
Singular Value Decomposition 
(SVD)

CS 763

Ajit Rajwade

1



Singular value Decomposition

• For any m x n matrix A, the following 
decomposition always exists:
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Diagonal matrix  with non-
negative entries on the 
diagonal – called singular 
values.
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Singular value Decomposition

• For any m x n real matrix A, the SVD consists of 
matrices U,S,V which are always real – this is unlike 
eigenvectors and eigenvalues of A which may be 
complex even if A is real. 

• The singular values are always non-negative, even 
though the eigenvalues may be negative.

• While writing the SVD, the following convention is 
assumed, and the left and right singular vectors are 
also arranged accordingly:
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Singular value Decomposition

• If only r < min(m,n) singular values are non-
zero, the SVD can be represented in reduced 
form as follows:
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Singular value Decomposition
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This m by n matrix ui v
T

i is the product of a column vector ui and 
the transpose of column vector vi. It has rank 1. Thus A is a 
weighted summation of r rank-1 matrices.

Note: ui and vi are the i-th column of matrix U and V
respectively.
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Singular value decomposition
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Application: SVD of Natural Images

• An image is a 2D array – each entry contains a 
grayscale value. The image can be treated as a 
matrix.

• It has been observed that for many image 
matrices, the singular values undergo rapid 
decay (note: they are always non-negative).

• An image can be approximated with the k
largest singular values and their corresponding 
singular vectors:
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Singular values of the Mandrill Image: notice the rapid exponential decay of the 
values! This is characteristic of MOST natural images.



Left to right, top to bottom:
Reconstructed image using the first i= 
1,2,3,5,10,25,50,100,150 singular values and 
singular vectors.
Last image: original
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Left to right, top to bottom, we display: 

where i = 1,2,3,5,10,25,50,100,150.
Note each image is independently re-
scaled to the 0-1 range for display 
purpose.
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Note: the spatial 
frequencies increase as 
the singular values 
decrease
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SVD: Use in Image Compression

• Instead of storing mn intensity values, we 
store (n+m+1)r intensity values where r is the 
number of stored singular values (or singular 
vectors). The remaining m-r singular values 
(and hence their singular vectors) are 
effectively set to 0.

• This is called as storing a low-rank (rank r) 
approximation for an image.

11



Properties of SVD: Best low-rank 
reconstruction

• SVD gives us the best possible rank-r 
approximation to any matrix (it may or may 
not be a natural image matrix).

• In other words, the solution to the following 
optimization problem:

is given using the SVD of A as follows:
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Note: We are using the singular vectors 
corresponding to the r largest singular 
values.

This property of the SVD is called the Eckart Young Theorem. 12



Properties of SVD: Best low-rank 
reconstruction
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Frobenius norm of the matrix (fancy way of saying you square all 
matrix values, add them up, and then take the square root!)

),min()ˆrank(  whereˆmin
2

ˆ nmr,r
F

 AAA
A

22

2r

2

1r

2

... ˆ: n
F

Note   AA Why?

13



Geometric interpretation: Eckart-
Young theorem

• The best linear approximation to an ellipse is 
its longest axis.

• The best 2D approximation to an ellipsoid in 
3D is the ellipse spanned by the longest and 
second-longest axes.

• And so on!
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Properties of SVD: Singularity

• A square matrix A is non-singular (i.e. 
invertible or full-rank) if and only if all its 
singular values are non-zero.

• The ratio σ1/σn  tells you how close A is to 
being singular. This ratio is called condition 
number of A. The larger the condition 
number, the closer the matrix is to being 
singular.
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Properties of SVD: Rank, Inverse, 
Determinant

• The rank of a rectangular matrix A is equal to the 
number of non-zero singular values. Note that rank(A) 
= rank(S).

• SVD can be used to compute inverse of a square 
matrix:

• Absolute value of the determinant of square matrix A is 
equal to the product of its singular values.
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Properties of SVD: Pseudo-inverse

• SVD can be used to compute pseudo-inverse 
of a rectangular matrix:
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Properties of SVD: Frobenius norm

• The Frobenius norm of a matrix is equal to the 
square-root of the sum of the squares of its 
singular values:
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Geometric interpretation of the SVD

• Any m x n matrix A transforms a hypersphere 
Q of unit radius (called as unit sphere) in Rn

into a hyperellipsoid in Rm (assume m >= n). 

Q AQ
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Geometric interpretation of the SVD

• But why does A transform the hypersphere into a 
hyperellipsoid?

• This is because A = USVT.
• VT transforms the hypersphere into another 

(rotated/reflected) hypersphere.
• S stretches the sphere into a hyperellipsoid whose semi-

axes coincide with the coordinate axes as per V.
• U rotates/reflects the hyperellipsoid without affecting its 

shape.
• As any matrix A has an SVD decomposition, it will always 

transform the hypersphere into a hyperellipsoid.
• If A does not have full rank, then some of the semi-axes of 

the hyperellipsoid will have length 0!
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Geometric interpretation of the SVD

• Assume A has full rank for now.
• The singular values of A are the lengths of the n

principal semi-axes of the hyperellipsoid. The 
lengths are thus σ1, σ 2, …, σ n.

• The n left singular vectors of A are the directions 
u1, u2, …, un (all unit-vectors) aligned with the n 
semi-axes of the hyperellipsoid.

• The n right singular vectors of A are the directions 
v1, v2, …, vn (all unit-vectors) in hypersphere Q, 
which the matrix A transforms into the semi-axes 
of the hyperellipsoid, i.e. 

iiii uAv, 
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Geometric interpretation of the SVD

• Expanding on the previous equations, we get 
the reduced form of the SVD

n x n diagonal 
matrix - S

m x n matrix    
(m >> n) with 
orthonormal 
columns - U

n x n
orthonormal 
matrix V
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Computation of the SVD
• We will not explore algorithms to compute the SVD of a 

matrix, in this course.

• SVD routines exist in the LAPACK library and are 
interfaced through the following MATLAB functions:

s = svd(X) returns a vector of singular values.

[U,S,V] = svd(X) produces a diagonal matrix S of the same dimension as X, with 

nonnegative diagonal elements in decreasing order, and unitary matrices U and V

so that X = U*S*V'.

[U,S,V] = svd(X,0) produces the "economy size" decomposition. If X is m-by-n with 

m > n, then svd computes only the first n columns of U and S is n-by-n.

[U,S,V] = svd(X,'econ') also produces the "economy size" decomposition. If X is m-

by-n with m >= n, it is equivalent to svd(X,0). For m < n, only the first m columns of 

V are computed and S is m-by-m.

s = svds(A,k) computes the k largest singular values and associated singular 

vectors of matrix A. 
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SVD Uniqueness

• If the singular values of a matrix are all 
distinct, the SVD is unique – up to a 
multiplication of the corresponding columns 
of U and V by a sign factor. 

• Why?

)...)

...

22221111

22221111

1

t

rrrr

tt

t

rrrr

ttt

ii

r

i

ii

)(-v(-uSvuS)(-v(-uS

vuSvuSvuSvuSA






24



SVD Uniqueness

• A matrix is said to have degenerate singular 
values, if it has the same singular value for 2 
or more pairs of left and right singular vectors.

• In such a case any normalized linear 
combination of the left (right) singular vectors 
is a valid left (right) singular vector for that 
singular value.

25



Any other applications of SVD?

• Face recognition – the popular eigenfaces
algorithm can be implemented using SVD too!

• Point matching: Consider two sets of points, such 
that one point set is obtained by an unknown 
rotation of the other. Determine the rotation!

• Structure from motion: Given a sequence of 
images of a object undergoing rotational motion, 
determine the 3D shape of the object as well as 
the 3D rotation at every time instant!
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PCA Algorithm using SVD

1. Compute the mean of the given points:

2. Deduct the mean from each point:

3. Compute the covariance matrix of these 
mean-deducted points:
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PCA Algorithm using SVD

4. Instead of finding the eigenvectors of C, we 
find the left singular vectors of X and its 
singular values

5. Extract the k eigenvectors in U corresponding 
to the k largest singular values to form the 
extracted eigenspace:
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There is an implicit assumption here that the first k indices 
indeed correspond to the k largest eigenvalues. If that is not 
true, you would need to pick the appropriate indices.

U,S,V are obtained by 
computing the SVD of X.
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