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What is optical flow?

• The brightness pattern in an image will move as 
the objects in the underlying scene move.

• The apparent motion of the brightness patterns is 
called as optical flow.

• The optical flow is a field of 2D vectors and is 
defined on the image domain, i.e. at each pixel 
(x,y) in the image, there is a vector (u(x,y),v(x,y))
giving the apparent displacement at (x,y) per unit 
time.



http://www.ri.cmu.edu/research_project_detail.html?project_id=10

http://www.ri.cmu.edu/research_project_detail.html?project_id=10


Computing optical flow

• Input: T >= 2 images

• Output: 

• Assumption 1: The apparent intensity value at 
a physical point  does not change across the 
image sequence – brightness constancy 
assumption.

• Assumption 2: Across consecutive frames, 
every point undergoes only a small 
displacement.
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Computing optical flow
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Brightness constancy equation
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Underconstrained – one equation, two 
unknowns per pixel!
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Image gradient – (perpendicular to the edge) – is 
the direction of the greatest change in the intensity

 The brightness constancy equation says that only 
the component of the optical flow along the 
direction of the gradient can be determined! 

 The component along the edge direction (i.e. 
perpendicular to the gradient) cannot be 
determined!
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Aperture Problem

• The aforementioned issue is called the 
aperture problem – the motion of an edge as 
seen through an aperture is essentially 
ambiguous.

• See demo at:
http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-
square.html

http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html
http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html
http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html
http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html
http://web.mit.edu/persci/demos/Motion&Form/demos/one-square/one-square.html


Working around the aperture problem

• Two methods:

 Horn and Shunck method – global method

 Lucas-Kanade method – local (semi-local) 
method, uses linear algebra

Horn and Shunck, “Determining optical flow”, 
http://people.csail.mit.edu/bkph/papers/Optical_Flow_OPT.pdf

http://people.csail.mit.edu/bkph/papers/Optical_Flow_OPT.pdf
http://people.csail.mit.edu/bkph/papers/Optical_Flow_OPT.pdf


Horn and Shunck

• The optical flow (u(x,y),v(x,y)) at pixel (x,y) is 
undetermined in the direction of the edge at (x,y).

• Image intensities can be noisy. 

• Mitigate these problems, by assuming that the 
underlying optical flow is smooth, i.e. the optical 
flow vectors at adjacent pixels are similar.

• Leads to following energy functional to be 
minimized:
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Notice the following!

• The second term is called a smoothness term or 
regularizer or regularization term.

• The addition of the smoothness constraint in the 
under-constrained problem is called as 
regularization.

• Regularization is a common feature of MANY 
computer vision problems (and in fact, many 
problems in machine learning and statistics).  



Notice the following!

• Look at the equation again:

• The parameter λ ≥ 0 performs a weighting between the regularizer
and data fidelity term. A larger λ means more weight to the 
regularizer, and a smaller λ means more weight to the data fidelity 
term.

• It is usually a user-specified parameter (though there is a large body 
of literature on automatic choice of λ). 

Regularization 
term (or 

regularizer)
Data fidelity term

Regularization 
parameter

 dxdyvvuuIvIuIvuJ yxyxtyx


 )()(),( 22222 



Horn and Shunck:  Basic update 
equations
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Replace the integral by a 
summation. Take 
derivatives of the 
energy function J w.r.t. 
the flow vector 
components (u and v) at 
each pixel, and set those 
derivatives to 0. Note 
that Ix;k,l stands for the 
derivative of I in the x 
direction at pixel (k,l)



Horn and Shunck: Basic update 
equations
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Dropping the subscripts (k,l) for 
more readability

Solving the equations simultaneously



Horn and Shunck: digital derivatives

• The image derivatives are expressed as 
follows:

• Important: the digital approximations should 
represent the derivatives at the same point in 
space and time. They should use the same set 
of points for the computation as well.
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Horn and Shunck: digital derivatives
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Horn and Shunck: Boundary conditions

• We are taking forward differences: all image 
derivatives at the right-side or bottom 
boundary of the image are set to 0.

• Values of u and v at pixels that fall outside the 
image domain are set to 0 (and ignored from 
the computation of the average).



Horn and Shunck: Solution
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Note: If you knew the value of u at the 
each of the four neighbors of pixel (k,l), 
you can update ukl. Likewise for vkl. But 
you don’t know these values!
There will be 2 such equations per pixel, 
for a total of 2MN equations.
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We can re-arrange all these equations collecting together terms involving u and v at any pixel 
location on the LHS, and writing down terms without u and v on the RHS. 
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Hence, these equations in the form Ax = b where A is a 2MN x 2MN matrix, and x and b are 
2MN x 1 vectors. Vector x will contain all the unknowns, i.e. u and v values at a pixel (k,l) and 
its neighbors. Vector b will contain the (known) terms on the RHS of these equations. Matrix 
A is sparse and contains at the most 9 non-zero values in each row (why?).



Horn and Shunck: Solution
• Note that such a system is extremely expensive to invert.
• Initial condition for u and v – zeros; boundary conditions for derivatives of I – zero 

across boundary of the image
• Iterative algorithm (Jacobi’s method): run for T iterations or until convergence: Update 

the optical flow at one pixel keeping the optical flow at all other pixels fixed.
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http://en.wikipedia.org/wiki/Jacobi_method

Applying the Jacobi method leads to updates of the following 
form at the t-th iteration (see next slide as well):

http://en.wikipedia.org/wiki/Jacobi_method
http://en.wikipedia.org/wiki/Jacobi_method


Segway: Jacobi’s method

• Consider system of equations Ax = b.

• A can be written as D+R where D is a diagonal 
matrix – as follows:

• The solution vector is iteratively obtained as
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Comments on Horn and Shunck (+)

• Optical flow is completely indeterminate in 
regions where intensity is constant. 

• But this method allows for filling in of the flow 
vectors in such regions, because of the 
regularizer term.

• The update of u (or v) at pixel (k,l) at iteration t+1 
does not depend on ukl or vkl in iteration t, but it 
depends only the neighboring values of u or v.



Comments on Horn and Shunck (-?)

• Note that the method banks on the brightness 
constancy assumption.

• It also assumes that the flow at all points is 
small in magnitude (otherwise the basic 
constancy equation doesn’t hold).

• It also assumes smoothness of the flow (this 
can get violated if two independently moving 
objects come close together in a video frame).



Horn and Shunck: Laplacian of u and v
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Laplacian of u and v using 
the well-known mask (see 
next slide). You may also 
use other masks for the 
Laplacian in which case 
these update equations 
change slightly.



Laplacian of a 2D signal f
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Rotationally symmetric operator (in 
the continuous domain)



Horn and Shunck: Laplacian

• The original paper by Horn and Shunck
suggests the following mask for the Laplacian 
of u and v:

























12

1

6

1

12

1
6

1
1

6

1
12

1

6

1

12

1

12



Laplacian of an image

• The two masks on the previous slide are 
applied point-wise to the entire image.

• For image smoothing as well, we applied 
point-wise masks.

• But here the mask values sum to 0. In 
smoothing the weights summed to 1.



Horn and Shunck: examples
http://of-eval.sourceforge.net/

http://of-eval.sourceforge.net/
http://of-eval.sourceforge.net/
http://of-eval.sourceforge.net/
http://of-eval.sourceforge.net/


Two frames from the so-called “table tennis” video 
sequence

The next slide contains a quiver plot of the optical 
flow vectors. A clearer plot can be observed in the 
following pdf:

http://www.cse.iitb.ac.in/~ajitvr/CS763_Spring2016
/hs_result.pdf

A quiver plot is a plot of vectors (u(x,y),v(x,y)) in 2D. 
The vector at a pixel (x,y) is represented by an 
arrow whose length is proportional to the vector 
magnitude. The quiver plot is generated by the 
MATLAB function `quiver’.

http://www.cse.iitb.ac.in/~ajitvr/CS763_Spring2016/hs_result.pdf
http://www.cse.iitb.ac.in/~ajitvr/CS763_Spring2016/hs_result.pdf




Horn and Shunck: one last point

• The original paper by Horn-Shunck uses the calculus of variations
to minimize the functional J(u,v) w.r.t. u and v.

• Calculus of variations is a branch of mathematics that asks the 
following question: Which function f minimizes a functional E(f)? 
(eg: which curve passing through two points has the least length?)

• In our lectures, we have used a discrete form for J(u,v) and directly 
minimized it using simple derivatives. 

• The resulting equations are very similar to the ones derived using 
calculus of variations (though there are problems where using 
calculus of variations is of special use!). 



Lucas-Kanade

• Is a local (semi-local) method – it solves several 
small problems independently, whereas Horn and 
Shunck solves one large (global) problem.

• Assume that the optical flow is constant within a 
small window (say, of size N x N, N is around 5 to 
8).

• Uses a least squares approach to solve for the 
optical flow by combining together several (N2 in 
case of N x N window)  brightness constancy 
equations.



Lucas-Kanade
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Note that u and v are constant over this window.

This is the least squares solution (which we obtain by 
the pseudo-inverse). It is the solution to an over-
constrained problem, i.e. a problem where the 
number of knowns is more than the number of 
unknowns (in this case, 2).
This solution minimizes the following quantity:

‘(xi,yi)’ denotes the ith spatial location (i.e. pixel) inside a small N x N window
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This 2 x 2 matrix is called as a local 
structure-tensor or local second 
moment matrix.



Lucas-Kanade

• This solution minimizes the following quantity:

• Taking partial derivatives and setting them to 
zero yields the following set of simultaneous 
equations (the exact same as before):
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Note that u and v in these equations are 
without indices because they are assumed 
constant for the entire N x N window.



Lucas-Kanade

• Note: There is an assumption that the matrix ATA
(i.e. structure tensor) is invertible!

• This assumption fails if all gradients in a region 
are aligned (i.e. a region of constant shading, i.e. 
of the form I(x,y)=ax+by+c) or if all gradients are 
null (constant intensity, i.e. I(x,y) = c).

• Former case: just use the normal flow (i.e. flow 
component along gradient direction) and 
interpolate from surrounding regions.

• Latter case: optical flow is determined by 
interpolation from surrounding regions.
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Edges cause problems

– large gradients, all the same

– large 1, small 2 (eigenvalues of the structure tensor)
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Low texture regions don’t work

– gradients have small magnitude

– small 1, small 2
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High textured region work best

– gradients are different, large magnitudes

– large 1, large 2



Lucas-Kanade

• In practice, better results are obtained by 
smoothing the images prior to computation of 
optical flow.

• The method assumes small valued flow between 
consecutive frames. If this assumption fails, then 
one option is to run the algorithm on 
downsampled images, and then upsample the 
computed flow.

• What will happen if window is too large? Too 
small?
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Revisiting the small motion 
assumption

• Is this motion small enough?

– Probably not—it’s much larger than one pixel (2nd order terms dominate)

– How might we solve this problem?

Slides taken 
from the 
course by 
Steve Seitz 
at University 
of 
Washington, 
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Reduce the resolution!
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image Iimage H

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Coarse-to-fine optical flow estimation
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image Iimage J

Gaussian pyramid of image H Gaussian pyramid of image I

image Iimage H

Coarse-to-fine optical flow estimation

run iterative L-K

run iterative L-K

warp & upsample

.

.

.
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A Few Details
• Top Level

– Apply L-K to get a flow field representing the flow from 
the first frame to the second frame.

– Apply this flow field to warp the first frame toward the 
second frame.

– Rerun L-K on the new warped image to get a flow field 
from it to the second frame.

– Repeat till convergence.

• Next Level
– Upsample the flow field to the next level as the first 

guess of the flow at that level.
– Apply this flow field to warp the first frame toward the 

second frame.
– Rerun L-K and warping till convergence as above.

• Etc.



Comments on Lucas-Kanade (+)

• In some windows, the optical flow estimate is 
more reliable than at other windows. This 
reliability depends on the rank of the 
structure tensor (and does not require any 
information about the next frame, i.e. 
I(:,:,t+1)!).

• Errors in estimates in one part of the image do 
not affect the estimates in another part.



H-S versus L-K

• H-S is global, L-K is local.
• Both have parallelizable implementations.
• H-S gives an optical flow value at all pixels regardless of 

gradient. L-K requires a post-processing step to interpolate 
flow in case of regions with aligned gradients or null 
gradients.

• H-S required selection of λ, L-K requires selection of 
window-size. 

• H-S is more noise-sensitive, as errors in one part of the 
image propagate all over. In L-K, the optical flow estimates 
in different windows are generally independent.

• H-S (without modifications) has no inbuilt reliability 
estimate unlike L-K.



Image source: “Lucas-Kanade meets Horn-Shunck: combining global and local optical flow 
methods”, Bruhn, Weickert, Schnorr, IJCV 2005.



Image warping using computed optical 
flow

• Consider images I1 and I2.
• Let u(x,y) and v(x,y) be the computed optical flow 

between them such that I1(x+u(x,y),y+v(x,y)) = 
I2(x,y).

• Forward warping method: Copy intensity value 
I1(x,y) to I2(round(x+u(x,y)),round(y+v(x,y))).

• Here ‘round’ refers to the operation of rounding 
off to the nearest integer.

• Problem: some pixels may remain unoccupied 
after warping, or two pixels from I1 may map onto 
the same pixel in I2. 



Image warping using computed optical 
flow

• Reverse warping method: For every pixel (x,y) 
in the output image (i.e. warped version of I1), 
determine which pixels in I1 map somewhere 
in the range [x-1,x+1] x [y-1,y+1]. 

• Interpolate the flow field values at these pixels 
to determine which subpixel will map onto 
(x,y).



Aperture Problem: Visual Perception

• Images are formed on the retina. Image 
processing and analysis occurs in the brain 
(visual cortex).

• The basic (low-level) processing occurs in an 
area of the visual cortex called V1.

• Advanced (high-level) processing occurs in an 
area of the visual cortex called V5.



Aperture Problem: Visual Perception

• Each neuron in the V1 area is sensitive to visual 
stimuli in a small part of the visual field, i.e. as if it 
were “looking” through a small aperture.

• The motion direction will be ambiguous and 
defined only in the direction of the gradient of 
the image – aperture problem. 

• Thus edges moving in many different ways may 
give rise to identical stimulus to the V1 neurons.

• It is the job of the V5 neurons to integrate the 
local motion estimates to produce global 
estimates.



Aperture Problem

• Barber-pole illusion

http://en.wikipedia.org/wiki/Barberpole_illusion

http://en.wikipedia.org/wiki/Barberpole_illusion


Optical Flow versus True Motion

• Consider a uniform sphere rotating about its 
axis under constant illumination. Optical flow 
is zero, true motion is not!

• Consider a still sphere under lighting of 
varying direction. Optical flow is not zero, true 
motion is zero!



Applications: Faces

• Tracking salient feature points (see video 
above) across frames of a video.

• Facial expression recognition – Input: video of 
a person’s face, Output: facial expression 
(smile, frown, surprise, anger, sorrow, etc.)

• Does the web-cam see a real face? Or a 
mask/poster of a face?

http://www.cs.toronto.edu/~dross/ivt/dudek.avi

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5226597&tag=1

http://www.cs.toronto.edu/~dross/ivt/dudek.avi
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5226597&tag=1


Applications: Medical imaging

• Analysis of the motion of a deformable object 
(Example: biological cell, micro-organism, or 
an organ like the heart).

http://www.mate.tue.nl/mate/pdfs/10121.pdf

http://www.youtube.com/watch?v=JA0Wb3gc4mE

http://www.mate.tue.nl/mate/pdfs/10121.pdf
http://www.youtube.com/watch?v=JA0Wb3gc4mE


Applications: Structure from Motion!

• Consider a video sequence of an object 
undergoing constant rigid motion 
(translation/rotation).

• Assume orthographic projections.

• Suppose we tracked some N feature points across 
all the frames (using optical flow!)

• It turns out you can make some estimates of the 
3D coordinates of those points in every frame as 
well as the motion. This is called structure from 
motion (SfM).



Applications: Collision 
Avoidance/Prediction of Collision Time

• Given a video sequence containing two 
independently moving objects.

• Compute optical flow at each frame.

• Extrapolate the trajectory of salient points on 
each object.

• Will the images of the objects collide? If so, 
when?

• Will the actual objects collide? If so, when? 
(requires calibrated camera)
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