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Abstract—Over the past two decades, there have been various
studies on the distributions of the DCT coefficients for images.
However, they have concentrated only on fitting the empirical
data from some standard pictures with a variety of well-known
statistical distributions, and then comparing their goodness-of-fit.
The Laplacian distribution is the dominant choice balancing
simplicity of the model and fidelity to the empirical data. Yet,
to the best of our knowledge, there has been no mathematical
justification as to what gives rise to this distribution. In this
paper, we offer a rigorous mathematical analysis using a doubly
stochastic model of the images, which not only provides the
theoretical explanations necessary, but also leads to insights about
various other observations from the literature. This model also
allows us to investigate how certain changes in the image statistics
could affect the DCT coefficient distributions.

Index Terms—Discrete cosine transforms, Gaussian distribu-
tions, image analysis, image coding, probability statistics.

I. INTRODUCTION

W ITH the advent of the Internet and multimedia systems,
the JPEG standard has gained widespread popularity for

lossy compression of still-frame, continuous-tone images. In
this algorithm, the image is first divided into nonoverlapping
blocks of size pixels, where each block is then subjected to
the discrete cosine transform (DCT) before quantization and en-
tropy coding. As the centerpiece of the compression algorithm,
the DCT has been extensively studied by various researchers.

In fact, there has been an interest in understanding the distri-
butions of the DCT coefficients since more than 20 years ago.
The question is as follows: after we have performed the DCT
on each of the blocks and collected the corresponding coeffi-
cients from them, what is the resulting statistical distribution?
Such knowledge would be useful, for instance, in quantizer de-
sign and noise mitigation for image enhancement [1], [2]. Fig. 1
shows a typical plot of the histograms of the DCT coefficients.
The image used here is the “bridge” picture shown in Fig. 2(a)
from the standard image processing library. The upper left co-
efficient is called the dc coefficient while the rest are ac coef-
ficients. The scaling of the histogram is kept the same for all
ac coefficients in this plot. Early on, it was conjectured that the
ac coefficients have Gaussian distributions [3]. However, soon
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Fig. 1. Histogram of DCT coefficients of “bridge.”

experimental results like Fig. 1 indicated that they resemble
Laplacian distributions when the Kolmogorov–Smirnov good-
ness-of-fit test is used [4]. The probability density function of a
Laplacian distribution can be written as

(1)

This is sometimes also referred to as the double exponential dis-
tribution. Since then, different researchers have tried a variety of
fitting methods, such as , Kurtosis, and Watson tests. Many
other possible distributions of the coefficients have also been
proposed, including Cauchy, generalized Gaussian, and even a
sum of Gaussians [5]–[9]. Using different pictures for the exper-
iments, they often differ in opinion as to what distribution model
is the most suitable, although the Laplacian distribution remains
a popular choice balancing simplicity of the model and fidelity
to the empirical data. Yet, none of them provided any analytic
justification for their choices of distributions. In this paper, we
investigate this problem in two steps: first, we derive the distri-
bution of the DCT coefficients for a fixed block variance, and
invoke the central limit theorem to show that this is approxi-
mately Gaussian. Then, by allowing the block variance to have
a statistical distribution itself, we analyze when the DCT coef-
ficients would follow a Laplacian distribution. We also study
the case when little is known of the distribution of the block
variance. These are detailed in Section II. In Section III we ex-
plain further why the width of the DCT coefficient distributions
shrinks as we go to higher frequencies, yet the shape remains
about the same. Empowered with these understandings, we pro-
ceed in Section IV to offer some insights to various observations
reported in the literature.
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Fig. 2. Some standard images used for testing. (a) “Bridge” image, (b)
“crowd” image, and (c) “baboon” image.

II. DISTRIBUTIONS OF THECOEFFICIENTS: SHAPE

A. Constant Block Variance

Let denote a pixel, , , within an
block. The ’s are assumed to be identically distributed,

but do not have to be Gaussian. Taking the type-II DCT used in
JPEG [10]

(2)

with

for

for
(3)

and

for

for .
(4)

By the central limit theorem, the (weighted) summation of iden-
tically distributed random variables can be well approximated as
having a Gaussian distribution. Therefore, should be ap-
proximately distributed as Gaussian. Note that the central limit
theorem applies even when the ’s are spatially correlated, as
long as the magnitude of correlation is less than one. For typical
images, the correlation will not be too large, and we generally
have enough pixels in the summation to achieve a good approxi-
mation to a Gaussian distribution. In fact, the spatial correlation
plays an important role in determining the width of the distri-
butions as we shall see in Section III. Finally, because of the
unitary nature of DCT, the mean of the Gaussian distribution is
zero, while the variance (which we denote as or just
for short) is proportional to the variance of pixels in the block
[3].

B. Changing Block Variance

One important characteristic of typical images is that the vari-
ance of the blocks is varying. We therefore model the image with
a doubly stochastic model, with the variance of the Gaussian dis-
tributions itself also a random variable. This turns out to be the
determining factor for the shape of the coefficient distributions.
Let denote the probability density function. Using condi-
tional probability

(5)

From the last section, we know that is approxi-
mately a zero-mean Gaussian, i.e.,

(6)

It remains to find the probability density function of the vari-
ance. Fig. 3 plots the histogram of the variance for the three test
images shown in Fig. 2. It appears that their histograms can be
reasonably approximated by exponential distributions. In fact,
in each plot we also show the exponential and half-Gaussian
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Fig. 3. Histograms and approximations for three images. (a) Histogram and
fits for “bridge,” (b) histogram and fits for “crowd,” and (c) histogram and fits
for “baboon.”

approximations to the empirical data, where we define the half-
Gaussian distribution to be

(7)

where controls the variance of the distribution.

Considering the case that is indeed exponentially dis-
tributed, we put in (5) to get

(8)

where we have used the relationship

(9)

where , , from an integral table [11]. In this case,
the resulting distribution of is exactly Laplacian with pa-
rameter . This explains why the distributions of the ac
coefficients are often observed to be approximately Laplacian
[1], [4], [5], [8].

If we use the half-Gaussian assumption for the probability
density function of , we substitute (7) in (5) and get

(10)

So, this again is a Laplacian distribution, with . The
approximation above is justified by the numerical results shown
in Fig. 4, which plots and the approximation for two
typical values of . They appear to be very close. We can there-
fore argue that the distributions of the ac coefficients are also
closely Laplacian in this case. From these results, we can further
surmise that if the distribution of the variance is somewhere be-
tween exponential and half-Gaussian, the resulting distribution
of is also very close to Laplacian.

Even if the block variance has a distribution that departs sig-
nificantly from an exponential or half-Gaussian distribution, we
can still draw some conclusions about the distribution of
by looking at its high order statistics. A quick review of some
definitions and examples is given in Appendix. For further ref-
erence, the reader may consult [12].
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Fig. 4. Approximation with Laplacian distribution. (a)s = 0:001; � =

2=s and (b)s = 0:01; � = 2=s.

As argued before, has zero mean. Therefore, we can
readily calculate its variance by

Var (11)

The skewness coefficient is zero because
. As for the kurtosis coefficient, we know

that

(12)

because a Gaussian distribution has a kurtosis of three. There-
fore

Var
(13)

whenever . This is always true when the dis-
tribution of the block variance is nonsingular, because its vari-
ance equals to , which must be positive. Further-
more, a large variance also implies a large kurtosis coefficient
for .

Therefore, we can conclude from the high order statistics
analysis that must have a fat-tail distribution. For a general
kurtosis value, a generalized Gaussian distribution is usually a
better fit. It has a probability density function

(14)

with . is the standard Gamma function [13]. This
distribution is also commonly called the exponential power dis-
tribution in statistics [12]. Its kurtosis coefficient is

(15)

which can take on any value greater than or equal to 1.8. When
and , it reduces back to a standard Gaussian

distribution, with a kurtosis coefficient of three. As , it
approaches the uniform distribution. The Laplacian distribution
is also a special case of the generalized Gaussian distribution by
setting and , with a kurtosis coefficient of six.
The extra parameter therefore allows for greater flexibility
in modeling for different kurtosis values. Therefore, the
generalized Gaussian distribution would result in an equal or
better fit to the empirical data than Laplacian, yet at the expense
of more complex expressions and extra computational cost.

III. D ISTRIBUTIONS OF THECOEFFICIENTS: WIDTH

While the discussion above enables us to explain fully the
shape of the DCT coefficients, it does not account for the dif-
ferences in “width,” or the variance, of the distributions across
various coefficients. Such differences are in fact due to the cor-
relation among pixels. Indeed, if the pixels are not only identi-
cally distributed but also independent, we expect all the ac coef-
ficients to have similar widths because energy would be evenly
distributed across different frequency bands.

As noted previously, because of the unitary nature of the DCT,
the variance of the Gaussian distribution obtained by invoking
the central limit theorem is directly proportional to the variance
of the block. However, the constant of proportionality is dif-
ferent for different coefficients: it is smaller as we go to higher
frequency coefficients. Referring back to (2), we are essentially
summing the random variable ’s with weights

, over all values of and . At
low frequencies, the weights of adjacent pixels are close, so the
overall summation generally leads to values of large magnitude.
However, at high frequencies, the weights of adjacent pixels are
close in magnitude but opposite in sign. When the pixels are
correlated spatially, the overall effect is that they tend to cancel
each other in the summation, and therefore the resulting DCT
coefficient usually has a small magnitude.

There is an alternative explanation of this phenomenon from
a more traditional signal processing perspective. The blockwise
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DCT can be interpreted as a subband decomposition after re-ar-
ranging the coefficients [14]. Therefore, the coefficient distri-
butions are in fact equivalent to the histograms of the various
subbands. Since all natural images possess certain degrees of
spatial correlation, their energy is usually concentrated in the
lower frequency bands. As a result, it is natural to expect more
energy—hence larger variance—in the low frequency subbands
of the original image than we would expect from the high-fre-
quency subbands. Therefore, as we look at the histogram, the
width of the Laplacian distributions decreases when we move
to higher frequency subbands.

IV. I NSIGHTS

The previous analyses offer us better insights for some em-
pirical observations put forth in the literature. Here, we collect
a few of them.

• Müller used the generalized Gaussian distribution and al-
lowed different values of for different DCT coefficients
for best fit. He reported that “the value offor the different
coefficients does not vary much within a single image” [6].
From our discussions above, we could have predicted that
to be the case since the distribution shape for different co-
efficients depends on the same factor, i.e. the distribution
of the block variance.

• In [7], Eudeet al. attempted to fit the distributions with
a finite mixture of Gaussian distributions. That is in line
with what we are doing, but we go further and show that
with particular mixtures of the Gaussians, we can form
the Laplacian distribution which is much easier to study
analytically.

• Smoot studied the DCT coefficient distributions of color
images. Comparing the luminance and chrominance
channels, he found that “the chrominance dataexhibits
the same distribution as for the luminance channel. How-
ever the parameters [of the Laplacian distributions] are
larger in general, indicating more near-zero values” [8].
Our analyses above would imply that the chrominance
channels have larger inter-pixel correlations than the
luminance channel, while the distribution of the variance
of the blocks is about the same. We verified these to be
true for our test images.

• Yovanof and Liu were quite right to notice that “the in-
ability of all those studies to agree upon a single model
is partially due to the large variations among the various
imagery data sources” [9]. We could now further pinpoint
the source of the variation in models to be the fact that the
variance of the blocks is not exactly distributed as expo-
nential. When it departs significantly from an exponential
or a half-Gaussian distribution, it is possible that the re-
sulting distribution looks less like a Laplacian.

V. CONCLUSIONS

In this paper, we offer a comprehensive mathematical anal-
ysis of the DCT coefficient distributions of natural images. We
demonstrate how a Laplacian distribution of the coefficients can
in fact be derived by using a doubly stochastic model. Further-
more, we also explain the difference in width of the Laplacian

Fig. 5. Generalized Gaussian distribution with different kurtosis coefficients.

distributions across various DCT coefficients. These together
bring us better insights into the DCT and subsequently the JPEG
compression algorithm.

Further research could look into the distributions of the
wavelet coefficients and the DCT coefficients of a motion-com-
pensated block of an interframe-coded video frame, both of
which have been observed to also possess Laplacian distri-
butions [15], [16]. We believe the causes of their Laplacian
distributions to be similar to the case we have presented here.
As wavelets play a larger role for image compression with
JPEG 2000 and digital video compression becomes more
prevalent, we trust that these analyses would be beneficial for
the development of multimedia systems.

APPENDIX

For a random variable , let and
. The skewness coefficient is defined as

(16)

while the kurtosis coefficient is defined as

(17)

For a Gaussian distribution, . If , the distribution
is said to be leptokurtic, or fat-tail. For example, a Laplacian
distribution has . If , the distribution is said to be
platykurtic. For example, a uniform distribution between0.5
and 0.5 has . Fig. 5 plots the generalized Gaussian
distribution with different values of by changing .
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