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Motivation Factorization

Problem Definition

Can we understand motion using a single camera?

Given 2D point tracks of landmark points from a single view
point, recover 3D pose and orientation
Assumptions

2D tracks of major landmark points are provided
Scaled-projective/orthographic projection model.
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Why is this a hard problem?

The mapping between 2D tracked positions and 3D body pose
is many-to-many1. This confounds standard regression
algorithms.
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SOATTO, S., AND BROCKETT, R.
1998.
Optimal structure from motion: Local ambiguites and global estimates.
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition.
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Why this “may not” be such a hard problem after all?

Human brain perform this disambiguation with very little
ease.
Psycho-physical and neuro-physiological imaging
experiments have confirmed the fact that we can perceive
structure even when we are presented with a video
sequence containing only the point tracks of the major
joints in the human body2

2

JOHANSSON, G.
1976.
Spatio temporal differentiation and integration in visual motion
perception.
Psychological Research.
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How can we mimic this ability?

Let’s observe the trajectories of joint

(a) The top view tra-
jectories of a few dofs
plotted

(b) One more dof
added to the plot

(c) All the dofs in-
cluded
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How do we capture these structures?

Matrix Factorization

W2F×P =


x11 · · · x1p
y11 · · · y1p
...

...
...

xf1 · · · xfp
yf1 · · · yfp


If the object in the scene is rigid this matrix W has a very small
rank!!



Motivation Factorization

How do we capture these structures?

Matrix Factorization

W2F×P =


x11 · · · x1p
y11 · · · y1p
...

...
...

xf1 · · · xfp
yf1 · · · yfp


If the object in the scene is rigid this matrix W has a very small
rank!!



Motivation Factorization

How do we capture these structures?

Matrix Factorization

W2F×P =


x11 · · · x1p
y11 · · · y1p
...

...
...

xf1 · · · xfp
yf1 · · · yfp


If the object in the scene is rigid this matrix W has a very small
rank!!



Motivation Factorization

How do we capture these structures?

Matrix Factorization

W2F×P =


x11 · · · x1p
y11 · · · y1p
...

...
...

xf1 · · · xfp
yf1 · · · yfp


If the object in the scene is rigid this matrix W has a very small
rank!!



Motivation Factorization

How do we capture these structures?

Matrix Factorization

W2F×P =


x11 · · · x1p
y11 · · · y1p
...

...
...

xf1 · · · xfp
yf1 · · · yfp


If the object in the scene is rigid this matrix W has a very small
rank!!



Motivation Factorization

Rigid Body Geometry and Motion

Object centroid based World Co-ordinate System (WCS)
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Rank Theorem

Define x̃ij = xij − x̄i and ỹij = yij − ȳi where the bar notation
refers to the centroid of the points in the i th frame. We have the
measurement matrix

W̄2F×P =


x̃11 · · · x̃1p
y11 · · · y1p
...

...
...

x̃f1 · · · x̃fp
yf1 · · · yfp


The matrix W̄ has rank 3
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Rank Theorem Proof

xij = iTi (Pj − Ti), yij = jTi (Pj − Ti),
1
n

n∑
j=1

Pj = 0

x̃ij = iTi (Pj − Ti) −
1
n

n∑
m=1

iTi (Pm − Ti)

ỹij = jTi (Pj − Ti) −
1
n

n∑
m=1

jTi (Pm − Ti)

x̃ij = iTi Pj ỹij = jTi Pj

W̄ = RS

R =


iT1
jT1
. . .

iTN
jTN

 S =
[

P1 P2 . . . PN
]
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Rigid Body Geometry and Motion

Without noise W is atmost of rank three
Using SVD, W = O1ΣO2 where,
O1, O2 are column orthogonal matrices and Σ is a diagonal
matrix with singular values in non-decreasing order
O1ΣO2 = O′

1Σ
′O′

2 + O′′

1Σ
′′O′′

2 where,
O′

1 has first three columns of O1, O′

2 has first three rows of
O2 and Σ

′
is 3×3 matrix with 3 largest non-singular values.

The second term is completely due to noise and can be
eliminated

R̂ = O′

1

[
Σ

′
]1/2

and Ŝ =
[
Σ

′
]1/2

O′

2
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Rigid Body Geometry and Motion

Solution is not unique any invertible 3 × 3, Q matrix can be
written as R = (R̂Q) and S = (Q−1Ŝ)

R̂ is a linear transformation of R, similarly Ŝ is a linear
transformation of S.
Using the following orthonormality constraints we can find
R and S

îTf QQT îf = 1

ĵTf QQT ĵf = 1

îTf QQT ĵf = 0 (1)
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For Further Reading I

G. Golub and A. Loan
Matrix Computations
John Hopkins U. Press, 1996

C. Tomasi and T. Kanade
Shape and motion from image stream: A factorization
method
Image of Science: Science of Images, 90:9795–9802,1993

J. Xiao and J. Chai and T. Kanade
A Closed-Form Solution to Non-Rigid Shape and Motion
Recovery
ECCV 2004
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For Further Reading II

C. Bregler and A. Hertzmann and H. Biermann
Recovering Non-Rigid 3D Shape from Image Streams
CVPR, 2000

M. Brand
Morphable 3D Models from Video
CVPR, 2001

Appu Shaji and Aydin Varol and Pascal Fua and Yashoteja
and Ankush Jain and Sharat Chandran
Resolving Occlusion in Multiframe Reconstruction of
Deformable Surfaces
NORDIA, CVPRW, 2011

M. Kilian, N. Mitra and H. Pottmann. Geometric Modeling in
Shape Space. Siggraph, 2008.
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