
Scale Invariant Feature Transform
(SIFT)

CS 763

Ajit Rajwade

What is SIFT?

• It is a technique for detecting salient, stable
feature points in an image.

• For every such point, it also provides a set of
“features” that “characterize/describe” a
small image region around the point. These
features are invariant to rotation and scale.

Motivation for SIFT

• Image matching

o Estimation of affine transformation/homography
between images

o Estimation of fundamental matrix in stereo

• Structure from motion, tracking, motion
segmentation

Motivation for SIFT
• All these applications need to (1) detect salient,

stable points in two or more images, and (2)
determine correspondences between them.

• To determine correspondences correctly, we
need some features characterizing a salient
point.

• These features must not change with:

o Object position/pose

o Scale

o Illumination

o Minor image artifacts/noise/blur

Motivation for SIFT

• Individual pixel color values are not an
adequate feature to determine
correspondences (why?).

Motivation for SIFT
• One could try matching patches around the

salient feature points – but these patches will
themselves change if there is change in object
pose or illumination.

• So these patches will lead to several false
matches/correspondences.

Motivation for SIFT

• SIFT provides features characterizing a salient
point that remain invariant to changes in scale
or rotation.

Extract affine regions Normalize regions
Eliminate rotational

ambiguity

Compute appearance

descriptors

SIFT (Lowe ’04)

Image taken from slides by George Bebis (UNR).

Steps of SIFT algorithm

• Determine approximate location and scale of
salient feature points (also called keypoints)

• Refine their location and scale

• Determine orientation(s) for each keypoint.

• Determine descriptors for each keypoint.

Step 1: Approximate keypoint location

• Look for intensity changes using the difference
of Gaussians at two nearby scales:

Convolution operator: refers to the
application of a filter (in this case
Gaussian filter to an image)

Difference of Gaussians = “DoG”.
Scale refers to the σ of the Gaussian.

0.0049 0.0092 0.0134 0.0152 0.0134 0.0092 0.0049
0.0092 0.0172 0.0250 0.0283 0.0250 0.0172 0.0092
0.0134 0.0250 0.0364 0.0412 0.0364 0.0250 0.0134
0.0152 0.0283 0.0412 0.0467 0.0412 0.0283 0.0152
0.0134 0.0250 0.0364 0.0412 0.0364 0.0250 0.0134
0.0092 0.0172 0.0250 0.0283 0.0250 0.0172 0.0092
0.0049 0.0092 0.0134 0.0152 0.0134 0.0092 0.0049

This is a 7 x 7
(truncated) Gaussian
mask with mean zero
and standard
deviation σ = 2.

Convolution means the following (non-rigorously):

Let the original image be A. Let the new image be B. You move the mask all over the image
A. Let us suppose the mask is centered at location (i,j) in image A. You compute the point-
wise product between the mask entries and the corresponding entries in A. You store the
sum of these products in B(i,j).

Whenever you are performing a filtering operation on image, the resultant image is obtained
by convolving the original image with the filter, and is said to be the response to the filter.
For further details, refer to Section 3.4 of the book on Digital Image Processing by Gonzalez,
or see the animation at: http://en.wikipedia.org/wiki/Convolution


 


r

ra

r

rb

baMbjaiAjiB),(),(),(

http://en.wikipedia.org/wiki/Convolution

http://www.gimpbible.com/files/edge-detection-difference-of-gaussians/

This is an example of the DoG filter in gimp. In SIFT, however, the DoG is
computed from Gaussians at nearby scales.

http://www.gimpbible.com/files/edge-detection-difference-of-gaussians/
http://www.gimpbible.com/files/edge-detection-difference-of-gaussians/
http://www.gimpbible.com/files/edge-detection-difference-of-gaussians/
http://www.gimpbible.com/files/edge-detection-difference-of-gaussians/
http://www.gimpbible.com/files/edge-detection-difference-of-gaussians/
http://www.gimpbible.com/files/edge-detection-difference-of-gaussians/
http://www.gimpbible.com/files/edge-detection-difference-of-gaussians/
http://www.gimpbible.com/files/edge-detection-difference-of-gaussians/
http://www.gimpbible.com/files/edge-detection-difference-of-gaussians/

Step 1: Approximate keypoint location

(, ,)

(, ,)* (,)

L x y

G x y I x y







(, ,)

(, ,) (, ,)

D x y

L x y k L x y



 





Octave = doubling of σ0. Within an octave, the adjacent scales differ by a constant factor k. If an
octave contains s+1 images, then k = 2(1/s). The first image has scale σ0, the second image has
scale kσ0, the third image has scale k2σ0, and the last image has scale ksσ0. Such a sequence of
images convolved with Gaussians of increasing σ constitute a so-called scale space.

Down-
sampling

Scale = 0 Scale = 1 Scale = 4

Scale = 16 Scale = 64 Scale = 256

http://en.wikipedia.org/wiki/Scale_space

http://en.wikipedia.org/wiki/Scale_space

Step 1: Approximate keypoint location

The keypoints are maxima or minima in the “scale-space-pyramid”,
i.e. the stack of DoG images. Hereby, you get both the location as
well as the scale of the keypoint.

Image taken from D. Lowe,
“Distinctive Image Features
from Scale-Invariant
Points”, IJCV 2004

Initial detection of keypoints

http://upload.wikimedia.org/wikipedia/commons/4/44/Sift_keypoints_filtering.jpg

http://upload.wikimedia.org/wikipedia/commons/4/44/Sift_keypoints_filtering.jpg

Step 2: Refining keypoint location

• The keypoint location and scale is discrete –
we can interpolate for greater accuracy.

• For this, we express the DoG function in a
small 3D neighborhood around a keypoint
(xi,yi,σi) by a second-order Taylor-series:




























































i

i

i

yy
xx

T

T

yy
xx

iii

yy

xx

yx

yxD

yx

yxD
yxDyxD

i

i

i

i

i

i














;
),,(

),,(

2

1

),,(

),,(
),,(),,(

,
,2

2

,
,

3 x 3 Hessian matrix
evaluated digitally at the
keypoint

Gradient vector
evaluated digitally at
the keypoint

Step 2: Refining keypoint location

• To find an extremum of the DoG values in this
neighborhood, set the derivative of D(.) to 0. This gives us:

• The keypoint location is updated.
• All extrema with |Dextremal| < 0.03, are discarded as “weak

extrema” or “low contrast points”.











































































































ˆ

ˆ

ˆ

),,(

),,(

2

1
),,(

),,(

),,(

),,(

),,(

ˆ

ˆ

ˆ

,
,

,
,

1

,
,2

2

y

x

yx

yxD
yxDD

yx

yxD

yx

yxD
y

x

T

yy
xx

iiiextremal

yy
xx

yy
xx

i

i

i

i

i

i

i

i

i

Removal of low-contrast keypoints

http://upload.wikimedia.org/wikipedia/commons/4/44/Sift_keypoints_filtering.jpg

http://upload.wikimedia.org/wikipedia/commons/4/44/Sift_keypoints_filtering.jpg

Step 2: Refining keypoint location

• Some keypoints reside on edges, as edges
always give a high response to a DoG filter.

• But edges should not be considered salient
points (why?).

• So we discard points that lie on edges.

• In the case of KLT tracker, we saw how to
detect points lying on salient edges using the
structure tensor.

Step 2: Refining keypoint location

• The SIFT paper uses the 2nd derivative matrix
(called the Hessian matrix):

• The eigenvalues of H give a lot of information
about the local structure around the keypoint.

• In fact, the eigenvalues are the maximal and
minimal principal curvatures of the surface
D(x,y), i.e. of the DoG function, at that point.

http://en.wikipedia.org/wiki/File:Minimal_surface_curvature_planes-en.svg

http://en.wikipedia.org/wiki/Principal_curvature

http://en.wikipedia.org/wiki/File:Minimal_surface_curvature_planes-en.svg
http://en.wikipedia.org/wiki/File:Minimal_surface_curvature_planes-en.svg
http://en.wikipedia.org/wiki/File:Minimal_surface_curvature_planes-en.svg
http://en.wikipedia.org/wiki/Principal_curvature

Step 2: Refining keypoint location

• An edge will have high maximal curvature, but
very low minimal curvature.

• A keypoint which is a corner (not an edge) will
have high maximal and minimal curvature.

• The following can be regarded as an edge-ness
measure:

Should be less than a threshold
(say 10).

For an edge, α >> β, leading to a
large value of this measure.

Why this measure instead of r?
To save computations – we
need not compute eigenvalues!

Removal of high-contrast keypoints residing on edges

http://upload.wikimedia.org/wikipedia/commons/4/44/Sift_keypoints_filtering.jpg

http://upload.wikimedia.org/wikipedia/commons/4/44/Sift_keypoints_filtering.jpg

Step 3: Assigning orientations

• Compute the gradient magnitudes and
orientations in a small window around the
keypoint – at the appropriate scale.

-0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

5

10

15

20

25

30

35

Histogram of gradient
orientation – the bin-counts
are weighted by gradient
magnitudes and a Gaussian
weighting function. Usually,
36 bins are chosen for the
orientation.

Step 3: Assigning orientations

• Assign the dominant orientation as the
orientation of the keypoint.

• In case of multiple peaks or histogram entries
more than 0.8 x peak, create a separate
descriptor for each orientation (they will all
have the same scale and location).

-0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

5

10

15

20

25

30

35

Histogram of gradient
orientation – the bin-counts
are weighted by gradient
magnitudes and a Gaussian
weighting function. Usually,
36 bins are chosen for the
orientation.

Step 4: Descriptors for each keypoint
• Consider a small region around the keypoint. Divide it

into n x n cells (usually n = 2). Each cell is of size 4 x 4.

• Build a gradient orientation histogram in each cell. Each
histogram entry is weighted by the gradient magnitude
and a Gaussian weighting function with σ = 0.5 times
window width.

• Sort each gradient orientation histogram bearing in mind
the dominant orientation of the keypoint (assigned in
step 3).

Image taken from D. Lowe,
“Distinctive Image Features
from Scale-Invariant
Points”, IJCV 2004

Step 4: Descriptors for each keypoint

• We now have a descriptor of size rn2 if there are r bins in
the orientation histogram.

• Typical case used in the SIFT paper: r = 8, n = 4, so length
of each descriptor is 128.

• The descriptor is invariant to rotations due to the sorting.

Image taken
from D. Lowe,
“Distinctive
Image Features
from Scale-
Invariant
Points”, IJCV
2004

Step 4: Descriptors for each keypoint

• For scale-invariance, the size of the window should be
adjusted as per scale of the keypoint. Larger scale =
larger window.

http://www.vlfeat.org
/overview/sift.html

Image taken from D. Lowe,
“Distinctive Image Features
from Scale-Invariant
Points”, IJCV 2004

http://www.vlfeat.org/overview/sift.html
http://www.vlfeat.org/overview/sift.html

Step 4: Descriptors for each keypoint

• The SIFT descriptor (so far) is not illumination invariant –
the histogram entries are weighted by gradient
magnitude.

• Hence the descriptor vector is normalized to unit
magnitude. This will normalize scalar multiplicative
intensity changes.

• Scalar additive changes don’t matter – gradients are
invariant to constant offsets anyway.

• Not insensitive to non-linear illumination changes.

Step 1: Keypoint computations?
(More details)

• Why are DoG filters used?
• The Gaussian filter (and its derivatives) is shown to be

the only filter obeys all of the following:
 Linearity
 Shift-invariance
 Structures at coarser scales are related to structures at

finer scales in a consistent way (smoothing process
does not produce new structures)

 Rotational symmetry
 Semi-group property:
 + some other properties

http://en.wikipedia.org/wiki/Scale_space

),,(),,(*),,(2121   yxGyxGyxG

http://en.wikipedia.org/wiki/Scale_space

Step 1: Keypoint computations?
(More details)

• Why difference of Gaussians?

 The DoG is an approximation to the scale-
multiplied Laplacian of Gaussian filter in
image processing – a rotationally invariant
filter.

 The DoG is a good model for how neurons in
the retina extract image details to be sent to
the brain for processing.

http://www.cs.utexas.edu/~grauman/courses/spring2011/slides/lecture14_localfeats.pdf

LoG filter of scale σ
produces strong
responses for patterns
of radius σ * sqrt(2).

http://www.cs.utexas.edu/~grauman/courses/spring2011/slides/lecture14_localfeats.pdf

Keypoint = center of blob

http://www.cs.utexas.edu/~grauman/courses/spring2011/slides/lecture14_localfeats.pdf

http://www.cs.utexas.edu/~grauman/courses/spring2011/slides/lecture14_localfeats.pdf

http://www.cs.utexas.edu/~grauman/courses
/spring2011/slides/lecture14_localfeats.pdf

http://www.cs.utexas.edu/~grauman/courses/spring2011/slides/lecture14_localfeats.pdf
http://www.cs.utexas.edu/~grauman/courses/spring2011/slides/lecture14_localfeats.pdf

http://www.cs.utexas.edu
/~grauman/courses/spring
2011/slides/lecture14_loc
alfeats.pdf

http://www.cs.utexas.edu/~grauman/courses/spring2011/slides/lecture14_localfeats.pdf
http://www.cs.utexas.edu/~grauman/courses/spring2011/slides/lecture14_localfeats.pdf
http://www.cs.utexas.edu/~grauman/courses/spring2011/slides/lecture14_localfeats.pdf
http://www.cs.utexas.edu/~grauman/courses/spring2011/slides/lecture14_localfeats.pdf

http://www.cs.utexas.edu
/~grauman/courses/spring
2011/slides/lecture14_loc
alfeats.pdf

Isotropic heat equation: running this equation on an
image is equivalent to smoothing the image with a
Gaussian.

Numerical approximation

yyxx GG 

http://www.cs.utexas.edu/~grauman/courses/spring2011/slides/lecture14_localfeats.pdf
http://www.cs.utexas.edu/~grauman/courses/spring2011/slides/lecture14_localfeats.pdf
http://www.cs.utexas.edu/~grauman/courses/spring2011/slides/lecture14_localfeats.pdf
http://www.cs.utexas.edu/~grauman/courses/spring2011/slides/lecture14_localfeats.pdf

Step 1: Keypoint computations?
(More details)

• Why do we look for extrema of the DoG
function?

Maxima of the DoG indicate dark points (blobs)
on a bright background.

Minima of the DoG indicate bright points (blobs)
on a dark background.

• Why do we look for extrema in a spatial as well as
scale sense?

 It helps us pick the “scale” associated with the
keypoint!

Step 1: Keypoint computations?
• How many scales per octave? Answer: 3 – it is empirically

observed that this provides optimal repeatability under
downsampling/upsampling/rotation of the image as well
as image noise.

Image taken from D. Lowe,
“Distinctive Image Features
from Scale-Invariant
Points”, IJCV 2004

Step 1: Keypoint computations?

• Adding more scales per octave will increase the number
of detected keypoints, but this does not improve the
repeatability (in fact there is a small decrease) – so we
settle for the computationally less expensive option.

Summary of SIFT descriptor properties

• Invariant to spatial rotation, translation, scale.

• Experimentally seen to be less sensitive to
small spatial affine or perspective changes.

• Invariant to affine illumination changes.

Image taken from D. Lowe,
“Distinctive Image Features
from Scale-Invariant
Points”, IJCV 2004

Application: Matching SIFT descriptors

• Given a keypoint descriptor in image 1, find its nearest
neighbor in image 2. “Nearest” as defined typically by SSD:

• Threshold the distance to decide whether the matching
pair was valid.

I1 I2






2

1

2

2121))()((),(
rn

i

iaiaaad

Application: Matching SIFT descriptors

• May lead to
many false
matches.

Application: Matching SIFT descriptors

• Consider the match between the keypoints to
be valid if and only if the second nearest
neighbor distance (SNND) in image 2 is
sufficiently larger than the nearest neighbor
distance (NND).

• Accept match as valid if SNND/NND > 0.8 (see
next slide).

Image taken from D. Lowe, “Distinctive Image
Features from Scale-Invariant Points”, IJCV 2004

Application: Object Recognition

• Input (1): A reference database of images of
various objects. Each image is labeled by
object name and object pose + scale.

• Input (2): Query images in which you locate
one or more of these objects.

Application: Object Recognition

• Compute and store keypoints and their
descriptors for each image in the reference
database.

• Compute keypoint descriptors for the query
image.

• For each keypoint, find the nearest matching
descriptor in each image of the reference
database subject to the SNND/NND constraint.

Application: Object Recognition

• Collect all keypoints in the query image that “vote
for” a particular pose for object X in the reference
database.

• “Vote for pose abc of object X” = “have a nearest
neighbor in image of object X with pose θ (say)”

Application: Object Recognition

• Estimate an affine transformation between keypoint
locations (xi,yi) from the query image and keypoint
locations (ui,vi) for each candidate reference image.

• Verify the affine transformation: apply the transform
to the keypoints and compute the difference
between the transformed and target locations.
Discard the point as an outlier if the difference
between the orientations/scales/locations is too high.

Application: Object Recognition

• What is too high?

 Orientation difference > 20 degrees

 Scale difference more than 1.5

 Location difference > 0.2 * size of model

• Repeat the solution for affine transformation until
no more points are thrown out.

• If number of points < 3, affine transformation
cannot be estimated.

SIFT: ++ 

• Resistant to affine transformations of limited extent
(works better for planar objects than full 3D objects).

• Resistant to a range of illumination changes

• Resistant to occlusions in object recognition, since
SIFT descriptors are local.

SIFT: 

• Resistance to affine transformations is empirical – no
hard-core theory provided.

• Several parameters in the algorithm: descriptor size,
size of the region, various thresholds – theoretical
treatment for their specification not clear.

