
Face Detection using Adaboost

CS 763

Ajit Rajwade

What is face detection?

• Task of identifying (marking out) faces in an
image.

http://iomniscient.com/newsletters/HTML/EN/image/FR.gif

Face detection is not face recognition

• Face recognition asks: what is the identity of
the person whose image is given to you?

Face detection is not face verification

• Face verification asks: given two images, do
they belong to the same person (we don’t
care who that person is)?

Challenges in face detection

• Change of facial pose/scale

• Change of illumination conditions

• Occlusions (to a lesser extent)

• Designing a detection system resistant to these
changes is challenging!

A simplified problem

• Restrict ourselves to near frontal views of the
face.

• Assume limited range of illumination
conditions!

• Assume little or no facial occlusions.

• Multiple scales are allowed!

A simple face detector

• Collect together a bunch
of face images of equal
size (say 80 x 80) in near
frontal pose.

• Extract some features
from these faces
(example: average
histogram of gradient
orientations, distribution
of eigen-coefficients
obtained from PCA). Image taken from: P. Viola

and M. Jones. Robust real-
time object detection.
International Journal of
Computer Vision, 57(2):137–
154, 2004.

A simple face detector

• Given a query image, slide a 80 x 80 window all
over.

• Extract the same features from the portion of the
image covered by the window.

• Classify it as face or non-face depending on the
distance in the feature-space.

• If that distance > some threshold – “non-face”,
otherwise “face”.

• For scale-invariance, take windows of other sizes
and resize them to 80 x 80 before feature
extraction.

A simple face detector – and Adaboost

• Which features should we select?

• Different features will produce different
results.

• Adaboost is a technique that does the
following:

 Uses multiple (weak) classifiers – each based
on different features

 Combines these different (weak) classifiers
into a single powerful classifier

Machine learning 101 jargon

• A classifier is a program that assigns an input vector
(i.e. a data item) to one of out M=2+ classes.

• If M = 2, it is called a binary classifier.

• Formal representation: Given input vector x, the
output of a binary classifier is h(x) ϵ {-1,+1}.

• A classifier needs to be trained on “training data”.
During training, it “learns” one or more decision rules.

• It is tested on “test data”, i.e. unseen data so that it can
work in the real world.

Adaboost

• Adaboost is an ensemble learning algorithm.

• It takes a collection of classifiers – called weak
learners or base learners (like a rule of thumb).

• It combines them to produce a strong classifier.

• What’s a strong classifier? One that will produce
good results on unseen data!

• Face detection requires a binary classifier (face
versus non-face).

• Adaboost does have multi-class variants but we stick
to the 2-class case.

Adaboost

• The weak learners (rules of thumb) must have
error-rate less than 50%, i.e. they must be at
least slightly better than random guessing.

• If the rule of thumb has more than 50% error,
just invert its sign!

• Finding and then combining many simple
(weak) rules of thumb is easier than finding
one complex (accurate) rule.

Adaboost

• Adaboost was invented by Freund and
Schapire in 1997.
Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997.

• They won the Gödel prize for this contribution
in 2003.

• Adaboost was applied to face detection (with
some modifications) by Viola and Jones in
2001.
P. Viola and M. Jones. Robust real-time object detection. International Journal of Computer
Vision, 57(2):137–154, 2004.

http://en.wikipedia.org/wiki/G%C3%B6del_Prize

http://en.wikipedia.org/wiki/G%C3%B6del_Prize

Viola-Jones face detector

• Considered one of the state of the art face
detectors.

• The original implementation in 2001/2004
claimed a detection speed of 0.07 seconds per
frame of size ~300 x 300 on a standard
desktop.

Image taken from: P. Viola
and M. Jones. Robust real-
time object detection.
International Journal of
Computer Vision, 57(2):137–
154, 2004.

Adaboost

Strong
classifier

Weak classifier

Weight
Feature vector

...)()()()(332211  xxxx hhhH 

.classifier strong final by the

 assigned, is point class which todecides)(of Sign

.classifier weak th- by the

 assigned, is point class which todecides)(of Sign

xx

xx

H

i

hi

Toy Example – taken from Antonio Torralba @MIT

Weak learners from
the family of lines

h => p(error) = 0.5 it is at chance

Each data point has

a class label:

wt =1

and a weight:

+1 ()

-1 ()
yt =

Toy example

This one seems to be the best

Each data point has

a class label:

wt =1

and a weight:

+1 ()

-1 ()
yt =

This is a ‘weak classifier’: It performs slightly better than chance.

Toy example

We set a new problem for which the previous weak classifier performs at chance again

Each data point has

a class label:

wt wt exp{-yt Ht}

We update the weights:

+1 ()

-1 ()
yt =

Toy example

We set a new problem for which the previous weak classifier performs at chance again

Each data point has

a class label:

wt wt exp{-yt Ht}

We update the weights:

+1 ()

-1 ()
yt =

Toy example

We set a new problem for which the previous weak classifier performs at chance again

Each data point has

a class label:

wt wt exp{-yt Ht}

We update the weights:

+1 ()

-1 ()
yt =

Toy example

We set a new problem for which the previous weak classifier performs at chance again

Each data point has

a class label:

wt wt exp{-yt Ht}

We update the weights:

+1 ()

-1 ()
yt =

Toy example

The strong (non- linear) classifier is built as the combination of all the weak (linear) classifiers. Each weak
classifier handles only some of the training samples well and makes errors on the rest. The combined
classifier has a much lower error on the training set than any of the weak classifiers.

f1 f2

f3

f4

Formal Procedure of AdaBoost

A fancy word for “weights” on
the training points x1,x2,…xm.
But the weights are non-
negative and sum to 1.

Just sum up the weights of
those points that were
misclassified by ht

Formal Procedure of AdaBoost

• How do you construct the weights? Are they
updated? If so, how?

• What is the final classifier? How is it created
from the weak classifiers?

• How many weak classifiers are chosen?

Formal Procedure of Adaboost

 















m

i

t

itit

m

i

tt

iD

xhyiDZ

1

1

1

)(

)(exp)(

These are the weights given to
each weak classifier. Not to be
confused with the weights on
the training samples!
Note that classifiers with lower
errors get more weight. The
weights are always positive if
the error <= 0.5.

Training samples that
are misclassified get
more weight. The
ones that are
correctly classified
are given less weight.

* In the implementations, the best weak learner (from some parametric family)
is chosen. See next slide for an example.

*

A simple family of classifiers

• Consider N vectors {xi}, 1 ≤ i ≤ N, each having d
elements.

• Consider the family of weak classifiers:

• Choosing the best weak classifier from this
family involves choosing a combination of j
and θ so as to minimize the weighted training
error (given the current set of weights).

)(),;(  ijit xsignjxh

A simple family of classifiers.

• Here is a slightly more complicated family of
weak classifiers:

• Choosing the best weak classifier from this
family involves choosing a combination of j,p
and θ so as to minimize the weighted training
error (given the current set of weights).

}1,1{ where))((),,;( ppxsignpjh ijt ix

Error on Training Set

But we are NOT interested in Training set

• Will Adaboost overfit?

Over fitting: you learn “too much” on
the training set, but fail on the test set!

Over-fitting can haunt any machine
learning procedure – whether it is
classification or regression or
probability density estimation.

Shall we stop before over fitting? If only over fitting happens with
Adaboost.

Phenomenon of Overfitting

http://www.inf.ed.ac.uk/teaching/courses/iaml/slides/eval-2x2.pdf

http://www.inf.ed.ac.uk/teaching/courses/iaml/slides/eval-2x2.pdf

Actual Typical Run of Adaboost

You should (will!)
notice this when
you do the
assignment!

Back to Viola and Jones face detector

• The detector operates in two phases – (1)
training and (2) testing.

• During training, it learns a good classifier that
distinguishes between a face and a non-face.

• During testing, the detector is actually
deployed on unseen images that were not
part of the training set.

Back to Viola and Jones face detector

• Input – patches of fixed size (say 24 x 24) each
labeled as “face” (+1) or “non-face” (-1).

• The Viola-Jones detector does not use
sophisticated features – such as eigen-
coefficients, gradient statistics or outputs of
Gabor filters!

Viola and Jones face detector: features

• It uses simple sums and differences of rectangles –
these features are computationally very efficient.

• These features are called as Haar-like features.

Image taken from: P. Viola
and M. Jones. Robust real-
time object detection.
International Journal of
Computer Vision, 57(2):137–
154, 2004.

Viola and Jones face detector: features

• For 24 x 24 patches, there are more than 150,000
such features.

Naively implemented,
this Haar-like feature will
take a x b operations to
compute where a and b
is the height and width
of the rectangle.

Viola and Jones face detector: features

• These features can be efficiently computed using
the so-called integral image defined as follows:

Viola and Jones face detector: features

• The integral image can be computed with a single
pass over the image, if you use the following
recurrences:

Viola and Jones face detector: features

• A single rectangle feature can be computed using
four array references into the integral image.

Viola and Jones face detector: features

• We have too many features. Which ones should
we use? Let the Adaboost algorithm decide!

• In each Adaboost round, pick the rectangle
feature that best separates faces from non-faces!

• You also need to decide the optimal threshold
and optimal parity. Thus the weak classifier is
represented as follows:

Threshold

Parity

Selected Haar-like feature

This is different
from the
earlier {-1,+1}
convention for
the output
labels

The expression
for the strong
classifier is
different from
the one we
have seen so
far. This is
because we
switched from
{-1,+1} to {0,1}
for the output
labels

Image taken from: P. Viola and M. Jones. Robust real-time object detection.
International Journal of Computer Vision, 57(2):137–154, 2004.

Speeding up: classifier cascade

• Adaboost training is time consuming as a large
number of features need to be evaluated.

• So we build a cascade of strong classifiers - each
classifier in the cascade uses a larger number of
processed features than the previous one.

• The first strong classifier uses only two features –
the ones shown on the previous slide.

Speeding up: classifier cascade
• The first strong classifier uses only two features – the ones shown on

the previous slide.

• The strong classifier threshold can be reduced (**) in order to yield
very low false negative rates (no “face” should be labeled a “non-
face”) allowing high false positive rates (some “non-faces” may be
labeled as “face”).

• The key idea is to reject as many obvious non-faces as possible early
on.

• A go-ahead (positive result) from the first classifier triggers the next
classifier in the cascade and so on. A negative result immediately
eliminates the point.

(**) The threshold for the strong classifier produced by Adaboost is optimized to yield low error rates. In the Viola Jones
paper which uses {0,1} as labels instead of {-1,+1}, the threshold is . Here, we deliberately use a lower threshold
to give higher detection rates but higher false positives, taking care that the false positive rate does not exceed a limit, say
40%.

Image taken from: P. Viola and M. Jones. Robust real-time object detection.
International Journal of Computer Vision, 57(2):137–154, 2004.

Speeding up: classifier cascade

• The cascade idea is inspired from the fact that
most images will contain many more non-face
windows than face windows.

• Quickly discarding several non-faces saves a
huge amount of time during training as well as
testing.

Cascade: detection rate, false positive
rate

• The overall false positive rate is:

• The overall detection rate is:

• Assume K = 10. If your final detector must have a 90%
detection rate, each individual detector must have a
detection rate of at least 99% (0.99^10 = 0.9).

• But the individual detectors in the cascade may have
high false positive rates (say 40%). The net false
positive rate will be 0.01%.

The validation set is distinct from P
and N. Each data-point in the
validation set is also labelled as
face or non-face.

Denotes the
layer number
in the cascade

This refers to the strong
classifier produced by the i-th
layer of the cascade

Comparison between a single classifier with 200 features (i.e. 200 rounds of Adaboost)
and a cascade of 10 classifiers each using 20 features. The first classifier in the cascade
was trained on 5000 face images + 10000 non-faces. The second classifier was trained on
5000 faces + 5000 false positives from stage 1, and so on. The detection rates of the
cascade is comparable to the full classifier, but its speed is 10 times as high.

Comments on the cascade

• The cascaded classifier saves a great deal of time
during testing as it eliminates obvious non-face
windows very early on.

• During training, the cascaded classifier still needs
to select some features out of several candidate
features – which is no doubt expensive. However,
the gain is obtained by being able to throw out
non-face windows early on.

Details of experiments in the Viola-
Jones face detector

• ~5000 faces obtained from a web-crawl, cropped
and resized to 24 x 24

• Final detector is a 32-layer cascade with ~4900
features in total

• Around 10,000 non-face images were used.
Classifiers at different steps in the cascade
trained on different non-faces (around 6000 in
number).

• Total training time ~ around a couple of weeks.

Image pre-processing

• All sub-images (size 24 x 24) were made 0
mean and unit variance to induce a very basic
form of illumination invariance.

Scale invariance

• This was handled by sampling pixels with
larger gaps, producing sub-images of the same
size, i.e. 24 x 24 (eg: instead of sampling
consecutive locations for the 24 x 24 window,
you take every second pixel in a 48 x 48 region
to extract a 24 x 24 window).

Adaboost: Some Theory

References:
* Many slides adapted from the website of

Prof. Jason Corso, SUNY Buffalo

Adaboost: some questions

1. What objective function does Adaboost
minimize during training?

2. Why the strange formula for alpha?

3. Can you prove that the training error goes to
zero with infinitely many rounds?

4. Why do we pick the next classifier that has
the lowest weighted training error (i.e. εt)?

5. Why the given rule for updating the weights?

(1) Adaboost algorithm: what does it
do?

• Our aim is to select classifiers {ht}, 1 ≤ t ≤ T,
and their weights {αt}, 1 ≤ t ≤ T, so as to
minimize the training error of the strong
classifier, i.e.:

This is the Kronecker delta function –
it outputs 1 if the predicate passed as
argument is true, otherwise it outputs
0.

(1) Adaboost algorithm: what does it
do?

• Adaboost does not minimize this classification
error (called “empirical risk”) directly.

• But it minimizes the following upper bound on
this error (i.e. a quantity which is guaranteed
to never be less than the classification error):

   

 











m

i

iii

m

i

iii

m

i

ii

xFxHy
m

xFxFy
m

xFy
m

1

11

)()(exp
1

)())((signexp
1

)(exp
1

Adaboost: Optimization – why is it an
upper bound on Err(H)?

• To prove the following: LHS RHS

for all i

(2) Let’s look at the weights

• Recursive computation of the weights:

• Normalization of the weights at each round:

Set of correctly
classified points

(2) Let’s look at the weights

• But the weights sum up to 1. So:

• We have seen that this quantity Z is an upper
bound on the training error:

Dt+1

(2) Adaboost: Updating alphas

• Adaboost seeks to minimize Z w.r.t. the
classifiers {ht} and also their respective
weights {αt}, 1 ≤ t ≤T.

• Solving for alphas:

(3) Adaboost: Bound on training error

• Plugging in these alphas into the expression
for Z, we get:

• Define:

(3) Adaboost: Bound on training error

• Plugging in these values, we now get:

• After T rounds, we get:

Since 1+x ≤ ex for all x. Put in x = -4(ϒt)
2

(4) Adaboost: How to pick the next
classifier?

• Notice that the given algorithm picks classifiers
(belonging to a parametric family) that minimizes the
weighted training error, given fixed values of the
alphas!

• Why so? Because we seek a hypothesis ht that
minimizes Z (see expression for Z in terms of εt two
slides before), i.e. that minimizes Zt.

• Zt is a monotonically increasing function of εt for εt ϵ
(0,1/2], so we seek ht that has the least possible εt.

Coordinate descent

• Consider a vector x = (x1,x2,…,xn).

• Consider a multivariate convex, differentiable
function f(x) to be minimized w.r.t. x.

• Coordinate descent is summarized as follows:

• Start with initial guess for x.
• Order of updates can be
arbitrary.
•Use the latest value of every
coordinate.
• The value of f is guaranteed
to never increase across
these updates.
•Repeat these updates until
the change is no more
significant.

x3

xn

Coordinate descent

• Theoretical treatment on coordinate descent
states that such a sequence is guaranteed to
converge to the minimizer of f.

• More details:
https://www.cs.cmu.edu/~ggordon/10725-F12/slides/25-coord-desc.pdf

https://www.cs.cmu.edu/~ggordon/10725-F12/slides/25-coord-desc.pdf

Adaboost is an example of coordinate
descent

• Adaboost algorithm = coordinate descent on
the function Z({αt}) given a fixed family of
finitely many classifiers.

• You find one weight αt (for some t) at a time
using coordinate descent.

• For a fixed number (T) of Adaboost rounds,
not all the classifiers from the family may be
selected – for those, the weight will be 0.

Adaboost is an example of coordinate
descent

• The empirical risk is not a convex function of
the weights {αt}.

• The upper bound Z defined earlier is a convex
function of {αt} and hence easier to minimize.

• Minimizing Z is not the same as minimizing
the empirical risk, but we do know that the
minimum of the empirical risk is below the
minimum of Z.

Generalization capability of Adaboost

Adaboost has a
tendency not to
overfit.

You should (will!)
notice this when
you do the
assignment!

Generalization capability of Adaboost

• The aforementioned curious phenomenon has
been observed in several experiments on
Adaboost.

• It means that often, Adaboost has a tendency not
to overfit!

• Freund and Schapire explained this observation
using the concept of “margin of a classifier”.

• The margin of a classifier h on point x is defined
as yh(x) – intuitively it tells us how far away x is
from the decision boundary (given by h(x)). It is
like the confidence of the vote.

Generalization capability of Adaboost

• The margin of H is given by

• Theorem 1: The larger the margin, you have a
better bound on the value of the
generalization error. For any θ > 0, the
generalization error is upper bounded by the
following quantity (with high probability):








T

t

t

T

t

tt xyh

1

1

)(





Number of training points

Complexity (VC dimension)
of the weak learner

Generalization capability of Adaboost

• It has been shown that the margin of the
Adaboost classifiers tends to increase with the
number of rounds even after the training error
reaches 0.

• The proofs of all these results is beyond the
scope of our course.

This means that with more rounds, the margins of the training samples increase – this
pushes the cumulative distribution function (CDF) of the margin rightwards. Recall that
the CDF of the margin is given as follows:
CDFmargin (θ) = Pr(margin ≤ θ) = probability that the margin ≤ θ

Adaboost: (Strong!) Positives

• Great theoretical treatment and empirical
performance.

• Fast to evaluate (linear combination of
classifiers).

• Limited parameter tuning: number of rounds
T.

• Simple meta-algorithm, very flexible, can work
with any weak learner.

But…Adaboost: Some words of caution

• Performance will depend on data!

• Performance will depend on choice of weak
classifier families. Hence can fail if the weak
classifiers are either “too weak” or “too
complex”.

References

• Tutorial by Freund and Schapire: “A short introduction to
boosting”

• Tutorial by Zhou and Yu: “Adaboost”

• Viola and Jones, “Robust real-time object detection”, IJCV
2001.

• Jason Corso’s (SUNY Buffalo) lecture notes on Adaboost

• Adaboost and coordinate descent: Course notes by Cynthia
Rudin

http://www.cse.buffalo.edu/~jcorso/t/CSE555/files/lecture_boosting.pdf
http://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec10.pdf

