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What is face detection?

• Task of identifying (marking out) faces in an 
image.

http://iomniscient.com/newsletters/HTML/EN/image/FR.gif



Face detection is not face recognition

• Face recognition asks: what is the identity of 
the person whose image is given to you?



Face detection is not face verification

• Face verification asks: given two images, do 
they belong to the same person (we don’t 
care who that person is)?



Challenges in face detection

• Change of facial pose/scale

• Change of illumination conditions

• Occlusions (to a lesser extent)

• Designing a detection system resistant to these 
changes is challenging!



A simplified problem

• Restrict ourselves to near frontal views of the 
face.

• Assume limited range of illumination 
conditions!

• Assume little or no facial occlusions.

• Multiple scales are allowed!



A simple face detector

• Collect together a bunch 
of face images of equal 
size (say 80 x 80) in near 
frontal pose.

• Extract some features 
from these faces 
(example: average 
histogram of gradient 
orientations, distribution 
of eigen-coefficients 
obtained from PCA). Image taken from: P. Viola 

and M. Jones. Robust real-
time object detection. 
International Journal of 
Computer Vision, 57(2):137–
154, 2004.



A simple face detector

• Given a query image, slide a 80 x 80 window all 
over. 

• Extract the same features from the portion of the 
image covered by the window.

• Classify it as face or non-face depending on the 
distance in the feature-space.

• If that distance > some threshold – “non-face”, 
otherwise “face”.

• For scale-invariance, take windows of other sizes 
and resize them to 80 x 80 before feature 
extraction.



A simple face detector – and Adaboost

• Which features should we select?

• Different features will produce different 
results.

• Adaboost is a technique that does the 
following:

 Uses multiple (weak) classifiers – each based 
on different features

 Combines these different (weak) classifiers 
into a single powerful classifier



Machine learning 101 jargon

• A classifier is a program that assigns an input vector 
(i.e. a data item) to one of out M=2+ classes.

• If M = 2, it is called a binary classifier.

• Formal representation: Given input vector x, the 
output of a binary classifier is h(x) ϵ {-1,+1}.

• A classifier needs to be trained on “training data”. 
During training, it “learns” one or more decision rules.

• It is tested on “test data”, i.e. unseen data so that it can 
work in the real world.



Adaboost

• Adaboost is an ensemble learning algorithm. 

• It takes a collection of classifiers – called weak 
learners or base learners (like a rule of thumb).

• It combines them to produce a strong classifier.

• What’s a strong classifier? One that will produce 
good results on unseen data!

• Face detection requires a binary classifier (face 
versus non-face).

• Adaboost does have multi-class variants but we stick 
to the 2-class case.



Adaboost

• The weak learners (rules of thumb) must have 
error-rate less than 50%, i.e. they must be at 
least slightly better than random guessing.

• If the rule of thumb has more than 50% error, 
just invert its sign!

• Finding and then combining many simple 
(weak) rules of thumb is easier than finding 
one complex (accurate) rule. 



Adaboost

• Adaboost was invented by Freund and 
Schapire in 1997. 
Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an 
application to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997. 

• They won the Gödel prize for this contribution 
in 2003.

• Adaboost was applied to face detection (with 
some modifications) by Viola and Jones in 
2001. 
P. Viola and M. Jones. Robust real-time object detection. International Journal of Computer 
Vision, 57(2):137–154, 2004.

http://en.wikipedia.org/wiki/G%C3%B6del_Prize

http://en.wikipedia.org/wiki/G%C3%B6del_Prize


Viola-Jones face detector

• Considered one of the state of the art face 
detectors.

• The original implementation in 2001/2004 
claimed a detection speed of 0.07 seconds per 
frame of size ~300 x 300 on a standard 
desktop.



Image taken from: P. Viola 
and M. Jones. Robust real-
time object detection. 
International Journal of 
Computer Vision, 57(2):137–
154, 2004.



Adaboost
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Toy Example – taken from Antonio Torralba @MIT

Weak learners from 
the family of lines

h => p(error) = 0.5  it is at chance

Each data point has

a class label:

wt =1

and a weight:

+1 (  )

-1 (  )
yt =



Toy example

This one seems to be the best

Each data point has

a class label:

wt =1

and a weight:

+1 (  )

-1 (  )
yt =

This is a ‘weak classifier’: It performs slightly better than chance.



Toy example

We set a new problem for which the previous weak classifier performs at chance again

Each data point has

a class label:

wt wt exp{-yt Ht}

We update the weights:

+1 (  )

-1 (  )
yt =
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Toy example

We set a new problem for which the previous weak classifier performs at chance again

Each data point has

a class label:

wt wt exp{-yt Ht}

We update the weights:

+1 (  )

-1 (  )
yt =



Toy example

The strong (non- linear) classifier is built as the combination of all the weak (linear) classifiers. Each weak 
classifier handles only some of the training samples well and makes errors on the rest. The combined 
classifier has a much lower error on the training set than any of the weak classifiers.

f1 f2

f3

f4



Formal Procedure of AdaBoost

A fancy word for “weights” on 
the training points x1,x2,…xm. 
But the weights are non-
negative and sum to 1.

Just sum up the weights of 
those points that were 
misclassified by ht



Formal Procedure of AdaBoost

• How do you construct the weights? Are they 
updated? If so, how?

• What is the final classifier? How is it created 
from the weak classifiers?

• How many weak classifiers are chosen?



Formal Procedure of Adaboost
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These are the weights given to 
each weak classifier. Not to be 
confused with the weights on 
the training samples! 
Note that classifiers with lower
errors get more weight. The 
weights are always positive if 
the error <= 0.5.  

Training samples that 
are misclassified get 
more weight. The 
ones that are 
correctly classified 
are given less weight.



* In the implementations, the best weak learner (from some parametric family) 
is chosen.  See next slide for an example.

*



A simple family of classifiers

• Consider N vectors {xi}, 1 ≤ i ≤ N, each having d
elements.

• Consider the family of weak classifiers:

• Choosing the best weak classifier from this 
family involves choosing a combination of j
and θ so as to minimize the weighted training 
error (given the current set of weights).

)(),;(   ijit xsignjxh



A simple family of classifiers.

• Here is a slightly more complicated family of 
weak classifiers:

• Choosing the best weak classifier from this 
family involves choosing a combination of j,p
and θ so as to minimize the weighted training 
error (given the current set of weights).

}1,1{  where))((),,;(  ppxsignpjh ijt ix



Error on Training Set



But we are NOT interested in Training set 

• Will Adaboost overfit? 

Over fitting: you learn “too much” on 
the training set, but fail on the test set!

Over-fitting can haunt any machine 
learning procedure – whether it is 
classification or regression or 
probability density estimation.

Shall we stop before over fitting?  If only over fitting happens with 
Adaboost.



Phenomenon of Overfitting

http://www.inf.ed.ac.uk/teaching/courses/iaml/slides/eval-2x2.pdf

http://www.inf.ed.ac.uk/teaching/courses/iaml/slides/eval-2x2.pdf


Actual Typical Run of Adaboost

You should (will!) 
notice this when 
you do the 
assignment!



Back to Viola and Jones face detector

• The detector operates in two phases – (1) 
training and (2) testing.

• During training, it learns a good classifier that 
distinguishes between a face and a non-face.

• During testing, the detector is actually 
deployed on unseen images that were not
part of the training set.



Back to Viola and Jones face detector

• Input – patches of fixed size (say 24 x 24) each 
labeled as “face” (+1) or “non-face” (-1).

• The Viola-Jones detector does not use 
sophisticated features – such as eigen-
coefficients, gradient statistics or outputs of 
Gabor filters!



Viola and Jones face detector: features

• It uses simple sums and differences of rectangles –
these features are computationally very efficient.

• These features are called as Haar-like features.

Image taken from: P. Viola 
and M. Jones. Robust real-
time object detection. 
International Journal of 
Computer Vision, 57(2):137–
154, 2004.



Viola and Jones face detector: features

• For 24 x 24 patches, there are more than 150,000 
such features.

Naively implemented, 
this Haar-like feature will 
take a x b operations to 
compute where a and b
is the height and width 
of the rectangle.



Viola and Jones face detector: features

• These features can be efficiently computed using 
the so-called integral image defined as follows:



Viola and Jones face detector: features

• The integral image can be computed with a single 
pass over the image, if you use the following 
recurrences:



Viola and Jones face detector: features

• A single rectangle feature can be computed using 
four array references into the integral image.



Viola and Jones face detector: features

• We have too many features. Which ones should 
we use? Let the Adaboost algorithm decide!

• In each Adaboost round, pick the rectangle 
feature that best separates faces from non-faces!

• You also need to decide the optimal threshold 
and optimal parity. Thus the weak classifier is 
represented as follows:

Threshold

Parity

Selected Haar-like feature



This is different 
from the 
earlier {-1,+1} 
convention for 
the output 
labels

The expression 
for the strong 
classifier is 
different from 
the one we 
have seen so 
far. This is 
because we 
switched from 
{-1,+1} to {0,1} 
for the output 
labels



Image taken from: P. Viola and M. Jones. Robust real-time object detection. 
International Journal of Computer Vision, 57(2):137–154, 2004.



Speeding up: classifier cascade

• Adaboost training is time consuming as a large 
number of features need to be evaluated. 

• So we build a cascade of strong classifiers - each 
classifier in the cascade uses a larger number of 
processed features than the previous one.

• The first strong classifier uses only two features –
the ones shown on the previous slide.



Speeding up:  classifier cascade
• The first strong classifier uses only two features – the ones shown on 

the previous slide.

• The strong classifier threshold can be reduced (**) in order to yield 
very low false negative rates (no “face” should be labeled a “non-
face”) allowing high false positive rates (some “non-faces” may be 
labeled as “face”). 

• The key idea is to reject as many obvious non-faces as possible early 
on.

• A go-ahead (positive result) from the first classifier triggers the next 
classifier in the cascade and so on. A negative result immediately 
eliminates the point. 

(**) The threshold for the strong classifier produced by Adaboost is optimized to yield low error rates. In the Viola Jones 
paper which uses {0,1} as labels instead of {-1,+1}, the threshold is                   . Here, we deliberately use a lower threshold 
to give higher detection rates but higher false positives, taking care that the false positive rate does not exceed a limit, say
40%.



Image taken from: P. Viola and M. Jones. Robust real-time object detection. 
International Journal of Computer Vision, 57(2):137–154, 2004.



Speeding up:  classifier cascade

• The cascade idea is inspired from the fact that 
most images will contain many more non-face 
windows than face windows. 

• Quickly discarding several non-faces saves a 
huge amount of time during training as well as 
testing. 



Cascade: detection rate, false positive 
rate

• The overall false positive rate is:

• The overall detection rate is:

• Assume K = 10. If your final detector must have a 90% 
detection rate, each individual detector must have a 
detection rate of at least 99% (0.99^10 = 0.9).

• But the individual detectors in the cascade may have 
high false positive rates (say 40%). The net false 
positive rate will be 0.01%.



The validation set is distinct from P 
and N. Each data-point in the 
validation set is also labelled as 
face or non-face.

Denotes the 
layer number 
in the cascade

This refers to the strong 
classifier produced by the i-th
layer of the cascade



Comparison between a single classifier with 200 features (i.e. 200 rounds of Adaboost) 
and a cascade of 10 classifiers each using 20 features. The first classifier in the cascade 
was trained on 5000 face images + 10000 non-faces. The second classifier was trained on 
5000 faces + 5000 false positives from stage 1, and so on. The detection rates of the 
cascade is comparable to the full classifier, but its speed is 10 times as high.



Comments on the cascade

• The cascaded classifier saves a great deal of time 
during testing as it eliminates obvious non-face 
windows very early on.

• During training, the cascaded classifier still needs 
to select some features out of several candidate 
features – which is no doubt expensive. However, 
the gain is obtained by being able to throw out 
non-face windows early on. 



Details of experiments in the Viola-
Jones face detector

• ~5000 faces obtained from a web-crawl, cropped 
and resized to 24 x 24

• Final detector is a 32-layer cascade with ~4900 
features in total

• Around 10,000 non-face images were used. 
Classifiers at different steps in the cascade 
trained on different non-faces (around 6000 in 
number).

• Total training time ~ around a couple of weeks.



Image pre-processing

• All sub-images (size 24 x 24) were made 0 
mean and unit variance to induce a very basic 
form of illumination invariance.



Scale invariance

• This was handled by sampling pixels with 
larger gaps, producing sub-images of the same 
size, i.e. 24 x 24 (eg: instead of sampling 
consecutive locations for the 24 x 24 window, 
you take every second pixel in a 48 x 48 region 
to extract a 24 x 24 window).



Adaboost: Some Theory

References: 
* Many slides adapted from the website of 

Prof. Jason Corso,  SUNY Buffalo



Adaboost: some questions

1. What objective function does Adaboost
minimize during training?

2. Why the strange formula for alpha?

3. Can you prove that the training error goes to 
zero with infinitely many rounds?

4. Why do we pick the next classifier that has 
the lowest weighted training error (i.e. εt)?

5. Why the given rule for updating the weights?



(1) Adaboost algorithm: what does it 
do?

• Our aim is to select classifiers {ht}, 1 ≤ t ≤ T, 
and their weights {αt}, 1 ≤ t ≤ T, so as to 
minimize the training error of the strong 
classifier, i.e.:

This is the Kronecker delta function –
it outputs 1 if the predicate passed as 
argument is true, otherwise it outputs 
0.



(1) Adaboost algorithm: what does it 
do?

• Adaboost does not minimize this classification 
error (called “empirical risk”) directly.

• But it minimizes the following upper bound on 
this error (i.e. a quantity which is guaranteed 
to never be less than the classification error):
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Adaboost: Optimization – why is it an 
upper bound on Err(H)?

• To prove the following: LHS RHS

for all i



(2) Let’s look at the weights

• Recursive computation of the weights:

• Normalization of the weights at each round:

Set of correctly 
classified points



(2) Let’s look at the weights

• But the weights sum up to 1. So:

• We have seen that this quantity Z is an upper 
bound on the training error:

Dt+1



(2) Adaboost: Updating alphas

• Adaboost seeks to minimize Z w.r.t. the 
classifiers {ht} and also their respective 
weights {αt}, 1 ≤ t ≤T.

• Solving for alphas:



(3) Adaboost: Bound on training error

• Plugging in these alphas into the expression 
for Z, we get:

• Define:



(3) Adaboost: Bound on training error

• Plugging in these values, we now get:

• After T rounds, we get:

Since 1+x ≤ ex for all x. Put in x = -4(ϒt)
2 



(4) Adaboost: How to pick the next 
classifier?

• Notice that the given algorithm picks classifiers 
(belonging to a parametric family) that minimizes the 
weighted training error, given fixed values of the 
alphas!

• Why so? Because we seek a hypothesis ht that 
minimizes Z (see expression for Z in terms of εt two 
slides before), i.e. that minimizes Zt.

• Zt is a monotonically increasing function of εt for εt ϵ 
(0,1/2], so we seek ht that has the least possible εt.



Coordinate descent

• Consider a vector x = (x1,x2,…,xn).

• Consider a multivariate convex, differentiable 
function f(x) to be minimized w.r.t. x.

• Coordinate descent is summarized as follows:

• Start with initial guess for x. 
• Order of updates can be 
arbitrary.
•Use the latest value of every 
coordinate. 
• The value of f is guaranteed 
to never increase across 
these updates.
•Repeat these updates until 
the change is no more 
significant.

x3

xn



Coordinate descent

• Theoretical treatment on coordinate descent 
states that such a sequence is guaranteed to 
converge to the minimizer of f. 

• More details:
https://www.cs.cmu.edu/~ggordon/10725-F12/slides/25-coord-desc.pdf

https://www.cs.cmu.edu/~ggordon/10725-F12/slides/25-coord-desc.pdf


Adaboost is an example of coordinate 
descent

• Adaboost algorithm = coordinate descent on 
the function Z({αt}) given a fixed family of 
finitely many classifiers.

• You find one weight αt (for some t) at a time 
using coordinate descent.

• For a fixed number (T) of Adaboost rounds, 
not all the classifiers from the family may be 
selected – for those, the weight will be 0.



Adaboost is an example of coordinate 
descent

• The empirical risk is not a convex function of 
the weights {αt}.

• The upper bound Z defined earlier is a convex 
function of {αt} and hence easier to minimize.

• Minimizing Z is not the same as minimizing 
the empirical risk, but we do know that the 
minimum of the empirical risk is below the 
minimum of Z.



Generalization capability of Adaboost

Adaboost has a 
tendency not to 
overfit.

You should (will!) 
notice this when 
you do the 
assignment!



Generalization capability of Adaboost

• The aforementioned curious phenomenon has 
been observed in several experiments on 
Adaboost.

• It means that often, Adaboost has a tendency not
to overfit!

• Freund and Schapire explained this observation 
using the concept of “margin of a classifier”.

• The margin of a classifier h on point x is defined 
as yh(x) – intuitively it tells us how far away x is 
from the decision boundary (given by h(x)). It is 
like the confidence of the vote. 



Generalization capability of Adaboost

• The margin of H is given by

• Theorem 1: The larger the margin, you have a 
better bound on the value of the 
generalization error. For any θ > 0, the 
generalization error is upper bounded by the 
following quantity (with high probability):
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Generalization capability of Adaboost

• It has been shown that the margin of the 
Adaboost classifiers tends to increase with the 
number of rounds even after the training error 
reaches 0.

• The proofs of all these results is beyond the 
scope of our course.



This means that with more rounds, the margins of the training samples increase – this 
pushes the cumulative distribution function (CDF) of the margin rightwards. Recall that 
the CDF of the margin is given as follows:
CDFmargin (θ) = Pr(margin ≤ θ) = probability that the margin ≤ θ



Adaboost: (Strong!) Positives

• Great theoretical treatment and empirical 
performance. 

• Fast to evaluate (linear combination of 
classifiers).

• Limited parameter tuning: number of rounds 
T.

• Simple meta-algorithm, very flexible, can work 
with any weak learner.



But…Adaboost: Some words of caution

• Performance will depend on data!

• Performance will depend on choice of weak 
classifier families. Hence can fail if the weak 
classifiers are either “too weak” or “too 
complex”.
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