Face Detection using Adaboost

CS 763
Ajit Rajwade

What is face detection?

* Task of identifying (marking out) faces in an
Image.

http://iomniscient.com/newsletters/HTML/EN/image/FR.gif

Face detection is not face recognition

* Face recognition asks: what is the identity of
the person whose image is given to you?

P A
=Z

Face detection is not face verification

* Face verification asks: given two images, do
they belong to the same person (we don’t

Challenges in face detection

Change of facial pose/scale
Change of illumination conditions
Occlusions (to a lesser extent)

Designing a detection system resistant to these
changes is challenging!

A simplified problem

Restrict ourselves to near frontal views of the
face.

Assume limited range of illumination
conditions!

Assume little or no facial occlusions.
Multiple scales are allowed!

A simple face detector

e Collect together a bunch

of face images of equal
size (say 80 x 80) in near
frontal pose.

Extract some features
from these faces
(example: average
histogram of gradient
orientations, distribution
of eigen-coefficients
obtained from PCA).

Image taken from: P. Viola
and M. Jones. Robust real-
time object detection.
International Journal of
Computer Vision, 57(2):137—-
154, 2004.

A simple face detector

Given a query image, slide a 80 x 80 window all
over.

Extract the same features from the portion of the
image covered by the window.

Classify it as face or non-face depending on the
distance in the feature-space.

If that distance > some threshold — “non-face”,
otherwise “face”.

For scale-invariance, take windows of other sizes
and resize them to 80 x 80 before feature
extraction.

A simple face detector — and Adaboost

* Which features should we select?

* Different features will produce different
results.

* Adaboost is a technique that does the
following:

v’ Uses multiple (weak) classifiers — each based
on different features

v’ Combines these different (weak) classifiers
into a single powerful classifier

Machine learning 101 jargon

A classifier is a program that assigns an input vector
(i.e. a data item) to one of out M=2+ classes.

If M =2, it is called a binary classifier.

Formal representation: Given input vector x, the
output of a binary classifier is h(x) € {-1,+1}.

A classifier needs to be trained on “training data”.
During training, it “learns” one or more decision rules.

It is tested on “test data”, i.e. unseen data so that it can
work in the real world.

Adaboost

Adaboost is an ensemble learning algorithm.

It takes a collection of classifiers — called weak
learners or base learners (like a rule of thumb).

It combines them to produce a strong classifier.

What’s a strong classifier? One that will produce
good results on unseen data!

Face detection requires a binary classifier (face
versus non-face).

Adaboost does have multi-class variants but we stick
to the 2-class case.

Adaboost

 The weak learners (rules of thumb) must have
error-rate less than 50%, i.e. they must be at
east slightly better than random guessing.

e If the rule of thumb has more than 50% error,
just invert its sign!

* Finding and then combining many simple
(weak) rules of thumb is easier than finding
one complex (accurate) rule.

Adaboost

* Adaboost was invented by Freund and
Schapire in 1997.

Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and System Sciences, 55(1):119-139, 1997.

 They won the Gddel prize for this contribution
in 2003.

* Adaboost was applied to face detection (with
some modifications) by Viola and Jones in
2001.

P. Viola and M. Jones. Robust real-time object detection. International Journal of Computer
Vision, 57(2):137-154, 2004.

http://en.wikipedia.org/wiki/G%C3%B6del Prize

http://en.wikipedia.org/wiki/G%C3%B6del_Prize

Viola-Jones face detector

 Considered one of the state of the art face
detectors.

* The original implementation in 2001/2004
claimed a detection speed of 0.07 seconds per
frame of size ~300 x 300 on a standard
desktop.

JUDYBATS

b YOu boa utits)
5 "™
i 2
o £
- d

Figure 10: Output of our face detector on a number of test images from the MIT+CMU test set.

Image taken from: P. Viola
and M. Jones. Robust real-
time object detection.
International Journal of
Computer Vision, 57(2):137—-
154, 2004.

Adaboost

H[(XQ =a1hQ+ a1y (X) + ahy (%) +...

5 Weak classifier
classifier

Weight
Feature vector

Sign of h.(x) decides to which class point x Is assigned,
by thei - th weak classifier.

Sign of H(x) decides to which class point X iIs assigned,
by thefinal strong classifier.

TOy Exa m p I € = taken from Antonio Torralba @MIT

@
o %o o
¢ PP Each data point has
@ @ o o @
@ @ © ° @ a class label:
o © o © ® @ +1(@
® ® (R0 ® ® ® @ ytz{
° ¢ @ 1@
. o ® e o o
° @ @ and a weight:
e o © ® W, =1
o ©
@ @@ O
Weak learners from ®
the family of lines ®
<«

h => p(error) = 0.5 itis at chance

Toy example

O
o Pleo o v
o ° ® PP Each data point has
@ .L.. ‘.. @ a class label:
e ® | o ° ¢ +1(@
® &) Q0 ° 0) @ ytz{
o d o 1(@
PR @ 0o © © O
® @ © and a weight:
® ®] @ @ w,=1
o ©
O ®| ©
@ O
==

This one seems to be the best

This is a ‘weak classifier’: It performs slightly better than chance.

Toy example

o ..
‘ Each data point has

@ @
@ .) . ' a class label:

o ¢ .. oo © *1(‘

@ .. . 1(.

We update the weights:

w, «w, exp{-y, H,}

We set a new problem for which the previous weak classifier performs at chance again

Toy example

Each data point has

a class label:
{ +1 (@
Yi=
-1(@

We update the weights:

w, «w, exp{-y, H,}

We set a new problem for which the previous weak classifier performs at chance again

Toy example

Each data point has

a class label:
{ +1 (@
Yi=
-1(@

We update the weights:

w, «w, exp{-y, H,}

We set a new problem for which the previous weak classifier performs at chance again

Toy example

Each data point has

a class label:
{ +1 (@
Yi=
-1(@

We update the weights:

w, «w, exp{-y, H,}

We set a new problem for which the previous weak classifier performs at chance again

Toy example

l

The strong (non- linear) classifier is built as the combination of all the weak (linear) classifiers. Each weak
classifier handles only some of the training samples well and makes errors on the rest. The combined
classifier has a much lower error on the training set than any of the weak classifiers.

Formal Procedure of AdaBoost

e given training set (1, v1), ... (T, Ym)
e y, € {—1,+1} correct label of mstance z; € X
o fort = 1"

find weak classifier le of thumb™)

. _ _ A fancy word for “weights” on
/3-?‘ : fX — { o l? +l } the training points x;,X,,...X, .

But the weights are non-
negative and sum to 1.

with small error € on Dy:
et = Prp,|hi(;) # 3

Just sum up the weights of
e output final classifier Hy,,,; those points that were
r’ misclassified by h,

Formal Procedure of AdaBoost

* How do you construct the weights? Are they
updated? If so, how?

e What is the final classifier? How is it created
from the weak classifiers?

* How many weak classifiers are chosen?

Formal Procedure of Adaboost

e constructing [+ Training samples that
Di(i) = 1/m are misclassified get

more weight. The
ones that are

given [y and hy:

i o Dy(7) et if = hy(x;) correctly classified

Z, =Y D,(i)exp(- e y;h (X)) Dyy1(2) = Z, N et —F y; # hy(x;) aregiven less weight.
i-1 . ey

_N'p. (i Dy(i) _. .

=2,Pal) — 22U exp(—at y; hi(x;))

where Z; = normalization constant
1 — Ff] These are the weights given to

>0 each weak classifier. Not to be

confused with the weights on

the training samples!

Hpg () = sign (z ('lf}{?f(:,?':]) Note that classifiers with lower
! errors get more weight. The

weights are always positive if

the error <=0.5.

€1

e final classifier:

Input: Data set D = {(x1,v1), (®2,42). -, (Tm, Ym) }:
Base learning algorithm L:
Number of learning rounds 7.

Process:

1. Di(z) =1/m. % Initialize the weight distribution

2. fort=1...-.1"

3. hy = E(D Df) % Train a learner h; from D using distribution D;
4. €r = Pro~p, yI|hi(x) #yl: % Measure the error of Iy

5. if ¢, > 0.5 then break

6. oy = %111 (1:—:*) % Determine the weight of Ay

_ o De(i) exp(—ay) if he(@x;) = y;

l. ’DH—I(‘I) - . eKIj[r_l't) if flf_($g') 75 Ui

_ De(i)exp thytht(ml)) % Update the distribution, where

% Z; is a normalization factor which
% enables D; 1 to be a distribution

8. end

Output: H(x) = sign (2321 r_wtht(m))

* In the implementations, the best weak learner (from some parametric family)
is chosen. See next slide for an example.

A simple family of classifiers

* Consider N vectors {x.}, 1 <i< N, each having d
elements.

* Consider the family of weak classifiers:
[(x5 §,6) = sign(x, -)|

* Choosing the best weak classifier from this
family involves choosing a combination of j

and O so as to minimize the weighted training
error (given the current set of weights).

A simple family of classifiers.

* Here is a slightly more complicated family of
weak classifiers:

‘ht (X;; J,6, p) =sign((x; — &) p) where p e{—1,+1}‘

* Choosing the best weak classifier from this
family involves choosing a combination of j,p
and O so as to minimize the weighted training
error (given the current set of weights).

Error on Training Set

e Theorem:

write €;as 1/2 —
then

training error(Hep,) < exp

£](- I,f](-

eso:1fVi: vy >y >0
- ~. _ 92
then training error(Hpp,) < e~ 271
e AdaBoost 1s adaptive:

does not need to know ~ or /" a priori
can exploit ¢ > ~

But we are NOT interested in Training set

 Will Adaboost overfit?

0] Over fitting: you learn “too much” on
' 35 the training set, but fail on the test set!
. 0.6-4
2 \\ — Over-fitting can haunt any machine
5 04 test — : _ o
N\ learning procedure — whether it is
0.2: \ train classification or regression or
T E—— 20 100 probability density estimation.

of rounds (/)

v

Shall we stop before over fitting? If only over fitting happens with
Adaboost.

Phenomenon of Overfitting

Regression: Y

0 1 0 1 0 g 1
predictor too inflexible: predictor too flexible:
cannot capture pattern fits noise in the data
Classification: |
X;

Copyright © 2013 Victor Lavrenko

http://www.inf.ed.ac.uk/teaching/courses/iaml/slides/eval-2x2.pdf

http://www.inf.ed.ac.uk/teaching/courses/iaml/slides/eval-2x2.pdf

Actual Typical Run of Adaboost

C4.5 test ervor

(boosting C4.5 on

test “letter” dataset)
o . \rain
Sofrounds(m You should (will!)
e test error does pot increase. even after 1000 rounds s notice this when
(total size > 2,000,000 nodes) you do the

: _ . assignment!
e test error continues to drop even after training error 1s zero!

rounds

5 1100711000
train error|0.0] 0.0 0.0
test error (3.4| 3.3 3.1

Back to Viola and Jones face detector

* The detector operates in two phases — (1)
training and (2) testing.

* During training, it learns a good classifier that
distinguishes between a face and a non-face.

* During testing, the detector is actually
deployed on unseen images that were not
part of the training set.

Back to Viola and Jones face detector

* |nput — patches of fixed size (say 24 x 24) each
labeled as “face” (+1) or “non-face” (-1).

L

* The Viola-Jones detector does not use
sophisticated features — such as eigen-

coefficients, gradient statistics or outputs of
Gabor filters!

Viola and Jones face detector: features

* |t uses simple sums and differences of rectangles —
these features are computationally very efficient.

e These features are called as Haar-like features.

Image taken from: P. Viola
and M. Jones. Robust real-
time object detection. A B
International Journal of
Computer Vision, 57(2):137—-
154, 2004.

Figure 1: Example rectangle features shown relative to the enclosing detection window. The sum of the
pixels which lie within the white rectangles are subtracted from the sum of pixels in the grey rectangles.
Two-rectangle features are shown in (A) and (B). Figure (C) shows a three-rectangle feature, and (D) a

tour-rectangle feature.

Viola and Jones face detector: features

* For 24 x 24 patches, there are more than 150,000
such features.

Naively implemented,

this Haar-like feature will
take a x b operations to /

B
compute where aand b
is the height and width
of the rectangle.
C D

Figure 1: Example rectangle features shown relative to the enclosing detection window. The sum of the
pixels which lie within the white rectangles are subtracted from the sum of pixels in the grey rectangles.
Two-rectangle features are shown in (A) and (B). Figure (C) shows a three-rectangle feature, and (D) a
tour-rectangle feature.

Viola and Jones face detector: features

* These features can be efficiently computed using
the so-called integral image defined as follows:

i, y) = Z iz, y')

' <z <y

X,y)

Figure 2: The value of the integral image at point (:z,y) is the sum of all the pixels above and to the left.

Viola and Jones face detector: features

* The integral image can be computed with a single
pass over the image, if you use the following
recurrences:

s(e,y) = sle,y—1) +ile,y)
wle,y) = uler— Ly)+ sz, y)
s(x,y) 1s the cumulative row sum, s(z, —1) = 0

ii(—1,y) = 0

Viola and Jones face detector: features

* Asingle rectangle feature can be computed using
four array references into the integral image.

Figure 3: The sum of the pixels within rectangle DD can be computed with four array references. The value
of the integral image at location 1 is the sum of the pixels in rectangle A. The value at location 2 i1s A + B,
at location 3 1s A + (', and at location 4 1s A + B + (' + D. The sum within D can be computed as
441—(2+43).

Viola and Jones face detector: features

 We have too many features. Which ones should
we use? Let the Adaboost algorithm decide!

* |[n each Adaboost round, pick the rectangle
feature that best separates faces from non-faces!

* You also need to decide the optimal threshold
and optimal parity. Thus the weak classifier is
represented as follows:

Selected Haar-like feature

1 lfir',}jfj[\j’h < L}Hﬁ Threshold

() otherwise J\Parity

x 15 a 24x24 pixel sub-window of an 1mage

e Given example mmages (x.y(),....(z,.y,) Where 3y, = 0,1 for negative and positive examples

respectively.

e Initialize weights w, ; = ﬁ ;—, for y; = 0, 1 respectively, where yn and [are the number of negatives

and positives respectively.

1. Normalize the weights.
'Ef.-'f__-.,‘

Wiy g — ~n
so that wy 1s a probability distribution.

2. For each feature, j. train a classifier h; which 1s restricted to using a single feature. The error 1s
evaluated with respect to wy., ¢; = > w; |hj(x;) — yil.

Choose the classifier, A;. with the {fowest error ¢;

4. Update the weights:

sl

al—e;
'“-"f_i_[_.-;' = '“.-'f_-.l-;'lij)i. Ci

where ¢; = (if example z; 1s classified correctly, ¢; = 1 otherwise, and 3, = .

e The final strong classifier 1s:

. 7 N T
h(r) = { L Y ahi(@) 2 %Zf:l vt

(0 otherwise

heare v — T L
where v log 7~

Table 1: The boosting algorithm for learning a query online. 7" hypotheses are constructed each using a
single feature. The final hypothesis is a weighted linear combination of the 1" hypotheses where the weights
are inversely proportional to the training errors.

This is different

from the
earlier {-1,+1}

convention for

the output
labels

The expression
for the strong
classifier is
different from
the one we
have seen so
far. This is
because we
switched from
{-1,+1} to {0,1}
for the output
labels

Figure 5: The first and second features selected by AdaBoost. The two features are shown in the top row
and then overlayed on a typical training face in the bottom row. The first feature measures the difference in
itensity between the region of the eyes and a region across the upper cheeks. The feature capitalizes on the

observation that the eye region is often darker than the cheeks. The second feature compares the itensities
in the eve regions to the intensity across the bridge of the nose.

Image taken from: P. Viola and M. Jones. Robust real-time object detection.
International Journal of Computer Vision, 57(2):137—-154, 2004.

Speeding up: classifier cascade

* Adaboost training is time consuming as a large
number of features need to be evaluated.

* So we build a cascade of strong classifiers - each
classifier in the cascade uses a larger number of
processed features than the previous one.

* The first strong classifier uses only two features —
the ones shown on the previous slide.

(**) The threshold for the strong classifier produced by Adaboost i |s optlmlzed to yield low error rates. In the Viola Jones
paper which uses {0,1} as labels instead of {-1,+1}, the threshold i |sz Zf 1 @t ., Here, we deliberately use a lower threshold
to give higher detection rates but higher false positives, taking care that the false positive rate does not exceed a limit, say

- Speeding up: classifier cascade

* The first strong classifier uses only two features — the ones shown on
the previous slide.

* The strong classifier threshold can be reduced (**) in order to yield
very low false negative rates (no “face” should be labeled a “non-
face”) allowing high false positive rates (some “non-faces” may be
labeled as “face”).

* The key idea is to reject as many obvious non-faces as possible early
on.

A go-ahead (positive result) from the first classifier triggers the next
classifier in the cascade and so on. A negative result immediately
eliminates the point.

v -
/ '--_"_\ T / \\ T \\ T /Furfher _‘
|l | .

_/ \ / N / \Process;ry/

-« ~
m
/,
<«—
m
<+«—
|

Figure 6: Schematic depiction of a the detection cascade. A series of classifiers are applied to every sub-
window. The 1initial classifier eliminates a large number of negative examples with very little processing.
Subsequent layers eliminate additional negatives but require additional computation. After several stages of
processing the number of sub-windows have been reduced radically. Further processing can take any form
such as additional stages of the cascade (as in our detection system) or an alternative detection system.

Image taken from: P. Viola and M. Jones. Robust real-time object detection.
International Journal of Computer Vision, 57(2):137—-154, 2004.

Speeding up: classifier cascade

* The cascade idea is inspired from the fact that
most images will contain many more non-face
windows than face windows.

* Quickly discarding several non-faces saves a
huge amount of time during training as well as
testing.

Cascade: detection rate, false positive
rate

5%
The overall false positive rate is: r - 117
=3

. . I
The overall detection rateis: , _ 11 .

1=1

Assume K = 10. If your final detector must have a 90%
detection rate, each individual detector must have a
detection rate of at least 99% (0.99710 = 0.9).

But the individual detectors in the cascade may have
high false positive rates (say 40%). The net false
positive rate will be 0.01%.

User selects values for f, the maximum acceptable false positive rate per layer and d, the mmimum
acceptable detection rate per layer.

User selects target overall false positive rate, Fjqrger -

e [P =set of positive examples

e N = set of negative examples This refers to the strong
classifier produced by the i-th

o Fy=1.0:Dy =10 ' i

layer of the cascade

7 =10
* Denotes the

while F; > Figrge layer number
/ in the cascade
— 14 i+1
— N = (); F? — F? 1
— while F; > f x F;_,

x ng 4 n; + 1

The validation set is distinct from P
and N. Each data-point in the
validation set is also labelled as
face or non-face.

x Use P? and N to train a classifier with n; featurgs using AdaBoost
= Evaluate current cascaded classifier on validation set to determine £ and D);.

* Decrease threshold for the sth classifier until the current cascaded classifier has a detection
rate of at least d x D; 1 (this also affects F;)

— N«

— If F; > Fji4rger then evaluate the current cascaded detector on the set of non-face images and put
any false dectections into the set N

ROC curves companng cascaded classifier to monolithic classifier

095k’

a9t |(

=

=]

(4]
T

08

correct detection rate

=
~
[43]

0.7

0.85 1

—— Cascaded set of 10 20-feature classifiers

— — 200 feature classifier
1 | I I I I

0.8
0

0.5

1 15 2 25 3 35

false positive rate % 10

th

Comparison between a single classifier with 200 features (i.e. 200 rounds of Adaboost)
and a cascade of 10 classifiers each using 20 features. The first classifier in the cascade
was trained on 5000 face images + 10000 non-faces. The second classifier was trained on
5000 faces + 5000 false positives from stage 1, and so on. The detection rates of the
cascade is comparable to the full classifier, but its speed is 10 times as high.

Comments on the cascade

* The cascaded classifier saves a great deal of time
during testing as it eliminates obvious non-face

windows very early on.

* During training, the cascaded classifier still needs
to select some features out of several candidate
features — which is no doubt expensive. However,
the gain is obtained by being able to throw out
non-face windows early on.

Details of experiments in the Viola-
Jones face detector

~5000 faces obtained from a web-crawl, cropped
and resized to 24 x 24

Final detector is a 32-layer cascade with ~4900
features in total

Around 10,000 non-face images were used.
Classifiers at different steps in the cascade
trained on different non-faces (around 6000 in
number).

Total training time ~ around a couple of weeks.

Image pre-processing

e All sub-images (size 24 x 24) were made O
mean and unit variance to induce a very basic
form of illumination invariance.

Scale invariance

* This was handled by sampling pixels with
larger gaps, producing sub-images of the same
size, i.e. 24 x 24 (eg: instead of sampling
consecutive locations for the 24 x 24 window,
you take every second pixel in a 48 x 48 region
to extract a 24 x 24 window).

Adaboost: Some Theory

References:
* Many slides adapted from the website of
Prof. Jason Corso, SUNY Buffalo

Adaboost: some questions

. What objective function does Adaboost
minimize during training?

2. Why the strange formula for alpha?

3. Can you prove that the training error goes to

zero with infinitely many rounds?

. Why do we pick the next classifier that has
the lowest weighted training error (i.e. g,)?

. Why the given rule for updating the weights?

(1) Adaboost algorithm: what does it
do?

* Our aim is to select classifiers {h,}, 1 <t <T,
and their weights {a,}, 1 <t < T, so as to

minimize the training error of the strong
classifier, i.e.:

This is the Kronecker delta function —
it outputs 1 if the predicate passed as
argument is true, otherwise it outputs

(Xi) # vi) o

- _
H(x) = sign |F(x)] = sign Z aphy(x)

t=1

(1) Adaboost algorithm: what does it
do?

e Adaboost does not minimize this classification
error (called “empirical risk”) directly.

* But it minimizes the following upper bound on
this error (i.e. a quantity which is guaranteed
to never be less than the classification error):

_Zexp y.F(x))= Zexp(y:sign (F (x,))|F (x,)D

:EZexp(— y;H (X ‘F(Xi)‘)

Adaboost: Optimization — why is it an
upper bound on Err(H)?

* To prove the folloinHs /RHS
1 m] m
Ere(H) = — > 5(H(x:) # v — LS e [~ F ()]
, & —
I,
F(x) = Za-:th,t(x)
F(x;) = sign(DF(x;)]
~ H(x \F)]

If H(x;) # y; then the LHS = 1 < RHS = eIl
If H(x;) = y; then the LHS = 0 < RHS = e~ 11"l

O0(H(x;) # vi) < exp|—y; F(x;)] foralli

(2) Let’s look at the weights

* Recursive computation of the weights:

1

Diyq(i) = 7Df(f) exp [—auy;he(x;)] (21)
t
1 .
— 7 7 Di_1(7) exp [y@ (a-:t/z,t(:zr.g;) + m_lh,f_l(:zrg))]
! Dy (i) exp | —yi (arhy(z;) + -+ - + arhy (x;))
— 1(2)exXpP | —Yy;\ vt Ny 5 N\
7 .. 7 1 I Yi\ Ol 111

 Normalization of the weights at each round:

Zy = Z Dy(x;) exp [—'3/-5..0'1-5. ht(Xz‘H Set of correctly
X; classified points

Dy (x;) exp [oy]

(2) Let’s look at the weights

e But the weights sum up to 1. So:

T l 1 Tr | |
;Dﬁl (Xz) — Zl o ZIL m ; exp [_UEF(XE)} — 1
- l T .
L=21. . L= m ZE eXIJ[—E—/?ﬁ.F(Xi)}

1=

* We have seen that this quantity Zis an upper
bound on the training error:

EI‘I‘(H) g /= Z((}i: h) — Zt((_.“tit,_ h*t) ce Zl(t’_}il:/ll)

(2) Adaboost: Updating alphas

e Adaboost seeks to minimize Z w.r.t. the
classifiers {h.} and also their respective
weights {a,}, 1 < t <T.

* Solving for alphas:

Zt (Q'3t; h,t) —

([Zf (11 hf

dovy

1
a; = —In
9

x; €A

Z —Dy(x;) exp [—ay] +

x; €A

1 — Et(h

t/

€(he)]

X cA

ZDt Xg

S Dixi)exp—ad + > Dilxi) exp fad]

lexp [ay] =0

(3) Adaboost: Bound on training error

* Plugging in these alphas into the expression
for Z, we get:

Zi(ay, hy) = Z Dy (x;) exp |—ay| + Z Dy (x;)|pxp [ove
x; €A x; EA

(h, — € (hy
= (1— ef(hf))\/leij(;f) -+ 6%“11%)\/1 Ef(ehi)l)

= 2/ (he)(1 — e (hy))
e Define:

|

o | —

(3) Adaboost: Bound on training error

* Plugging in these values, we now get:

Zt((_}it:hﬂt) — 2\/6f(hf)(l — Et(ht))

S exXp [—Zr}ﬂ Since 1+x < e*for all x. Put in x = -4(Y,)?

e After T rounds, we get:

1l
Err(H) < Z < exp Z f

=1

(4) Adaboost: How to pick the next
classifier?

* Notice that the given algorithm picks classifiers
(belonging to a parametric family) that minimizes the
weighted training error, given fixed values of the

alphas!

* Why so? Because we seek a hypothesis h, that
minimizes Z (see expression for Z in terms of g, two
slides before), i.e. that minimizes Z..

* Z.is a monotonically increasing function of €, for €, €
(0,1/2], so we seek h, that has the least possible g,.

Coordinate descent

* Consider a vector x = (X;,X,,...,X,).

 Consider a multivariate convex, differentiable
function f(x) to be minimized w.r.t. x.

e Coordinate descent is summarized as follows:

-'17_(;;) € argmin f (-'131 -»13_,('["'_1) -»;gg.k'_l) -»13(‘!3_1)) * Start with initial guess for x.
Iy 112 L1, 49 L9 R 1)

T * Order of updates can be
k) e (R) (k1) (k1) arpitrary.
;1,2 c al g111111 f (;I, 1 s €T, ;1,3 cee ;I,_n) eUse the latest value of every

&« .
- coordinate.

k . k k . . i
;zrg) € argmin f(;r.(l),_ ;’I?j(z),_;1?3,_ .. .;zrg" l)) The value of fis guaranteed
' . ' to never increase across

X3 these updates.
*Repeat these updates until
(K)o (k) (k) (k) . the change is no more
ry) € argmin f(x) @y xy .. xp) significant.

Xn

Coordinate descent

e Theoretical treatment on coordinate descent

states that such a sequence is guaranteed to
converge to the minimizer of f.

e More details:

https://www.cs.cmu.edu/~ggordon/10725-F12/slides/25-coord-desc.pdf

https://www.cs.cmu.edu/~ggordon/10725-F12/slides/25-coord-desc.pdf

Adaboost is an example of coordinate
descent

* Adaboost algorithm = coordinate descent on

the function Z({o,}) given a fixed family of
finitely many classifiers.

* You find one weight a, (for some t) at a time
using coordinate descent.

* For a fixed number (T) of Adaboost rounds,
not all the classifiers from the family may be
selected — for those, the weight will be 0.

Adaboost is an example of coordinate
descent

* The empirical risk is not a convex function of
the weights {a,}.

 The upper bound Z defined earlier is a convex
function of {a,} and hence easier to minimize.

* Minimizing Z is not the same as minimizing
the empirical risk, but we do know that the

minimum of the empirical risk is below the
minimum of Z.

Generalization capability of Adaboost

C4.5 test ervor

(boosting C4.5 on

test “letter” dataset)
o . \rain
10 100 1000
4 of rounds (T) Adaboost has a
e test error does pot increase, even after 1000 rounds tendency not to
(total size > 2,000,000 nodes) —> overfit.

e test error continues to drop even after training error 1s zero! .
= You should (will!)

rounds notice this when

5 1100]1000 you do the
train error|0.0| 0.0 0.0 assignment!
test error (3.4| 3.3 3.1

Generalization capability of Adaboost

* The aforementioned curious phenomenon has
been observed in several experiments on
Adaboost.

* It means that often, Adaboost has a tendency not
to overfit!

* Freund and Schapire explained this observation
using the concept of “margin of a classifier”.

* The margin of a classifier h on point x is defined
as yh(x) — intuitively it tells us how far away x is
from the decision boundary (given by h(x)). Itis
like the confidence of the vote.

Generalization capability of Adaboost

oy
* The margin of H is given by ;aty 0

i“t
e Theorem 1: The larger the margin, you have a
better bound on the value of the
generalization error. For any 6 > 0, the
generalization error is upper bounded by the
following quantity (with high probability):

Complexity (VC dimension)
[of the weak learner

Pr imargin(z.y) < 6] + O (\!

- mb? Number of training points

Generalization capability of Adaboost

* |t has been shown that the margin of the
Adaboost classifiers tends to increase with the
number of rounds even after the training error

reaches 0.

* The proofs of all these results is beyond the
scope of our course.

1.0-

0.5-

Crror

cumulative distribution

10 100 1000

rounds margin

Figure 2: Error curves and the margin distribution graph for boosting C4.5 on the letter dataset as
reported by Schapire et al. [41]. Left: the training and test error curves (lower and upper curves,
respectively) of the combined classifier as a function of the number of rounds of boosting. The
horizontal lines indicate the test error rate of the base classifier as well as the test error of the final

combined classifier. Right: The cumulative distribution of margins of the training examples after 5,
100 and 1000 1terations. indicated by short-dashed. long-dashed (mostly hidden) and solid curves,
respectively.

This means that with more rounds, the margins of the training samples increase — this
pushes the cumulative distribution function (CDF) of the margin rightwards. Recall that
the CDF of the margin is given as follows:

CDF (6) = Pr(margin < 0) = probability that the margin <6

margin

Adaboost: (Strong!) Positives

Great theoretical treatment and empirical
performance.

Fast to evaluate (linear combination of
classifiers).

Limited parameter tuning: number of rounds
T.

Simple meta-algorithm, very flexible, can work
with any weak learner.

But...Adaboost: Some words of caution

* Performance will depend on data!

* Performance will depend on choice of weak
classifier families. Hence can fail if the weak
classifiers are either “too weak” or “too

complex”.

References

Tutorial by Freund and Schapire: “A short introduction to
boosting”

Tutorial by Zhou and Yu: “Adaboost”

Viola and Jones, “Robust real-time object detection”, JICV
2001.

Jason Corso’s (SUNY Buffalo) lecture notes on Adaboost

Adaboost and coordinate descent: Course notes by Cynthia
Rudin

http://www.cse.buffalo.edu/~jcorso/t/CSE555/files/lecture_boosting.pdf
http://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/lecture-notes/MIT15_097S12_lec10.pdf

