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What is SIFT?

• It is a technique for detecting salient, stable 
feature points in an image. 

• For every such point, it also provides a set of 
“features” that “characterize/describe” a 
small image region around the point. These 
features are invariant to rotation and scale.



Motivation for SIFT

• Image matching

o Estimation of affine transformation/homography
between images

o Estimation of fundamental matrix in stereo

• Structure from motion, tracking, motion 
segmentation



Motivation for SIFT
• All these applications need to (1) detect salient, 

stable points in two or more images, and (2) 
determine correspondences between them. 

• To determine correspondences correctly, we 
need some features characterizing a salient 
point.

• These features must not change with:

o Object position/pose

o Scale

o Illumination

o Minor image artifacts/noise/blur



Motivation for SIFT

• Individual pixel color values are not an 
adequate feature to determine 
correspondences (why?).



Motivation for SIFT
• One could try matching patches around the 

salient feature points – but these patches will 
themselves change if there is change in object 
pose or illumination. 

• So these patches will lead to several false 
matches/correspondences. 



Motivation for SIFT

• SIFT provides features characterizing a salient 
point that remain invariant to changes in scale 
or rotation.

Extract affine regions Normalize regions
Eliminate rotational 

ambiguity

Compute appearance

descriptors

SIFT (Lowe ’04)

Image taken from slides by George Bebis (UNR).



Steps of SIFT algorithm

• Determine approximate location and scale of 
salient feature points (also called keypoints)

• Refine their location and scale

• Determine orientation(s) for each keypoint.

• Determine descriptors for each keypoint.



Step 1: Approximate keypoint location

• Look for intensity changes using the difference 
of Gaussians at two nearby scales:

Convolution operator: refers to the 
application of a filter (in this case 
Gaussian filter to an image) 

Difference of Gaussians = “DoG”.
Scale refers to the σ of the Gaussian.
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This is a 7 x 7 
(truncated) Gaussian 
mask with mean zero 
and standard 
deviation σ = 2.

Convolution means the following (non-rigorously):

Let the original image be A. Let the new image be B. You move the mask all over the image 
A. Let us suppose the mask is centered at location (i,j) in image A. You compute the point-
wise product between the mask entries and the corresponding entries in A. You store the 
sum of these products in B(i,j).  

Whenever you are performing a filtering operation on image, the resultant image is obtained 
by convolving the original image with the filter, and is said to be the response to the filter. 
For further details, refer to Section 3.4 of the book on Digital Image Processing by Gonzalez, 
or see the animation at: http://en.wikipedia.org/wiki/Convolution
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http://www.gimpbible.com/files/edge-detection-difference-of-gaussians/

This is an example of the DoG filter in gimp. In SIFT, however, the DoG is 
computed from Gaussians at nearby scales.
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Step 1: Approximate keypoint location

( , , )

( , , )* ( , )

L x y

G x y I x y







( , , )

( , , ) ( , , )

D x y

L x y k L x y



 





Octave = doubling of σ0. Within an octave, the adjacent scales differ by a constant factor k. If an 
octave contains s+1 images, then k = 2(1/s). The first image has scale σ0, the second image has 
scale kσ0, the third image has scale k2σ0, and the last image has scale ksσ0. Such a sequence of 
images convolved with Gaussians of increasing σ constitute a so-called scale space.

Down-
sampling



Scale = 0 Scale = 1 Scale = 4

Scale = 16 Scale = 64 Scale = 256

http://en.wikipedia.org/wiki/Scale_space
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Step 1: Approximate keypoint location

The keypoints are maxima or minima in the “scale-space-pyramid”, 
i.e. the stack of DoG images. Hereby, you get both the location as 
well as the scale of the keypoint. 

Image taken from D. Lowe, 
“Distinctive Image Features 
from Scale-Invariant 
Points”, IJCV 2004



Initial detection of keypoints

http://upload.wikimedia.org/wikipedia/commons/4/44/Sift_keypoints_filtering.jpg

http://upload.wikimedia.org/wikipedia/commons/4/44/Sift_keypoints_filtering.jpg


Step 2: Refining keypoint location

• The keypoint location and scale is discrete –
we can interpolate for greater accuracy.

• For this, we express the DoG function in a 
small 3D neighborhood around a keypoint 
(xi,yi,σi) by a second-order Taylor-series:
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keypoint
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evaluated digitally at 
the keypoint



Step 2: Refining keypoint location

• To find an extremum of the DoG values in this 
neighborhood, set the derivative of D(.) to 0. This gives us:

• The keypoint location is updated. 
• All extrema with |Dextremal| < 0.03, are discarded as “weak 

extrema” or “low contrast points”.
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Removal of low-contrast keypoints

http://upload.wikimedia.org/wikipedia/commons/4/44/Sift_keypoints_filtering.jpg

http://upload.wikimedia.org/wikipedia/commons/4/44/Sift_keypoints_filtering.jpg


Step 2: Refining keypoint location

• Some keypoints reside on edges, as edges 
always give a high response to a DoG filter.

• But edges should not be considered salient 
points (why?).

• So we discard points that lie on edges.

• In the case of KLT tracker, we saw how to 
detect points lying on salient edges using the 
structure tensor.



Step 2: Refining keypoint location

• The SIFT paper uses the 2nd derivative matrix 
(called the Hessian matrix):

• The eigenvalues of H give a lot of information 
about the local structure around the keypoint.

• In fact, the eigenvalues are the maximal and 
minimal principal curvatures of the surface 
D(x,y), i.e. of the DoG function, at that point.

http://en.wikipedia.org/wiki/File:Minimal_surface_curvature_planes-en.svg

http://en.wikipedia.org/wiki/Principal_curvature

http://en.wikipedia.org/wiki/File:Minimal_surface_curvature_planes-en.svg
http://en.wikipedia.org/wiki/File:Minimal_surface_curvature_planes-en.svg
http://en.wikipedia.org/wiki/File:Minimal_surface_curvature_planes-en.svg
http://en.wikipedia.org/wiki/Principal_curvature


Step 2: Refining keypoint location

• An edge will have high maximal curvature, but 
very low minimal curvature. 

• A keypoint which is a corner (not an edge) will 
have high maximal and minimal curvature.

• The following can be regarded as an edge-ness 
measure: 

Should be less than a threshold 
(say 10).

For an edge, α >> β, leading to a 
large value of this measure.

Why this measure instead of r? 
To save computations – we 
need not compute eigenvalues!



Removal of high-contrast keypoints residing on edges

http://upload.wikimedia.org/wikipedia/commons/4/44/Sift_keypoints_filtering.jpg

http://upload.wikimedia.org/wikipedia/commons/4/44/Sift_keypoints_filtering.jpg


Step 3: Assigning orientations

• Compute the gradient magnitudes and 
orientations in a small window around the 
keypoint – at the appropriate scale.
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Histogram of gradient 
orientation – the bin-counts 
are weighted by gradient 
magnitudes and a Gaussian 
weighting function. Usually, 
36 bins are chosen for the 
orientation.



Step 3: Assigning orientations

• Assign the dominant orientation as the 
orientation of the keypoint.

• In case of multiple peaks or histogram entries 
more than 0.8 x peak, create a separate
descriptor for each orientation (they will all 
have the same scale and location). 
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Histogram of gradient 
orientation – the bin-counts 
are weighted by gradient 
magnitudes and a Gaussian 
weighting function. Usually, 
36 bins are chosen for the 
orientation.



Step 4: Descriptors for each keypoint
• Consider a small region around the keypoint. Divide it 

into n x n cells (usually n = 2). Each cell is of size 4 x 4.

• Build a gradient orientation histogram in each cell. Each 
histogram entry is weighted by the gradient magnitude 
and a Gaussian weighting function with σ = 0.5 times 
window width.

• Sort each gradient orientation histogram bearing in mind 
the dominant orientation of the keypoint (assigned in 
step 3).

Image taken from D. Lowe, 
“Distinctive Image Features 
from Scale-Invariant 
Points”, IJCV 2004



Step 4: Descriptors for each keypoint

• We now have a descriptor of size rn2 if there are r bins in 
the orientation histogram. 

• Typical case used in the SIFT paper: r = 8, n = 4, so length 
of each descriptor is 128. 

• The descriptor is invariant to rotations due to the sorting. 

Image taken 
from D. Lowe, 
“Distinctive 
Image Features 
from Scale-
Invariant 
Points”, IJCV 
2004



Step 4: Descriptors for each keypoint

• For scale-invariance, the size of the window should be 
adjusted as per scale of the keypoint. Larger scale = 
larger window.

http://www.vlfeat.org
/overview/sift.html

Image taken from D. Lowe, 
“Distinctive Image Features 
from Scale-Invariant 
Points”, IJCV 2004
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Step 4: Descriptors for each keypoint

• The SIFT descriptor (so far) is not illumination invariant –
the histogram entries are weighted by gradient 
magnitude.

• Hence the descriptor vector is normalized to unit 
magnitude. This will normalize scalar multiplicative 
intensity changes. 

• Scalar additive changes don’t matter – gradients are 
invariant to constant offsets anyway. 

• Not insensitive to non-linear illumination changes.



Step 1: Keypoint computations?
(More details)

• Why are DoG filters used?
• The Gaussian filter (and its derivatives) is shown to be 

the only filter obeys all of the following:
 Linearity
 Shift-invariance
 Structures at coarser scales are related to structures at 

finer scales in a consistent way (smoothing process 
does not produce new structures)

 Rotational symmetry
 Semi-group property:
 + some other properties  

http://en.wikipedia.org/wiki/Scale_space
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Step 1: Keypoint computations?
(More details)

• Why difference of Gaussians?

 The DoG is an approximation to the scale-
multiplied Laplacian of Gaussian filter in 
image processing – a rotationally invariant 
filter.

 The DoG is a good model for how neurons in 
the retina extract image details to be sent to 
the brain for processing.



http://www.cs.utexas.edu/~grauman/courses/spring2011/slides/lecture14_localfeats.pdf

LoG filter of scale σ
produces strong 
responses for patterns 
of radius σ * sqrt(2).

http://www.cs.utexas.edu/~grauman/courses/spring2011/slides/lecture14_localfeats.pdf


Keypoint = center of blob

http://www.cs.utexas.edu/~grauman/courses/spring2011/slides/lecture14_localfeats.pdf
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http://www.cs.utexas.edu
/~grauman/courses/spring
2011/slides/lecture14_loc
alfeats.pdf

Isotropic heat equation: running this equation on an 
image is equivalent to smoothing the image with a 
Gaussian.

Numerical approximation
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Step 1: Keypoint computations?
(More details)

• Why do we look for extrema of the DoG
function?

Maxima of the DoG indicate dark points (blobs) 
on a bright background.

Minima of the DoG indicate bright points (blobs) 
on a dark background. 

• Why do we look for extrema in a spatial as well as 
scale sense?

 It helps us pick the “scale” associated with the 
keypoint!



Step 1: Keypoint computations?
• How many scales per octave? Answer: 3 – it is empirically 

observed that this provides optimal repeatability under 
downsampling/upsampling/rotation of the image as well 
as image noise.

Image taken from D. Lowe, 
“Distinctive Image Features 
from Scale-Invariant 
Points”, IJCV 2004



Step 1: Keypoint computations?

• Adding more scales per octave will increase the number 
of detected keypoints, but this does not improve the 
repeatability (in fact there is a small decrease) – so we 
settle for the computationally less expensive option.



Summary of SIFT descriptor properties

• Invariant to spatial rotation, translation, scale.

• Experimentally seen to be less sensitive to 
small spatial affine or perspective changes.

• Invariant to affine illumination changes.

Image taken from D. Lowe, 
“Distinctive Image Features 
from Scale-Invariant 
Points”, IJCV 2004



Application: Matching SIFT descriptors

• Given a keypoint descriptor in image 1, find its nearest 
neighbor in image 2. “Nearest” as defined typically by SSD:

• Threshold the distance to decide whether the matching 
pair was valid.
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Application: Matching SIFT descriptors

• May lead to 
many false 
matches.



Application: Matching SIFT descriptors

• Consider the match between the keypoints to 
be valid if and only if the second nearest 
neighbor distance (SNND) in image 2 is 
sufficiently larger than the nearest neighbor 
distance (NND).

• Accept match as valid if SNND/NND > 0.8 (see 
next slide).



Image taken from D. Lowe, “Distinctive Image 
Features from Scale-Invariant Points”, IJCV 2004



Application: Object Recognition

• Input (1): A reference database of images of 
various objects. Each image is labeled by 
object name and object pose + scale.

• Input (2): Query images in which you locate 
one or more of these objects.



Application: Object Recognition

• Compute and store keypoints and their 
descriptors for each image in the reference 
database. 

• Compute keypoint descriptors for the query 
image.

• For each keypoint, find the nearest matching 
descriptor in each image of the reference 
database subject to the SNND/NND constraint.



Application: Object Recognition

• Collect all keypoints in the query image that “vote 
for” a particular pose for object X in the reference 
database.

• “Vote for pose abc of object X” = “have a nearest 
neighbor in image of object X with pose θ (say)”



Application: Object Recognition

• Estimate an affine transformation between keypoint 
locations (xi,yi) from the query image and keypoint 
locations (ui,vi) for each candidate reference image.

• Verify the affine transformation: apply the transform 
to the keypoints and compute the difference 
between the transformed and target locations. 
Discard the point as an outlier if the difference 
between the orientations/scales/locations is too high. 



Application: Object Recognition

• What is too high?

 Orientation difference > 20 degrees

 Scale difference more than 1.5

 Location difference > 0.2 * size of model

• Repeat the solution for affine transformation until 
no more points are thrown out.

• If number of points < 3, affine transformation 
cannot be estimated.  







SIFT: ++ 

• Resistant to affine transformations of limited extent 
(works better for planar objects than full 3D objects).

• Resistant to a range of illumination changes

• Resistant to occlusions in object recognition, since 
SIFT descriptors are local.



SIFT: 

• Resistance to affine transformations is empirical – no 
hard-core theory provided.

• Several parameters in the algorithm: descriptor size, 
size of the region, various thresholds – theoretical 
treatment for their specification not clear.


