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Motivation Factorization

Problem Definition

Can we understand motion using a single camera?

Given 2D point tracks of landmark points from a single view
point, recover 3D pose and orientation
Assumptions

2D tracks of major landmark points are provided
Scaled-projective/orthographic projection model.
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Why is this a hard problem?

The mapping between 2D tracked positions and 3D body pose
is many-to-many1. This confounds standard regression
algorithms.
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1

SOATTO, S., AND BROCKETT, R.
1998.
Optimal structure from motion: Local ambiguites and global estimates.
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition.
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Why this “may not” be such a hard problem after all?

Human brain perform this disambiguation with very little
ease.
Psycho-physical and neuro-physiological imaging
experiments have confirmed the fact that we can perceive
structure even when we are presented with a video
sequence containing only the point tracks of the major
joints in the human body2

2

JOHANSSON, G.
1976.
Spatio temporal differentiation and integration in visual motion
perception.
Psychological Research.
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How can we mimic this ability?

Let’s observe the trajectories of joint

(a) The top view tra-
jectories of a few dofs
plotted

(b) One more dof
added to the plot

(c) All the dofs in-
cluded
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How do we capture these structures?

Matrix Factorization

W2F×P =


x11 · · · x1p
y11 · · · y1p
...

...
...

xf1 · · · xfp
yf1 · · · yfp


If the object in the scene is rigid this matrix W has a very small
rank!!
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Rigid Body Geometry and Motion

Object centroid based World Co-ordinate System (WCS)
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Rank Theorem

Define x̃ij = xij − x̄i and ỹij = yij − ȳi where the bar notation
refers to the centroid of the points in the i th frame. We have the
measurement matrix

W̄2F×P =


x̃11 · · · x̃1p
y11 · · · y1p
...

...
...

x̃f1 · · · x̃fp
yf1 · · · yfp


The matrix W̄ has rank 3
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Rank Theorem Proof

xij = iTi (Pj − Ti), yij = jTi (Pj − Ti),
1
n

n∑
j=1

Pj = 0

x̃ij = iTi (Pj − Ti) −
1
n

n∑
m=1

iTi (Pm − Ti)

ỹij = jTi (Pj − Ti) −
1
n

n∑
m=1

jTi (Pm − Ti)

x̃ij = iTi Pj ỹij = jTi Pj

W̄ = RS

R =


iT1
jT1
. . .

iTN
jTN

 S =
[

P1 P2 . . . PN
]
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Rigid Body Geometry and Motion

Without noise W is atmost of rank three
Using SVD, W = O1ΣO2 where,
O1, O2 are column orthogonal matrices and Σ is a diagonal
matrix with singular values in non-decreasing order
O1ΣO2 = O′

1Σ
′O′

2 + O′′

1Σ
′′O′′

2 where,
O′

1 has first three columns of O1, O′

2 has first three rows of
O2 and Σ

′
is 3×3 matrix with 3 largest non-singular values.

The second term is completely due to noise and can be
eliminated

R̂ = O′

1

[
Σ

′
]1/2

and Ŝ =
[
Σ

′
]1/2

O′

2
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Rigid Body Geometry and Motion

Solution is not unique any invertible 3 × 3, Q matrix can be
written as R = (R̂Q) and S = (Q−1Ŝ)

R̂ is a linear transformation of R, similarly Ŝ is a linear
transformation of S.
Using the following orthonormality constraints we can find
R and S

îTf QQT îf = 1

ĵTf QQT ĵf = 1

îTf QQT ĵf = 0 (1)
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For Further Reading I
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Shape and motion from image stream: A factorization
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J. Xiao and J. Chai and T. Kanade
A Closed-Form Solution to Non-Rigid Shape and Motion
Recovery
ECCV 2004
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For Further Reading II
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Morphable 3D Models from Video
CVPR, 2001

Appu Shaji and Aydin Varol and Pascal Fua and Yashoteja
and Ankush Jain and Sharat Chandran
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