
Optical Flow

CS 763,

Ajit Rajwade

Contents

• Definition and example

• Computational methods

• Aperture problem

• Applications

What is optical flow?

• The brightness pattern in an image will move as
the objects in the underlying scene move.

• The apparent motion of the brightness patterns is
called as optical flow.

• The optical flow is a field of 2D vectors and is
defined on the image domain, i.e. at each pixel
(x,y) in the image, there is a vector (u(x,y),v(x,y))
giving the apparent displacement at (x,y) per unit
time.

http://www.ri.cmu.edu/research_project_detail.html?project_id=10

http://www.ri.cmu.edu/research_project_detail.html?project_id=10

Computing optical flow

• Input: T >= 2 images

• Output:

• Assumption 1: The apparent intensity value at
a physical point does not change across the
image sequence – brightness constancy
assumption.

• Assumption 2: Across consecutive frames,
every point undergoes only a small
displacement.

}),(,1|),,({  yxTttyxI

}),(,1|)),,(),,,({( yxTttyxvtyxu

Computing optical flow

0
),,(),,(

),,(
),,(

),,(

0
),,(),,(),,(

[why?]
),,(),,(),,(

),,(

[why?]),,(),,(


























































t

tyxI

y

tyxI
tyxv

x

tyxI
tyxu

t

tyxI

y

tyxI

t

y

x

tyxI

t

x

t

tyxI
t

y

tyxI
y

x

tyxI
xtyxI

ttyyxxItyxI

Brightness constancy equation

  0
),,(),,(

,
),,(

),,(),,,(






















t

tyxI

y

tyxI

x

tyxI
tyxvtyxu

Underconstrained – one equation, two
unknowns per pixel!

  0
),,(),,(

,
),,(

),,(),,,(






















t

tyxI

y

tyxI

x

tyxI
tyxvtyxu

Image gradient – (perpendicular to the edge) – is
the direction of the greatest change in the intensity

 The brightness constancy equation says that only
the component of the optical flow along the
direction of the gradient can be determined!

 The component along the edge direction (i.e.
perpendicular to the gradient) cannot be
determined!

u

v

edge

Aperture Problem

• The aforementioned issue is called the
aperture problem – the motion of an edge as
seen through an aperture is essentially
ambiguous.

• See demo at:
http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-
square.html

http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html
http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html
http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html
http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html
http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html

Working around the aperture problem

• Two methods:

 Horn and Shunck method – global method

 Lucas-Kanade method – local (semi-local)
method, uses linear algebra

Horn and Shunck, “Determining optical flow”,
http://people.csail.mit.edu/bkph/papers/Optical_Flow_OPT.pdf

http://people.csail.mit.edu/bkph/papers/Optical_Flow_OPT.pdf
http://people.csail.mit.edu/bkph/papers/Optical_Flow_OPT.pdf

Horn and Shunck

• The optical flow (u(x,y),v(x,y)) at pixel (x,y) is
undetermined in the direction of the edge at (x,y).

• Image intensities can be noisy.

• Mitigate these problems, by assuming that the
underlying optical flow is smooth, i.e. the optical
flow vectors at adjacent pixels are similar.

• Leads to following energy functional to be
minimized:

 dxdyvvuuIvIuIvuJ yxyxtyx


)()(),(22222 

Notice the following!

• The second term is called a smoothness term or
regularizer or regularization term.

• The addition of the smoothness constraint in the
under-constrained problem is called as
regularization.

• Regularization is a common feature of MANY
computer vision problems (and in fact, many
problems in machine learning and statistics).

Notice the following!

• Look at the equation again:

• The parameter λ ≥ 0 performs a weighting between the regularizer
and data fidelity term. A larger λ means more weight to the
regularizer, and a smaller λ means more weight to the data fidelity
term.

• It is usually a user-specified parameter (though there is a large body
of literature on automatic choice of λ).

Regularization
term (or

regularizer)
Data fidelity term

Regularization
parameter

 dxdyvvuuIvIuIvuJ yxyxtyx


)()(),(22222 

Horn and Shunck: Basic update
equations

 dxdyvvuuIvIuIvuJ yxyxtyx


)()(),(22222 


  




















N

i

M

j jijijijijijijiji

jitjijiyjijix

jiji
vvvvuuuu

IvIuI
vuJ

1 1
2

,,1

2

,1,

2

,,1

2

,1,

2

,;,,;,,;

,,
))()()()((

)(
}),({



lktlkxlklklkylkxlklkx

lk

IIuvIIuI
u

J
,;,;,,,;,;,

2

,;

,

4)4(0 





lktlkylklklkylklkylkx

lk

IIvvIuII
v

J
,;,;,,

2

,;,,;,;

,

4)4(0 





4/)(,11,,11,, lklklklklk uuuuu  

4/)(,11,,11,, lklklklklk vvvvv  

Replace the integral by a
summation. Take
derivatives of the
energy function J w.r.t.
the flow vector
components (u and v) at
each pixel, and set those
derivatives to 0. Note
that Ix;k,l stands for the
derivative of I in the x
direction at pixel (k,l)

Horn and Shunck: Basic update
equations

lktlkxlklklkylkxlklkx

lk

IIuvIIuI
u

J
,;,;,,,;,;,

2

,;

,

4)4(0 





lktlkylklklkylklkylkx

lk

IIvvIuII
v

J
,;,;,,

2

,;,,;,;

,

4)4(0 









4

)(

4

)4(
222

,;

2

,;

,;,;,;,;

2

,;











yx

tklyklxx

kl

lkylkx

lktlkxkllkylkxlkykl

kl
II

IvIuII
u

II

IIvIIIu
u





4

)(

4

)4(
222

,;

2

,;

,;,;,;,;

2

,;











yx

tklyklxy

kl

lkylkx

lktlkykllkylkxlkxkl

kl
II

IvIuII
v

II

IIuIIIv
v

Dropping the subscripts (k,l) for
more readability

Solving the equations simultaneously

Horn and Shunck: digital derivatives

• The image derivatives are expressed as
follows:

• Important: the digital approximations should
represent the derivatives at the same point in
space and time. They should use the same set
of points for the computation as well.

4/)(

4/)(

4/)(

,1,11,1,1,,11,,1,1,1,1,,,1,,,,;,;

1,1,1,1,11,,1,,1,1,,1,1,,,,1,,;,;

1,,11,1,11,,1,1,,,1,1,1,,,1,,,;,;

tlktlktlktlktlktlktlktlktlktlkt

tlktlktlktlktlktlktlktlktlkylky

tlktlktlktlktlktlktlktlktlkxlkx

IIIIIIIIII

IIIIIIIIII

IIIIIIIIII













Horn and Shunck: digital derivatives

k+1

k

l l +1
t

t+1

time

Y
direction
(rows)

X direction
(columns)

Horn and Shunck: Boundary conditions

• We are taking forward differences: all image
derivatives at the right-side or bottom
boundary of the image are set to 0.

• Values of u and v at pixels that fall outside the
image domain are set to 0 (and ignored from
the computation of the average).

Horn and Shunck: Solution

4

)(
22 




yx

tklyklxx

klkl
II

IvIuII
uu

4

)(
22 




yx

tklyklxy

klkl
II

IvIuII
vv

Note: If you knew the value of u at the
each of the four neighbors of pixel (k,l),
you can update ukl. Likewise for vkl. But
you don’t know these values!
There will be 2 such equations per pixel,
for a total of 2MN equations.

 444
1

222222

2








































yx

tx

yx

yx

kl

yx

x
klkl

II

II

II

II
v

II

I
uu

We can re-arrange all these equations collecting together terms involving u and v at any pixel
location on the LHS, and writing down terms without u and v on the RHS.

 444
1

222222

2








































yx

ty

yx

xy

kl

yx

kly

klkl
II

II

II

II
u

II

vI
vv

Hence, these equations in the form Ax = b where A is a 2MN x 2MN matrix, and x and b are
2MN x 1 vectors. Vector x will contain all the unknowns, i.e. u and v values at a pixel (k,l) and
its neighbors. Vector b will contain the (known) terms on the RHS of these equations. Matrix
A is sparse and contains at the most 9 non-zero values in each row (why?).

Horn and Shunck: Solution
• Note that such a system is extremely expensive to invert.
• Initial condition for u and v – zeros; boundary conditions for derivatives of I – zero

across boundary of the image
• Iterative algorithm (Jacobi’s method): run for T iterations or until convergence: Update

the optical flow at one pixel keeping the optical flow at all other pixels fixed.

4

)(
22

)()(

)()1(






yx

t

t

kly

t

klxxt

kl

t

kl
II

IvIuII
uu

4

)(
22

)()(

)()1(






yx

t

t

kly

t

klxyt

kl

t

kl
II

IvIuII
vv

http://en.wikipedia.org/wiki/Jacobi_method

Applying the Jacobi method leads to updates of the following
form at the t-th iteration (see next slide as well):

http://en.wikipedia.org/wiki/Jacobi_method
http://en.wikipedia.org/wiki/Jacobi_method

Segway: Jacobi’s method

• Consider system of equations Ax = b.

• A can be written as D+R where D is a diagonal
matrix – as follows:

• The solution vector is iteratively obtained as









































































0..

..

..

.0

..0

..0

..

..

.0

0..0

..

..

..

.

..

21

21

112

2

22

11

21

2221

11211

nn

n

nnnnnnn

n

aa

a

aa

aa

a

a

aaa

aa

aaa

A

Diagonal matrix D Remainder matrix R

ii

ij

t

jiji

t

i

tt

A

A










)(

)1(

)(1)1()(

xb

x

RxbDx

Comments on Horn and Shunck (+)

• Optical flow is completely indeterminate in
regions where intensity is constant.

• But this method allows for filling in of the flow
vectors in such regions, because of the
regularizer term.

• The update of u (or v) at pixel (k,l) at iteration t+1
does not depend on ukl or vkl in iteration t, but it
depends only the neighboring values of u or v.

Comments on Horn and Shunck (-?)

• Note that the method banks on the brightness
constancy assumption.

• It also assumes that the flow at all points is
small in magnitude (otherwise the basic
constancy equation doesn’t hold).

• It also assumes smoothness of the flow (this
can get violated if two independently moving
objects come close together in a video frame).

Horn and Shunck: Laplacian of u and v

lktlkxlklklkylkxlklkx

lk

IIuvIIuI
u

J
,;,;,,,;,;,

2

,;

,

4)4(0 





lktlkylklklkylklkylkx

lk

IIvvIuII
v

J
,;,;,,

2

,;,,;,;

,

4)4(0 





lktlkxlklklkylkxlklkx

lktlkxlklklklkylkxlklkx

IIuvIIuI

IIuuvIIuI

,;,;,,,;,;,

2

,;

,;,;,,,,;,;,

2

,;

)(4)(

)(4)(









lktlkylklklkylklkylkx IIvvIuII ,;,;,,

2

,;,,;,;)(4)( 

Laplacian of u and v using
the well-known mask (see
next slide). You may also
use other masks for the
Laplacian in which case
these update equations
change slightly.

Laplacian of a 2D signal f

),(4)1,()1,(),1(),1(

),(2)1,()1,(

),(2),1(),1(

2

2

2

2
2

yxfyxfyxfyxfyxf

yxfyxfyxf

yxfyxfyxf

y

f

x

f
f




















































111

181

111

,

010

141

010
Laplacian operators: second
operator is obtained by
adding second derivatives
along both the diagonals, to
the first operator

Rotationally symmetric operator (in
the continuous domain)

Horn and Shunck: Laplacian

• The original paper by Horn and Shunck
suggests the following mask for the Laplacian
of u and v:

























12

1

6

1

12

1
6

1
1

6

1
12

1

6

1

12

1

12

Laplacian of an image

• The two masks on the previous slide are
applied point-wise to the entire image.

• For image smoothing as well, we applied
point-wise masks.

• But here the mask values sum to 0. In
smoothing the weights summed to 1.

Horn and Shunck: examples
http://of-eval.sourceforge.net/

http://of-eval.sourceforge.net/
http://of-eval.sourceforge.net/
http://of-eval.sourceforge.net/
http://of-eval.sourceforge.net/

Two frames from the so-called “table tennis” video
sequence

The next slide contains a quiver plot of the optical
flow vectors. A clearer plot can be observed in the
following pdf:

http://www.cse.iitb.ac.in/~ajitvr/CS763_Spring2016
/hs_result.pdf

A quiver plot is a plot of vectors (u(x,y),v(x,y)) in 2D.
The vector at a pixel (x,y) is represented by an
arrow whose length is proportional to the vector
magnitude. The quiver plot is generated by the
MATLAB function `quiver’.

http://www.cse.iitb.ac.in/~ajitvr/CS763_Spring2016/hs_result.pdf
http://www.cse.iitb.ac.in/~ajitvr/CS763_Spring2016/hs_result.pdf

Horn and Shunck: one last point

• The original paper by Horn-Shunck uses the calculus of variations
to minimize the functional J(u,v) w.r.t. u and v.

• Calculus of variations is a branch of mathematics that asks the
following question: Which function f minimizes a functional E(f)?
(eg: which curve passing through two points has the least length?)

• In our lectures, we have used a discrete form for J(u,v) and directly
minimized it using simple derivatives.

• The resulting equations are very similar to the ones derived using
calculus of variations (though there are problems where using
calculus of variations is of special use!).

Lucas-Kanade

• Is a local (semi-local) method – it solves several
small problems independently, whereas Horn and
Shunck solves one large (global) problem.

• Assume that the optical flow is constant within a
small window (say, of size N x N, N is around 5 to
8).

• Uses a least squares approach to solve for the
optical flow by combining together several (N2 in
case of N x N window) brightness constancy
equations.

Lucas-Kanade
),,(),,(),,(),,(),,(,1, 2 tyxItyxItyxvtyxItyxuNii iitiiyiiiixii 
























































































































2

2

22

22

222

1

1

1

1

2

1

11

2

1

2

1

22

11

)(

.

.

..

..

N

i

tiyi

N

i

tixi

N

i

yi

N

i

yixi

N

i

yixi

N

i

xi

TT

tN

t

t

yNxN

yx

yx

II

II

III

III

I

I

I

v

u

II

II

II

w

bAAAw

bAw

Note that u and v are constant over this window.

This is the least squares solution (which we obtain by
the pseudo-inverse). It is the solution to an over-
constrained problem, i.e. a problem where the
number of knowns is more than the number of
unknowns (in this case, 2).
This solution minimizes the following quantity:

‘(xi,yi)’ denotes the ith spatial location (i.e. pixel) inside a small N x N window






2

1

2)(),(
N

i

tiyixi IvIuIvuJ

This 2 x 2 matrix is called as a local
structure-tensor or local second
moment matrix.

Lucas-Kanade

• This solution minimizes the following quantity:

• Taking partial derivatives and setting them to
zero yields the following set of simultaneous
equations (the exact same as before):






2

1

2)(),(
N

i

tiyixi IvIuIvuJ













2

2

1

1

0)(

0)(

N

i

yitiyixi

N

i

xitiyixi

IIvIuI

IIvIuI
Note that u and v in these equations are
without indices because they are assumed
constant for the entire N x N window.

Lucas-Kanade

• Note: There is an assumption that the matrix ATA
(i.e. structure tensor) is invertible!

• This assumption fails if all gradients in a region
are aligned (i.e. a region of constant shading, i.e.
of the form I(x,y)=ax+by+c) or if all gradients are
null (constant intensity, i.e. I(x,y) = c).

• Former case: just use the normal flow (i.e. flow
component along gradient direction) and
interpolate from surrounding regions.

• Latter case: optical flow is determined by
interpolation from surrounding regions.

35

Edges cause problems

– large gradients, all the same

– large 1, small 2 (eigenvalues of the structure tensor)

TVV 









2

1

0

0





36

Low texture regions don’t work

– gradients have small magnitude

– small 1, small 2

37

High textured region work best

– gradients are different, large magnitudes

– large 1, large 2

Lucas-Kanade

• In practice, better results are obtained by
smoothing the images prior to computation of
optical flow.

• The method assumes small valued flow between
consecutive frames. If this assumption fails, then
one option is to run the algorithm on
downsampled images, and then upsample the
computed flow.

• What will happen if window is too large? Too
small?

39

Revisiting the small motion
assumption

• Is this motion small enough?

– Probably not—it’s much larger than one pixel (2nd order terms dominate)

– How might we solve this problem?

Slides taken
from the
course by
Steve Seitz
at University
of
Washington,

40

Reduce the resolution!

41

image Iimage H

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Coarse-to-fine optical flow estimation

42

image Iimage J

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H

Coarse-to-fine optical flow estimation

run iterative L-K

run iterative L-K

warp & upsample

.

.

.

43

A Few Details
• Top Level

– Apply L-K to get a flow field representing the flow from
the first frame to the second frame.

– Apply this flow field to warp the first frame toward the
second frame.

– Rerun L-K on the new warped image to get a flow field
from it to the second frame.

– Repeat till convergence.

• Next Level
– Upsample the flow field to the next level as the first

guess of the flow at that level.
– Apply this flow field to warp the first frame toward the

second frame.
– Rerun L-K and warping till convergence as above.

• Etc.

Comments on Lucas-Kanade (+)

• In some windows, the optical flow estimate is
more reliable than at other windows. This
reliability depends on the rank of the
structure tensor (and does not require any
information about the next frame, i.e.
I(:,:,t+1)!).

• Errors in estimates in one part of the image do
not affect the estimates in another part.

H-S versus L-K

• H-S is global, L-K is local.
• Both have parallelizable implementations.
• H-S gives an optical flow value at all pixels regardless of

gradient. L-K requires a post-processing step to interpolate
flow in case of regions with aligned gradients or null
gradients.

• H-S required selection of λ, L-K requires selection of
window-size.

• H-S is more noise-sensitive, as errors in one part of the
image propagate all over. In L-K, the optical flow estimates
in different windows are generally independent.

• H-S (without modifications) has no inbuilt reliability
estimate unlike L-K.

Image source: “Lucas-Kanade meets Horn-Shunck: combining global and local optical flow
methods”, Bruhn, Weickert, Schnorr, IJCV 2005.

Image warping using computed optical
flow

• Consider images I1 and I2.
• Let u(x,y) and v(x,y) be the computed optical flow

between them such that I1(x+u(x,y),y+v(x,y)) =
I2(x,y).

• Forward warping method: Copy intensity value
I1(x,y) to I2(round(x+u(x,y)),round(y+v(x,y))).

• Here ‘round’ refers to the operation of rounding
off to the nearest integer.

• Problem: some pixels may remain unoccupied
after warping, or two pixels from I1 may map onto
the same pixel in I2.

Image warping using computed optical
flow

• Reverse warping method: For every pixel (x,y)
in the output image (i.e. warped version of I1),
determine which pixels in I1 map somewhere
in the range [x-1,x+1] x [y-1,y+1].

• Interpolate the flow field values at these pixels
to determine which subpixel will map onto
(x,y).

Aperture Problem: Visual Perception

• Images are formed on the retina. Image
processing and analysis occurs in the brain
(visual cortex).

• The basic (low-level) processing occurs in an
area of the visual cortex called V1.

• Advanced (high-level) processing occurs in an
area of the visual cortex called V5.

Aperture Problem: Visual Perception

• Each neuron in the V1 area is sensitive to visual
stimuli in a small part of the visual field, i.e. as if it
were “looking” through a small aperture.

• The motion direction will be ambiguous and
defined only in the direction of the gradient of
the image – aperture problem.

• Thus edges moving in many different ways may
give rise to identical stimulus to the V1 neurons.

• It is the job of the V5 neurons to integrate the
local motion estimates to produce global
estimates.

Aperture Problem

• Barber-pole illusion

http://en.wikipedia.org/wiki/Barberpole_illusion

http://en.wikipedia.org/wiki/Barberpole_illusion

Optical Flow versus True Motion

• Consider a uniform sphere rotating about its
axis under constant illumination. Optical flow
is zero, true motion is not!

• Consider a still sphere under lighting of
varying direction. Optical flow is not zero, true
motion is zero!

Applications: Faces

• Tracking salient feature points (see video
above) across frames of a video.

• Facial expression recognition – Input: video of
a person’s face, Output: facial expression
(smile, frown, surprise, anger, sorrow, etc.)

• Does the web-cam see a real face? Or a
mask/poster of a face?

http://www.cs.toronto.edu/~dross/ivt/dudek.avi

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5226597&tag=1

http://www.cs.toronto.edu/~dross/ivt/dudek.avi
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5226597&tag=1

Applications: Medical imaging

• Analysis of the motion of a deformable object
(Example: biological cell, micro-organism, or
an organ like the heart).

http://www.mate.tue.nl/mate/pdfs/10121.pdf

http://www.youtube.com/watch?v=JA0Wb3gc4mE

http://www.mate.tue.nl/mate/pdfs/10121.pdf
http://www.youtube.com/watch?v=JA0Wb3gc4mE

Applications: Structure from Motion!

• Consider a video sequence of an object
undergoing constant rigid motion
(translation/rotation).

• Assume orthographic projections.

• Suppose we tracked some N feature points across
all the frames (using optical flow!)

• It turns out you can make some estimates of the
3D coordinates of those points in every frame as
well as the motion. This is called structure from
motion (SfM).

Applications: Collision
Avoidance/Prediction of Collision Time

• Given a video sequence containing two
independently moving objects.

• Compute optical flow at each frame.

• Extrapolate the trajectory of salient points on
each object.

• Will the images of the objects collide? If so,
when?

• Will the actual objects collide? If so, when?
(requires calibrated camera)

References

• Horn and Shunck, “Determining optical flow”,
http://people.csail.mit.edu/bkph/papers/Optical
_Flow_OPT.pdf

• Horn and Shunck explained in detail:
http://www.ipol.im/pub/art/2013/20/article_lr.p
df

• http://en.wikipedia.org/wiki/Lucas%E2%80%93K
anade_method

• http://en.wikipedia.org/wiki/Horn%E2%80%93Sc
hunck_method

• http://en.wikipedia.org/wiki/Optical_flow

http://people.csail.mit.edu/bkph/papers/Optical_Flow_OPT.pdf
http://people.csail.mit.edu/bkph/papers/Optical_Flow_OPT.pdf
http://www.ipol.im/pub/art/2013/20/article_lr.pdf
http://www.ipol.im/pub/art/2013/20/article_lr.pdf
http://en.wikipedia.org/wiki/Lucas%E2%80%93Kanade_method
http://en.wikipedia.org/wiki/Lucas%E2%80%93Kanade_method
http://en.wikipedia.org/wiki/Horn%E2%80%93Schunck_method
http://en.wikipedia.org/wiki/Horn%E2%80%93Schunck_method
http://en.wikipedia.org/wiki/Optical_flow

