthermore, vertical cross sections (i.e., conditional histogram for a fixed
value of p2) have approximately the same shape for different values of p2.
Finally, the left side of the distribution is concentrated about a horizontal
line, suggesting that c2 is independent of p2 in this region.

The form of the histograms shown in figure 6 is surprisingly robust across
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FIGURE 6. Conditional histograms for a fine scale horizontal coeffi-
cient. Brightness corresponds to probability, except that each column has
been independently rescaled to fill the full range of display intensities. A:

Conditioned on the parent (same location and orientation, coarser scale)
coefficient. Data are for the “Boats” image. B: Same as A, but in the log
domain. C Conditioned on a linear combination of neighboring coefficient
magnitudes.

a wide range of images. Furthermore, the qualitative form of these statis-
tical relationships also holds for pairs of coefficients at adjacent spatial
locations ( “siblings”), adjacent orientations (“cousins”), and adjacent ori-
entations at a coarser scale (“aunts”). Given the linear relationship between
the squares of large-amplitude coefficients and the difficulty of character-
izing the full density of a coefficient conditioned on its neighbors, we’ve
examined a linear predictor for the squared coefficient. Figure 6C shows a
histogram of log2(c

2) conditioned on a linear combination of the squares
of eight adjacent coefficients in the same subband, two coefficients at other
orientations, and a coefficient at a coarser scale. The linear combination is
chosen to be least-squares optimal (see equation (1.9)). The histogram is
similar to the single-band conditional histogram of figure 6B, but the linear
region is extended and the conditional variance is significantly reduced.

The form of these observations suggests a simple Markov model, in which
the density of a coefficient, c, is conditionally Gaussian with variance a
linear function of the squared coefficients in a local neighborhood:

P (c | ~p) = N

(

0;
∑

k

wkp2
k + α2

)

. (1.8)

Here, the neighborhood {pk} consists of coefficients at other orientations
and adjacent scales, as well as adjacent spatial locations. Note that although
we utilize a normal distribution, this is not a jointly Gaussian density in
the traditional sense, since the variance rather than the mean is dependent
on the neighborhood. Figure 7 shows a set of conditional histograms, and
the best-fitting instantiation of the model in equation (1.8). The fits are
seen to be reasonably good, as indicated by the low relative entropy values.
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FIGURE 7. Top: Examples of log-domain conditional histograms for
the second-level horizontal subband of different images, conditioned on an
optimal linear combination of coefficient magnitudes from adjacent spatial
positions, orientations, and scales. Bottom: Model of equation (1.8) fitted
to the conditional histograms in the left column. Intensity corresponds to
probability, except that each column has been independently rescaled to
fill the full range of intensities.

We have used variants of this model for applications of compression [15]
and texture synthesis [24].

2.1 Bayesian denoising: Joint model

As in the previous section, assume a coefficient is contaminated with Gaus-
sian white noise: y = c+n. If we assume the neighbor coefficients are known,
the conditionally Gaussian form of equation (1.8) leads to a linear Bayesian
estimator:

ĉ(y) =

∑

k wkp2
k + α2

∑

k wkp2
k + α2 + σ2

n

y.

In a more realistic implementation, we must estimate c given the noisy
observations of the neighbors. A complete solution for this problem is dif-
ficult, since the conditional density of the variance of the clean coefficient
given the noisy neighbors cannot be computed in closed form. A numerical
solution should be feasible, but for the purposes of the current paper, we
instead choose to utilize the marginal model estimator from the previous
section.

Specifically, we first compute estimates of the coefficients in a subband,
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ĉ, using equation (1.6). We then use these estimated coefficients to esti-
mate the weight parameters, {wk}, and the constant, α, by minimizing the
squared error:

{ŵ, α̂} = arg min
{~w,α}

IE

[

ĉ2 −
∑

k

wkp̂2
k − α2

]2

. (1.9)

Note that we are using the marginal estimates of both the coefficient and the
neighbors. We have also implemented (numerically) a maximum likelihood
solution, but it was found to be computationally expensive and did not
yield any improvement in performance.

Given ŵ, the joint model estimate, ˆ̂c(y), is computed from the noisy
observation, y, using the marginal estimates of the neighbors:

ˆ̂c(y) =

∑

k ŵkp̂2
k + α̂2

∑

k ŵkp̂2
k + α̂2 + σ2

n

y. (1.10)

Although clearly sub-optimal, this estimate is easily computed and gives
reasonable results.

2.2 Choice of Basis

As mentioned in the introduction, a number of recent researchers have
derived wavelet-like bases for images using information-theoretic optimality
criterion. Here, we compare the denoising abilities of two different types of
discrete multi-scale basis.

The first is a separable critically-sampled 9-tap quadrature mirror filter
(QMF) decomposition, based on filters designed in [25]. This is a linear-
phase (symmetric) approximation to an orthonormal wavelet decomposi-
tion. The lowpass filter samples are:

l[n] = [0.028074,−0.060945,−0.073387, 0.41473, 0.79739,

0.41473,−0.073387,−0.060945, 0.028074].

The highpass filter is obtained via h[n] = (−1)nl[N−n+1], and the system
diagram is shown in figure 8. Compared with orthonormal wavelets, this
decomposition has the advantage that the basis functions are symmetric.
The drawback is that the system does not give perfect reconstruction: the
filters are designed to optimize a residual function. This is not a serious
problem for applications such as the one discussed in this chapter, since
reconstruction signal-to-noise ratios (SNRs) are typically about 55dB.

The second decomposition is known as a steerable pyramid [26]. In this
decomposition, the image is subdivided into subbands using filters that are
polar-separable in the Fourier domain. In scale, the subbands have octave
bandwidth with a functional form constrained by a recursive system dia-
gram. In orientation, the functional form is chosen so that the set filters
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FIGURE 8. Single-scale system diagram for a critically-sampled QMF
or wavelet decomposition, in one dimension. Boxes correspond to convo-
lution, downsampling, and upsampling operations. Two-dimensional de-
composition is achieved by applying the one-dimensional decomposition
in the vertical direction, and then to both resulting subbands in the hori-
zontal direction. Multi-scale decompositions are constructed by inserting
the system into itself at the location of the filled circle.

B0(- ) B0( )L0(- )

L1(- )

H0(- )

B1(- )

BK(- )

2 L1( )

B1( )

BK( )

2

L0( )

H0( )

FIGURE 9. Single-scale system diagram for a steerable pyramid. Multi-
scale decompositions are constructed by inserting the portion of the sys-
tem within the gray region at the location of the filled circle.

at a given scale span a rotation-invariant subspace. The decomposition can
performed with any number of orientation bands, K, each of orientation
bandwidth 2π/K radians. The full two-dimensional transform is overcom-
plete by a factor of 4K/3, and is a tight frame (i.e., the matrix correspond-
ing to the inverse transformation is equal to the transpose of the forward
transformation matrix). Spatial subsampling of each subband respects the
Nyquist criterion, and thus the representation is translation-invariant (free
of aliasing). An idealized system diagram is shown in figure 9.

The transform is implemented using a set of oriented filters that are
polar-separable when expressed in the Fourier domain:

Fn,k(r, θ) = Bn(r)Gk(θ), n ∈ [0,M ], k ∈ [0,K − 1],

where

Bn(r) = cos

(

π

2
log2

(

2nr

π

))
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FIGURE 10. Idealized partition of frequency domain associated with
each decomposition. Each axis covers the range [−π, π] radians/pixel.
Left: Separable QMF or wavelet. Right: Steerable pyramid, K = 4.

FIGURE 11. Basis functions at a single scale. Left: QMF decomposition.
Right: 4-orientation steerable pyramid.

Gk(θ) =

{

[

cos(θ − πk
K )
]K−1

, |θ − πk
K | < π

2
0, otherwise,

where r, θ are polar frequency coordinates. Subbands are subsampled by a
factor of 2n along both axes. In addition, one must retain the (non-oriented)
lowpass residual band, which is computed using the following filter:

L(r) =











cos
(

π
2 log2(

2(M+1)r
π )

)

, r ∈ [ π
2M+1 , π

2M ]

1 r < π
2M+1

0 r > π
2M .

Figure 10 shows the idealized frequency partition of the two decomposi-
tions, figure 11 shows the basis functions at a single scale, and figure 12
shows the decomposition of the Einstein image using the two bases.

Figure 13 shows a scatter plot of estimated values of p for the images
shown in figure 1. Note that the values for some of the separable QMF bands
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FIGURE 12. Example multi-scale decompositions. Left: separable QMF
decomposition, a linear-phase approximation to an orthonormal wavelet
decomposition. Right: steerable pyramid, with K = 4 orientation bands.

are quite high (particularly, band 3, which contains the mixed diagonals).
On average, the steerable pyramid values less than those of the separable
critically-sampled system. This is consistent with the preference for oriented
basis functions, as mentioned in the introduction.

In addition to the smaller values of p, another advantage of the steerable
pyramid in the context of denoising is the translation-invariance property.
Previous work has emphasized the importance of translation-invariance for
image processing tasks such as denoising [26, 11, 12, 14]. One drawback of
this representation is that our assumption of orthonormality is violated. In
particular, the representation is heavily overcomplete and thus there are
strong linear dependencies between the coefficients. The marginal model
of section 1 assumes that the coefficients are statistically independent, and
the joint model of section 2 assumes that they are decorrelated.

3 Results

In this section, we show examples of image denoising using the two models
described in previous sections. In all cases, we assume the noise variance,
σ2

n, is known. Gaussian noise of this variance, truncated to a range of three
standard deviations, is added to the original image. This contaminated
image is transformed to the relevant basis, the appropriate estimator is
applied to all coefficients within each subband, and then the transformation
is inverted. The estimators are computed as follows:

• Linear estimator:

1. Estimate σ2
c ≈ max{0, IE

(

c2 − σ2
n

)

}.

2. ĉ(y) =
σ2

c

σ2
c+σ2

n
y.
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FIGURE 13. Values of p for subbands from the 512 × 512 images an-
alyzed in figure 1. Left: Subbands of separable QMF pyramid. Right:
Subbands of steerable pyramid (K = 4 orientations). Subband number-
ing runs from high to low frequency. Orientation bands of the separable
decomposition are ordered (vertical,horizontal,mixed-diagonal), and ori-
entation bands of the steerable pyramid start with vertical and proceed
counterclockwise.

• Threshold estimator:

1. t = 3σn

2. ĉ(y) =

{

y, |y| > t
0, otherwise

• Bayesian marginal (coring) estimator:

1. Compute parameter estimates {ŝ, p̂} by maximizing likelihood
of the subband data (equation (1.7)).

2. Compute the conditional mean estimator f(y) numerically using
equation (1.6).

3. ĉ(y) = f(y)

• Bayesian joint estimator:

1. Compute ĉ(y) for all subbands using the Bayesian marginal es-
timator.

2. Estimate weights ŵ and α̂ using equation (1.9).

3. ˆ̂c(y) =

∑

k
ŵkp̂2

k+α̂2

∑

k
ŵkp̂2

k
+α̂2+σ2

n

y.

All expectations are estimated by summing spatially. For the joint estima-
tor, we use a neighborhood consisting of the 12 nearest spatial neighbors
(within the same subband), the 5 nearest cousin coefficients (in other ori-
entation bands at the same scale), the 9 nearest parent coefficients (in the
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decomposition noisy Estimator
type image Linear Threshold BayesCore BayesJoint

1.59 8.26 8.09 9.66 10.58
QMF-9 4.80 9.71 10.10 11.64 12.31

8.99 12.02 12.46 14.21 14.49
13.03 14.81 14.65 16.61 16.62

1.59 9.28 10.12 10.35 10.96
Spyr 4.80 10.60 11.71 11.98 12.61

(4 ori) 9.02 12.58 14.04 14.19 14.81
13.06 14.96 15.89 16.50 16.99

1.59 9.34 10.37 10.55 11.12
Spyr 4.80 10.67 12.03 12.18 12.74

(6 ori) 9.02 12.66 14.23 14.43 14.90
13.06 15.02 16.28 16.71 17.09

TABLE 1.1. Denoising results for four estimators, three different de-
compositions, and four different levels of additive Gaussian noise added
to the “Einstein” image. All values indicate signal-to-noise ratio in deci-
bels (10 log

10
(signal variance/error variance)).

adjacent subband of coarser scale), a single aunt (from each orientation at
the adjacent coarser scale), and a single grandparent.

Table 3 shows signal-to-noise ratios (SNRs) for all four algorithms, ap-
plied to all three decompositions, at four different contamination levels.
Note that Bayesian algorithms outperform the other two techniques for
all examples. Also note that the steerable pyramid decompositions signifi-
cantly outperform the separable QMF decomposition, and the six-orientation
decomposition shows a noticeable improvement over the four-orientation
decomposition.

Finally, figures 14 and 15 show some example images. Figure 14 shows
results using the separable decomposition. The Bayesian results appear
both sharper (because high-amplitude coefficients are preserved) and less
noisy (because low-amplitude coefficients are suppressed) than the linear
estimator. The aliasing artifacts of the critically sampled transform are
most evident with the thresholding estimator, and least evident in the
Bayes joint estimator.

Figure 15 shows results using the 4-orientation steerable pyramid. Note
that although the use of this decomposition eliminates the aliasing artifacts
and produces higher SNR results, the results now look more blurred. The
results can be made more visually appealing by a subsequent sharpening
operation, although this reduces the SNR.
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C D

E F

FIGURE 14. Cropped denoising results using an (approximately)
orthonormal separable decomposition. A: Original “Einstein” image
(cropped). B: Noisy image (SNR = 4.8dB). C: Linear least-squares esti-
mator. D: Optimal thresholding. E: Bayes - marginal model. F: Bayes -
joint model.
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FIGURE 15. Cropped denoising results using a 4-orientation steer-
able pyramid decomposition. A: Original “Einstein” image (cropped). B:
Noisy image (SNR = 4.8dB). C: Linear least-squares estimator. D: Op-
timal thresholding. E: Bayes - marginal model. F: Bayes - joint model.
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4 Conclusion

We have described two non-Gaussian density models for visual images,
and used them to develop nonlinear Bayesian estimators that outperform
classical linear estimators and simple thresholding estimators.

We have implemented these estimators in the context of two different
multi-scale decompositions. The results obtained with the overcomplete
steerable pyramid bases are superior to the separable QMF basis, due to
translation-invariance and more kurtotic statistics. This is true in spite of
the fact that the statistical model is no longer correct: the use of an over-
complete basis creates linear dependencies between coefficients. It would be
interesting to compare these results to other translation-invariant denois-
ing schemes, such as the cycle-spinning approach of [27]. It would also be
interesting to explore whether the results can be improved by adaptively
choosing an optimal basis. Such optimization could be done over a collec-
tion of images drawn from a particular class, or individually for each image
(assuming spatial stationarity).

A number of improvements should be made to the statistical models, and
the Bayesian estimators described in this paper. In particular, the marginal
densities that come from integrating the joint model density are inconsis-
tent with those of the generalized Gaussian marginal model of section 1.
Although the empirical evidence for the linear dependency of coefficient
variance on a single neighbor is quite strong, the linear estimate based on
the full neighborhood needs to be validated. A full joint Bayesian estima-
tor, which estimates both the density parameters and the clean coefficient
based on the noisy observations, should be implemented numerically. The
distortion model should be extended to include spatial blurring. A fully
blind denoising technique (i.e., including estimation of σn) should also be
explored.

Finally, we note the need for a measure of image distortion that ade-
quately reflects human perceptual salience. Although the Bayesian denois-
ing results in figure 15 are excellent according to a squared error measure,
informal questioning suggests that most observers prefer a sharper image,
even if it contains more noticeable artifacts.
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Errata, 14 May 1999

• Figure 7: Figure was meant to include relative entropy (Kullback-
Leibler divergence) of the model, as a fraction of the conditional
histogram entropy. The values for the three histograms shown are:
∆H/H = 0.0292, 0.0212, 0.034.

• Figure 9: Oriented subbands should be {B0, B1, . . . , BK−1}.

• Reference [8]: Correct reference is:
A J Bell and T J Sejnowski. The ’Independent Components’ of Natu-
ral Scenes are Edge Filters. Vision Research, 37(23):3327–3338, 1997.


