
Assignment 2: CS 763, Computer Vision

Due: 12th Feb before 11:55 pm

Remember the honor code while submitting this (and every other) assignment. All members
of the group should work on and understand all parts of the assignment. We will adopt a zero-
tolerance policy against any violation.

Submission instructions: You should ideally type out all the answers in Word (with the equation editor)
or using Latex. In either case, prepare a pdf file. For assignment submission, follow the instructions for ar-
rangement of folders and subfolders as given in http://www.cse.iitb.ac.in/~ajitvr/CS763_Spring2017/HW2/

HW2_Alignment.rar. Create a single zip or rar file obeying the aforementioned structure and name it as follows:
A2-IdNumberOfFirstStudent-IdNumberOfSecondStudent-IdNumberOfThirdStudent.zip. (If you are doing the as-
signment alone, the name of the zip file is A2-IdNumber.zip). Upload the file on moodle BEFORE 11:55 pm on
12th February. Late assignments will be assessed a penalty of 50% per day late. Note that only one student per
group should upload their work on moodle. Please preserve a copy of all your work until the end of the semester.
If you have difficulties, please do not hesitate to seek help from me.

1. Imagine you have two point-sets A and B, each containing a (possibly unequal) number of 3D points. You
are told that the point-sets are related to each other by an unknown but small 3D rotation R and small 3D
translation t̂, besides a small amount of measurement noise, i.e. ai = Rbi + t̂ + ηi where ai, bi are a pair
of corresponding points. However, now suppose that the correspondence between the points is unknown to
you. In other words the ith point in A need not physically correspond to the ith point in B. So consider
the following iterative algorithm: (1) For each point in A, we assign its nearest neighbor in B (in terms of
Euclidean distance) to be its corresponding point. (2) In the second step, we use a least squares method to
determine the rotation and translation given all such pairs of corresponding points. (3) In the third step, we
apply the estimated rotation and translation to every point in B. These three steps continue in an iterative
manner until the estimated rotation in a given step is close to identity and the translation is close to 0.
Your task is as follows: Implement the aforementioned algorithm using datasets provided in the homework
folder. Your code should display an overlay of points from A and transformed points from B using the scat-
ter3 command in MATLAB and include the plots from the first and last iteration in your report. Determine
R and t̂ and explain how you computed these quantities in your report. Your report should also mention
which command in MATLAB you used for nearest neighbor computation. Use ‘uigetdir’ to allow the user
to pick the folder containing the data. [20 points]

Answer: This is the well-known ICP (Iterated Closest Point) Algorithm. The method of computation
of R and t̂ is detailed in the solution to problem 4. The knnsearch function from MATLAB is quite well
suited to nearest neighbor computation. You can find MATLAB implementation of ICP at https://in.

mathworks.com/help/vision/ref/pcregrigid.html or at https://in.mathworks.com/matlabcentral/

fileexchange/27804-iterative-closest-point.

Marking Scheme: Correct implementation of the formulae from problem 4 carries 8 points, 5 points
for a good final alignment, 5 points for the final result for R and t̂ which can be computed using least
squares on the final set of correspondences, i.e. in the last step. Deduct 2 points for not using ‘uigetdir’,
deduct 2 point for not displaying the point overlay and deduct 1 point for not including the plots in the
report.

1

http://www.cse.iitb.ac.in/~ajitvr/CS763_Spring2017/HW2/HW2_Alignment.rar
http://www.cse.iitb.ac.in/~ajitvr/CS763_Spring2017/HW2/HW2_Alignment.rar
https://in.mathworks.com/help/vision/ref/pcregrigid.html
https://in.mathworks.com/help/vision/ref/pcregrigid.html
https://in.mathworks.com/matlabcentral/fileexchange/27804-iterative-closest-point
https://in.mathworks.com/matlabcentral/fileexchange/27804-iterative-closest-point


2. Enlist any four differences between the camera calibration algorithms EXPL PARS CAL and
PROJ MAT CALIB from chapter 6 of the Trucco and Verri book. [10 points]

Answer: The former algorithm requires N ≥ 7 world-image point-pairs whereas the latter requires N ≥ 6
world-image point-pairs. The former requires prior computation of the optical center using the orthocenter
theorem, whereas the latter infers the optical center within the algorithm itself. The former sets up one equa-
tion per corresponding world-image point-pair which represents a ratio of the numerators for the expressions
for the x and y coordinates, whereas the latter algorithm uses two equations per corresponding world-image
point-pair. The former algorithm infers the individual parameters such as f/sx, f/sy,R, t̂ whereas the lat-
ter infers the calibration matrix directly first and then infers the individual parameters. (Aside: Both are
examples of least squares algorithms, and both employ a post-hoc correction for the estimation of R.)

Marking scheme: 2.5 points per point of difference. Other sensible differences also given full credit.

3. In the camera calibration algorithm we studied in class, it turns out that the estimate of the rotation matrix
(let’s call it R̂) is not orthonormal. The book by Trucco and Verri suggests the following procedure to
‘correct’ this issue by replacing R̂ by R̃ = UV T where R̂ = USV T is the SVD of R̂. Prove that R̃ as
obtained by this procedure is given as R̃ = argminQ‖Q− R̂‖2F subject to the constraint that QQT = I (In

other words, prove that R̃ is the orthonormal matrix closest to R̂ in the Frobenius sense). Also this correc-
tion step brings out a limitation of this camera calibration algorithm. State that limitation. [7+3 = 10 points]

Solution: We are basically searching for an orthonormal matrix Q which is closest (in the Frobenius
sense) to matrix R̂. Thus we seek to minimize E(Q) = ‖Q − R̂‖2F . The minimum of this is equal
to the maximum of F (Q) = trace(QT R̂). Now using SVD, we express R̂ = USV T , which gives us
F (Q) = trace(QTUSV T ) = trace(SV TQTU) = trace(SZ) where Z = V TQTU is orthonormal. As
seen in class, this reduces to

∑
i SiiZii which is maximized when Z is the identity matrix. This produces

I = V TQTU , yielding Q = UV T . The camera calibration algorithm solves a least squares problem which
yields us a non-orthonormal estimate of the rotation matrix. We correct for this non-orthonormality using
this SVD-based method. However, the resulting solution for the rotation matrix is no more guaranteed to
be a least squares optimal solution! Therefore this correction factor is ad-hoc.

Marking Scheme: 3 points for stating the limitation. 2 points for the step for maximizing F (Q). 2
points for the step on maximizing

∑
i SiiZii and 3 points for the final answer Q = UV T .

4. Consider two sets of corresponding points {p1i = (x1i, y1i)}ni=1 and {p2i = (x2i, y2i)}ni=1. Assume that each
pair of corresponding points is related as follows: p2i = αRp1i − t̂ + ηi where R is an unknown rotation
matrix, t̂ is an unknown translation vector, α is an unknown scalar factor and ηi is a vector (unknown)
representing noise. Explain how you will extend the method we studied in class for estimation of R to esti-
mate α and t̂ as well. Derive all necessary equations (do not merely guess the answers even if they appear
‘correct’). [20 points]

Solution: Define t̂ = −t̂. Let P 1 be the 2 × N matrix whose i-th column contains p1i. Likewise, de-
fine P 2.
We can find t̂ by minimizing E(t̂) =

∑N
i=1 ‖p1i − αRp2i − t̂‖2, which gives

∑N
i=1(p1i − αRp2i − t̂) = 0,

i.e. we get t̂ = 1
N (

∑N
i=1 p1i − αR

∑N
i=1 p2i) = p̄1 − αRp̄2 where p̄1 and p̄2 are the average of all the

points in sets P 1 and P 2 respectively. But we need α and R to find t̂, so what do we do? Observe that∑N
i=1 ‖p1i − αRp2i − t̂‖2 =

∑N
i=1 ‖p1i − αRp2i − p̄1 + αRp̄2‖2 =

∑N
i=1 ‖(p1i − p̄1)− αR(p2i − p̄2)‖2. Now

solve for R from the SVD of P̄ 2P̄
T
1 where P̄1 is the 2 × N matrix whose i-th column contains p1i − p̄1

(likewise P̄ 2). In other words, R = V UT where USV T = P̄ 2P̄
T
1 .

What about α? Realize that it is only a scaling factor which will get absorbed in the S matrix. In other
words if X has SVD given by X = USV T , then theSVD of αX is given by αX = UαSV T . We can now

solve for α by minimizing
∑N

i=1 ‖(p1i − p̄1) − αR(p2i − p̄2)‖2. This yields α =

∑
i p1iRp2i∑
i(Rp2i)

2
. Given α and

2



R, we can now find t̂ and hence t.

Marking scheme: 4 points for derivative w.r.t. t̂ and the expression for t̂ in terms of α and R. 4 points
for substituting this expression towards solving for R. 8 points for the final expression for R out of which 4
points are for realizing that the α terms gets absorbed in the singular values. 4 points for the final answer for
α (only 2 points for a description of the approach without final expression). Some students may substitute
the parametric form for αR in terms of α, q1 = cos θ and q2 =

√
1− q21 = sin θ. This will produce quadratic

equations. This is a sensible approach (but inefficient and inaccurate), but we will not grant it full credit
(deduct 5 points) as the question specifically refers to the method done in class - which is basically the SVD
method. Deduct 2 points if the students have not paid attention to the relation between t and t̂.

5. In this task, we will register two pairs of images with each other: (1) The famous barbara image (regarded as
a fixed image) to be registered with its negative (regarded the moving image), and (2) a flash image (regarded
as a fixed image) and a no-flash image (regarded as the moving image) of a scene. We will use the joint
entropy criterion we studied in class as the objective function to be minimized for alignment. Download all
required images from the homework folder. Convert all images to gray-scale (if they are in color). Note that
the flash image and the no-flash image have different image intensities at many places, and the no-flash image
is distinctly noisier. In the beginning you may want to either downsample or work with smaller portions of
the flash and no-flash images.

For each of the two cases, rotate the moving image counter-clockwise by 23.5 degrees, translate it by -3
pixels in the X direction, and add uniform random noise in the range [0,8] (on a 0-255 scale). Note that the
rotation must be applied about the center of the image. Set negative-valued pixels to 0 and pixels with value
more than 255 to 255. Now perform a brute-force search to find the angle θ and translation tx to optimally
align the modified moving image with the fixed image (in each case), so as to minimize the joint entropy.
The range for θ should be between -60 and +60 in steps of 1 degree, and the range for tx should be between
-12 and +12 in steps of 1. Compute the joint entropy using a bin-size of 10 for both intensities. Plot the
joint entropy as a function of θ and tx using the surf and imshow commands of MATLAB. Comment on the
difference (if any) between the quality of alignment for the first and second pair of images. Use ‘uigetdir’ to
allow the user to input the images to be registered.

Also, determine a scenario (for the first pair of images) where the images are obviously misaligned but
the joint entropy is (falsely and undesirably) lower than the ‘true’ minimum. Again, display the joint en-
tropy as mentioned before. Include all plots in your report. [20 points]

Solution: The code is in the homework folder. The undesirable minimum is obtained for translation
parameters yielding a very trivial overlap between the two images. For the image and its negative, as well
as the flash and no-flash pair, the results of registration are fine.

Marking Scheme: 7 points for correct implementation of joint entropy including handling of intensi-
ties falling outside the [0,255] range, either by clipping or rescaling. 6 points for the double for loop that
includes a brute-force search over rotation and translation. 3 points for plotting the joint entropy function.
4 points for plotting the case of the undesirable minimum. If the results of registration are not inaccurate,
please check the correctness of joint entropy calculation.

6. Refer to the paper ‘Goal-directed video metrology’ by Reid and Zisserman from http://www.robots.ox.

ac.uk/~vgg/publications/papers/reid96.pdf which is an excellent and interesting application of visual
metrology, and which is believed to have solved a long-standing controversy in a famous football match.
The paper proposes an algorithm that takes as input two images I and I ′ (taken from two viewpoints) of a
portion of the football field near a goal-post. Let P be the point of intersection of a line passing through an
arbitrary point in 3D (say corresponding to the location of the football in mid-air) and striking the ground
plane perpendicular to it. The paper aims to predict the location p and p′ of the image of P inside I and
I ′ respectively. Your task is to read and understand section 2 and figure 2 of the paper, and answer the
following questions:

3

http://www.robots.ox.ac.uk/~vgg/publications/papers/reid96.pdf
http://www.robots.ox.ac.uk/~vgg/publications/papers/reid96.pdf


(a) How does the homography computation help in obtaining p and p′?

(b) Why is it important to compute the vertical vanishing point v and v′ in the two images?

(c) What is the significance of the lines Ls and L′s in the task of obtaining p and p′? [10 points]

Solution: These answers are quite straightforward once you understand the methodology. Refer to figure 2
of the paper. The aim is to determine the image of point P in the two pictures (or any one of them). Let
v and v′ be the vertical vanishing points in the two pictures (the goal posts are considered vertical). Let B
be the physical location of the football. The images of the vertical line BP in the two pictures are vb and
v′b′ respectively. Now vb can be considered to be the image of line Ls, the shadow of line BP , in the first
picture. Likewise v′b′ can be considered to be the image of line L′

s, the shadow of line BP , in the second
picture. In 3D space, the shadow lines intersect at point P whose image we are interested in. We need the
intersection of two lines in order to find p in the first picture. If we had the image (denoted as s) of L′

s in the
first picture, then we could easily find p from the intersection of s and vb. But how do we get s? For that,
we use the planar homography between the two pictures! Corresponding points on s in the first picture and
v′b′ in the second picture are related by this homography! Now, we are equipped to answer the questions:

(a) How does the homography computation help in obtaining p and p′? Because p is the intersection of
lines s and vb in the first picture. Line s is obtained by applying the homography to the line v′b′ in the
second picture. Note that s and v′b′ are images of line L′

s in the first and second pictures respectively.

(b) Why is it important to compute the vertical vanishing point v and v′ in the two images? We need two
points to produce the vertical line in the image planes. One of these points is b or b′ and the other
could be v and v′, or p and p′. But we don’t know p and p′ because the ball is in mid-air! On the
other hand, we can compute v and v′ from the images of the vertical bars of the goal post.

(c) What is the significance of the lines Ls and L′
s in the task of obtaining p and p′? Lines Ls and L′

s

intersect at P in 3D space. Hence the images of these lines will intersect at p in the first picture and
p′ in the second picture.

Marking scheme: 3 points each for a sensible explanation and 1 is a bonus point.

7. Consider a picture of a static (possibly non-planar) scene acquired by a camera fixed on a tripod. Now the
camera is rotated but it remains fixed on the tripod without any translation, and another picture of the
same scene is acquired. Let p1 and p2 be the pixel coordinates of the images of some physical point in the
scene in the two pictures respectively. Note that p1 and p2 are in different coordinate systems. Derive a
relation between p1 and p2 in terms of the matrix R which represents the rotational motion of the camera
axes from the first position to the second, and the intrinsic parameter matrix K1 and K2 of the cameras
in the two viewpoints. Note that the instrinsic parameters could change if you changed the focal length, or
(hypothetically) the resolution. [10 points]

Solution: Consider p1h = K1(R1|t1)P in homogeneous coordinates corresponding to the point p1 in
pixel coordinates. Now we know p2h = K2R(R1|t1)P = K2RK1

−1p1h = Hp1h where H is a 3 × 3
homography matrix (not a planar homography matrix but a homography matrix of a different kind - a
rotational homography matrix). Given a single pair of corresponding points p1 and p2 it is not possible to
determine H, but it is possible to determine this matrix using N ≥ 8 pairs of such points using our usual
homography estimation algorithm.

Marking scheme: 4 points for the expression for p1h, 2 points for the expression for p1h, and 4 points for
the final expression.

4


