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What is (geometric, binocular) stereo?

* A technique to reconstruct the 3D scene
underlying two images taken from two different
(usually very close) viewpoints.

* Biological motivation: Our brain infers the 3D
structure of the scene from the difference
between the images formed by the left and right
eyes.

 Of course, the brain makes use of other cues for
inferring depth, but stereo is the most basic one.



Stereo vision: human eye

Hold your index finger an arm’s length away.

Look at it through the left eye keeping the
right eye closed.

Now look at it through the right eye keeping
the left one closed.

You will perceive a shift - this is called as
stereo disparity and the brain uses it heavily
to infer depth!



SENSE S G S

Aim: reconstruct 3D
shape given two images
captured by cameras in
two different positions




Simplest case: stereo

* To perform 3D reconstruction, we must know
point correspondences —i.e. given a point in

the left image, which is the corresponding
point in the right image?

e Let’s make some assumptions about the
camera positions!



Simplest case: stereo

* Assume that the pinhole positions of the two
cameras are known and that their optical axes
are perfectly aligned (parallel).

Line 0,0, = baseline.

P=(X,Y,Z)

Assume baseline is perpendicular to the
optical axes. Assume camera X-axis is
parallel to the baseline.

Let length 0,,0, = T = baseline length. Focal
O=Pinholel YN - length =f.

Triangles PO,0, and Pp,p, are similar.

P (X, Y)) p=(T+x,y,)



Simplest case: stereo

From similarity of triangles, we have:

I_T+&—m
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Disparity — a spatially varying quantity. At each

_ / point (x,y) in the left image, we have disparity
d(x,y) and x+d(x,y) is the x-coordinate of its
corresponding point in the second image.

/ =
Xr_XI

Note that y-coordinates are equal because of our

. . f Y assumption that the X axis of the cameras is
yl — yr — z parallel to the baseline.



Imaginary plane passing through P and parallel to the image plane

P=(XY,2)

X direction

O|=Pinh0|e1 .\ /. Or: Pinhole2

Z direction — the optical
axes (marked in red) are
perpendicular to the
image plane — out of the
plane of the screen



Comments

* The search for a point corresponding to one in
the left image is restricted to a line parallel to
the X axis, as the y-coordinates are the same!
This is called the epipolar line.

* A pointin the left image may not have a
counterpart in the right image (shadows,
specularities, occlusions, difference in field of
view between the cameras), but if it does, it
must lie on the epipolar line.
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* Disparity and depth (i.e. distance from camera
image plane) are inversely proportional. So
distance to faraway objects can be measured less
accurately than to nearby ones.

* Disparity is directly proportional to focal length
(as you increase focal length, magnification
increases).

* Disparity is directly proportional to baseline
length — but a large baseline is a problem (due to
missing correspondences as the fields of view will
be very different!)



Two notes of caution

* |[n most practical stereo systems, it is
unreasonable to assume that the optical axes
of the two cameras are parallel. We will deal
with the case of unalighed cameras on the
next bunch of slides.

* Even with parallel optical axes, the
correspondence problem is not at all easy! We
will deal with this problem later.



Parameters of a stereo system

* Intrinsic parameters — focal lengths, optical
centers, camera resolutions

* Extrinsic parameters — rotation and
translation to align the coordinate systems of

the two cameras.

* The intrinsic or extrinsic parameters or both
are often unknown. Stereo reconstruction is
essentially a calibration problem!



Epipolar Geometry

e Let’s now study the case where the optical
axes of the cameras were not aligned.

* But we will assume full knowledge of camera
parameters (intrinsic and extrinsic).

* This is called as fully calibrated stereo.
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Camera reference frames are related as follows: Pr = R(P| — T)
where P, and P, are coordinates of point P in the reference frame of the left and right
cameras. The image of P in the two image planes has coordinates p, and p,.

*The line joining O, and O, intersects the image planes at point e, and e, — called as
the (left/right) epipoles. The left epipole is the image of O, and right epipole is the
image of O,.

*The points P, O, and O, form the epipolar plane for point P. The epipolar plane
intersects each image plane in the (left/right) epipolar line for point P.



EPIPOLAR p EPIPOLAR
LINE ° LINE

PLANE
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Epipolar Constraint:

Given p,, the point P can lie at any point on the line from O, to p,. The image of ray O,p, on
the right image plane is contained in the right epipolar line (Why? Because O,, p, and P are
collinear — hence their images under perspective projection on the right image plane must
also be collinear).

This is called the epipolar constraint. What this means is that the point on the right
image plane corresponding to p, (i.e. point p,) is restricted to lie on a single line which
happens to be the right epipolar line. All epipolar lines pass through the respective
epipoles.
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Figure 7.6 The epipolar geometry.

The points P, O, and O, form the epipolar plane for point P. Hence vectors P,, 0,0, (which
equals T, the translation vector) and P, are coplanar. Now P, = R(P-T). Hence we can write:

(P, -T)(TxP,)=0

~(R'P)(TxP)=0 ~P'(RS)P =0
v D e o
TxP=| T, 0 -T |P=SP

i E has rank 2.




EPIPOLAR p EPIPOLAR

LINE \ ® LINE
v/ e |
mo EPIPOLAR / "
Q; PLANE .
| N
OJ‘
Figure 7.6 The epipolar geometry.
Prt(RS)PI — () Eis the essential matrix. It gives an r Zr ol ZI |
explicit relationship between the
Prt (E) PI — (0 epipolar lines and the extrinsic AS PrtEPI =0, we have
parameters of the stereo system. What’s
E has rank 2. more - given a set of corresponding L PtEL P —0
points (in camera coordinate system), r |
one can recover the essential matrix! r |

-.pEp, =0
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p;Ep, =0

P (M) EM [ ]p=

5£[F]ﬁ| =0

Intrinsic
parameter
matrices for left
and right
cameras

The essential matrix E gives the
relationship between the corresponding
points measured in camera coordinates.
The fundamental matrix F gives the
relationship between the corresponding
points measured in homogeneous
inates with the x and y
components measured in the pixel
coordinate system. F also has rank 2.



Essential and fundamental matrix

e Consider P:Ep, =0,p[FIp, =0

* These equations tell you that given a fixed
point p, in the left image, the corresponding
point in the right image (i.e. p,) lies on a line
(what’s the equation of the line?).



Determining fundamental and
essential matrix

We now look at an algorithm to determine the
fundamental matrix given 8 or more pairs of
corresponding points (in pixel coordinates) from
the left and right images.

The algorithm is called Eight-Point Algorithm.

There is a very similar algorithm for determining
the essential matrix (given points in camera
coordinates) from 8 points.

As E has only 5 DOF (why?), there exist
algorithms that require just 5 correspondences,
but those are a lot more complicated.



Determining fundamental and
essential matrix

 The fundamental matrix F has 7 DOF (the first
two rows = 6 DOF + third row = linear
combination of first two rows, giving 8 DOF —
minus 1 since the scale factor is removed).

* There exist algorithms that need only 7 points,
but they are not as simple as the 8-point
algorithm.

* Note: these 8 pairs can be obtained from
manual input or using SIFT.



Eight point algorithm
Vil<i<N,p,[Flp,; =0
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Eight point algorithm

* We solve for f (which contains the 9 entries of
F) by computing the SVD of A (size Nby 9, N >
8) and taking the column vector from V
corresponding to the least singular value.

* The solution is obtained up to an arbitrary sign
and scaling constant.

* |deally A has rank 8 (proof out of scope) but in
practice A has rank 9 (due to errors in
measurement of point coordinates).



Eight point algorithm

* Rearrange elements of f to give F (up to a
scaling constant and sign).

* F has size 3 by 3, but it should have rank 2, i.e.
it should be rank-deficient. The previous step
does not guarantee rank-deficiency.

* So we need another step. Compute SVD of F
and nullify its smallest singular value. This
gives us the final F.

UFSFVFT =F Find the nearest rank-2 matrix! Use
Let S, =diag(a,b,c),a>b>c SVD again (Eckhart-Young theorem)
F 1 My y AA Z =

F. ., =U_.diag(a,b,0)V,

final —



Eight point algorithm

In practice, the stability of the estimates can be improved by performing some pre-
and post-processing steps:

N

N N N
Z Xy Z Yei Z X Z Yii
_ imt _ i _ i

*y = i=1 ’— i ,)—( — = ’— —
r N Y N | N Yi N

S 2 2 S 2 2

Z\/(Xr,i =X )" +(Y.,—V,) Z\/(Xu -X) +(Y,i = V)
*Gr — =1 ’GI — =1

N N
*x Xei =X s Yei = Yr X Xi =X Ve Yii= VY
’ O, ’ O, ’ O, ’ O,

* Now estimate the fundamental matrix F, from {(x", ., ¥',: ), (X', i, V' ) Hu.
*F can be estimated from F,.



Estimating epipoles from F

* The left epipole lies on all epipolar lines in the
left image. Hence we can write:
p,Fe€ =
-.Fe =0
. € lies in the nullspace of F.

Likewise, €. lies in the nullspace of F'.

US. V! =F

e, = column of V. corresponding to null singular value
e = column of U, corresponding to null singular value



More about using E or F

 We saw how F can be estimated from 8 pairs of
corresponding points.

* Given F, we get the equation for the epipolar line
for any point, which will restrict the search space
for correspondences along this line (instead of
the whole image).

* If the camera instrinsic parameters are known,
we can also determine E, and use that to infer R
and T (we will see how this inference is done
later).



3D reconstruction: known parameters

Ray r = bR'p, Ray | = ap,




3D reconstruction: known parameters

The rays r and | may not intersect in practice
due to measurement errors.

Instead we find a line segment s perpendicular
to both r and |, with one endpoint on r and
another on |.

Thus we have s lying on the line w = p; x R'p,.

We treat the midpoint of s as the point of
intersection of rays r and |. The midpoint is the
point of minimum distance from rays r and |.



3D reconstruction: known parameters

The concerned segment starts at point a,p, on ray
| and ends at point T+b,R"p, on ray r.

A point on segment s (note that segment s lies on
line w) can be expressed as a,p, + CW =

aP; + ¢, (P X Rp,).
Hence we have T+b,R'p, = a, p, + ¢, (P, X R'p,).
Solve for the coefficients a,,b,,c,.

Moral of the story: With known camera
parameters, 3D reconstruction is essentially
unambiguous. Accuracy depends on noise level.



3D reconstruction: only intrinsic
parameters are known.

Assumptions: intrinsic parameters known, N = 8+
pairs of corresponding points are available.

Essential matrix E (instead of fundamental matrix
F) can be easily computed as pixel coordinates
can be converted to camera coordinates.

But 3D coordinates can be computed only up to
an unknown scale factor since extrinsic
parameters are unknown.

The scale factor can be determined if you knew

beforehand the exact distance between 2 points
in the scene.



E=RS

3D reconstruction: only intrinsic

parameters are known.

E'TE=S'S

~E'E=

T +T;
T,
B TxTz

-TT,
T2+T
T,

2 2
Ty + T,

~T.T, )
-T,T,

J

. trace(E'E) = 2(T + Ty2 +T,) = 2HTH2

2T = +./trace(ETE) /2

Remember: E is known only up to an
—5 unknown scale and sign!

— Normalized essential matrix

E=E/|T|
(1-7 -7, -TT,)
CETES| T, 172 T
\ X'z _TyTz 1- 22/

Now estimate the components of T — but
these can be recovered only up to an
unknown common sign and scaling factor.



3D reconstruction: only intrinsic
parameters are known.

You know T (up
to a sign and
scale), so you
know S (up to the
same sign and
scale)

—)

o -T, T,
S=| T, 0 -T,
-7, T, 0
E RS
R, Method by Longuet-Higgins,
R = IQZ , “A computer algorithm for
R reconstructing a scene from
° two projections”, Nature,
R, =W, +W, xW,, 1981
R,=W,+W,xW,
A Row i of the normalized
Ry =W, +W,x essential matrix
W. =E xT,ie{l,2,3}



3D reconstruction: only intrinsic
parameters are known.

P =R -T) P
. . Butp, = —
~Z, =RI(P -T) Z,
_ frIQT (PI _-’I\_) PI — ﬂ
= f

PRI -T)

Plug in the expression for
P, into the expression for
p, and re-arrange to get

. As we know the
an expressign for Z,

translation direction
only and not its
magnitude

Solve for Z, (uptoa scale) and hence Z, (uptoa scale)

7 —f (frFAzl_XrFAes)T-i- \ / Zﬁg

— ] ] P =R(P-T r
| | (erl_XrR3)Tpl ( | )




3D reconstruction: only intrinsic
parameters are known.

1. Estimate E (uptounknown sign)

Out of the four solutionsof (E, T), 2 Estimate T (uptounknownsign)
only one of them is valid,
i.e. yields positivevalues of 3. Estimate R

Z, and Z, for all points.
4. Estimate Z, and Z, for all points

5a. If the values of Z, and Z, are both negative for some point,

then change thesign of T and go tostep4

5b. If the values of Z, and Z. are both positivefor all points,
then exit .

5c. If either Z, or Z, (exactly one) is negative,
then change thesign of all entries in E and go tostep 3



3D reconstruction: only intrinsic
parameters are known.

* To summarize:

v Our input was a set of N = 8+ corresponding points from two
images taken with cameras of known intrinsic parameters. The
extrinsic parameters of the stereo system (i.e. rotation and
translation between the optical axes of the two cameras) are
unknown.

v In such a case, you can estimate only the direction of the baseline
vector (i.e. translation direction T) and not its magnitude.

v’ You can estimate the 3D coordinates of the points only up to an
unknown scale.

v" | will once again remind you: we assume correspondences were
available or were manually marked. Automated correspondences
is not an easy problem, and we will study it soon.




3D reconstruction: intrinsic and
extrinsic parameters are unknown

* Consider equations for a corresponding pair of

points:
X2
| Y2 |5 Pz
1

X
X
Yi|= Pl
1

e Now consider:
X

X, y X,
Yi|= (P1A)A_l 2 | Y, | = (PZA)A_1
1 . 1

of sized4d x 4

,P, and P, are projection matrices of size3x 4

R N < X

Y
Z
1

,A'Is an arbitrary invertible matrix

— N < X



3D reconstruction: intrinsic and
extrinsic parameters are unknown

* This means that for any invertible matrix A

(size 4 by 4), exactly the same pair of images
would be produced by cameras with

projection matrices P,A and P,A, and 3D
points whose coordinates are given by

(ALX]Y,1Z;] 1)1




Correspondence problem

 Several methods:

v’ Correlations/squared difference based
methods

v Optimization method for inferring the
disparity map

v Feature-based methods/ Constrained
methods — based on dynamic programming



Assumptions

We will assume the case of coordinate systems of
the two cameras being parallel (only a
simplification — the method is applicable to the
more general case), and their X axes being
parallel to the baseline.

Consider p, = (x,,y;) and p, = (x,,y,) are images of a
given point (X,Y,Z) in the two cameras.

Assume that the gray-levels of corresponding
points in the two images are equal.

50, I (x,y1) = 1{x,Y,).



Assumptions

* |s this brightness constancy assumption valid
here?

* Yes, if object is Lambertian.

* Violations: noise, specularity, shadows,
occlusion, non-Lambertian surfaces



Remember: epipolar constraint!

But ambiguity remains!



Method 1: Comparing patches using
correlation or squared differences

TTTT T HON. ABRAIAM LINCOLN, President of United States. =g
{
"

) i 1
. . .

Slide taken
from a
University of
Washington
course on
computer
vision — Steve
Seitz

For each epipolar line
For each pixel in the left image
« compare with every pixel on same epipolar line in right image

* pick pixel with minimum match cost
This leaves too much ambiguity, so:

Improvement: match patches (also called windows)
(Seitz)



Method 1: Correlation or squared
difference
* Assume most scene points are visible from
both cameras (perfectly reasonable)
* Corresponding image regions are similar.

* Define image region as a square-shaped patch
of size (2K+1) x (2K+1).



Method 1: Correlation or squared
difference

* For each pixel (x,y,) in l,, and every possible
displacement (d™,0), find coordinates (x,y,)=
(x,,y,)+(d™,0) in I, such that the SSD is
minimized or Correlation is maximized:

SSD(d) = i i(ll(xl + 1,y +1) = 1(% +d™ + oy i)’

i=—Kj=-K R(p,) — the search window —

€ chosen to be small to avoid very
d” =min, g, SSD(d)

5 faraway similar patches from
being selected

K K
Corr(d)= > > 1,(x + ], (X, +d® +j,y, +1)



Slide taken from a University of
Washington course on computer vision —
Steve Seitz

Left Right

SSD error
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Method 1: Correlation or squared
difference
e |f there is illumination difference between the

two images, you can maximize normalized
cross-correlation instead

D> @O+ iy +1) =)0 +d¥ + jy, +dY +i)-7,)

i=—K j=—K

NCorr(d) =

\/Z 2.0 (x+ ]y, +i)—0h)2\/2 2404 +d® + j,y, +d +i) - q,)°

i=—K j=—K i=—K j=—K

d” = max,_q,, Corr(d)



Slide taken from a University of
Washington course on computer
vision — Steve Seitz

« Effect of window size

« Some approaches have been developed to use an

adaptive window size (try multiple sizes and select
best match)

(Seitz)



Method 2: Feature-based methods

* |nstead of computing SSD over intensity,
compute it over features such as some

combination of
(i) image gradient magnitude/orientation

(i) average/variance of intensity values in a
window

* The latter may make the search faster.



Method 3: Optimization method to

From book by B infer disparity map
1, (%,y)=1.(X.,Y) Severely

underconstrained —
need to introduce
smoothness terms

S LOGy)=1.(x+d(X y), y)
-.d*:mindﬂ(l,(x, y)— 1 (x+d(x,Y),y))2dxdy




Method 3: Variational method to infer
disparity map

d* = min, [[ (1,0 y) = 1.(x+d(x,y), y))? + A(d2 +d2) bixdy

Taking derivatives w.r.t. d(x,y):

(1 X+ A06 YY)~ 10 y) T ?X(Xy’)y)’ ) _

A4d(x,y)—-d(x+1Ly)—-d(x,y+D)-d(x-1y)-d(x,y-1))

We can solve for d(x,y) at all locations iteratively using methods
such as Jacobi.



Method 4: Dynamic programming

 There is one important constraint we didn’t
impose so far! Ordering constraint.

Ordering constraint... ...and its failure



The ordering constraint fails if a given 3-D point
(N here) falls onto the forbidden zone of another
3-D point (M). In the left image (S\PiS$), mis to
the right of n, but in the right image (S\Pi'S), this
ordering is reversed.

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL COPIES/OWENS/LECT11/node5.html



http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT11/node5.html
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT11/node5.html

Method 4: Dynamic programming

Step 1: Run an edge detection algorithm on both
Images.

Remember: As we assumed parallel optical axes
along Z direction with X-direction baseline, the
epipolar lines are horizontal.

Step 2: For each scanline L, (epipolar line) in the
left image, form a list of edge points. Form a
similar list of edge points in the right image on
the same scanline (denoted L,).

The number of points in these lists may be
unequal — let’s denote it as M and N respectively.






Method 4: Dynamic programming

 We want to assign nodes from the left list to nodes
in the right one.

* The ordering constraint must be obeyed — if point g,
is located before b, on L, then a, (the node to which
a, is assigned) must be located before b, (the node
to which D, is assigned) on L.

* The assignment of correspondences can be framed
as a problem of finding a path in a bounded 2D grid
with top-left corner at (0,0) and bottom-right corner
at (M,N) (see next slide).
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Edge points on left scanline — vertical
lines

Edge points on right scanline —
horizontal lines

Find a legal path through this grid from
grid-point (0,0) to grid-point (M,N)
having least cost. A legal path moves
from top-left to right-bottom corner of
the grid monotonically, i.e. without
moving backwards.

A path contains a list of grid-points.
Grid-point q = (m,n) is part of a path if
edge point m in L, is assigned to edge
point nin L,.

Vertical lines: edges on the left

shown along each axis. The horizontal axis corresponds to the left ~ scanline
scanline and the vertical one corresponds to the right scanline. Verti- Horizontal lines: edges on the
cal and horizontal lines are the edge positions, and path selection is

done at their intersections.

Source of figure: Ohta and
Kanade, “Stereo by Intra- and
Inter- scanline search using
dynamic programming”, IEEE
TPAMI, 1985

right scanline

Grid-points = points of
intersection of the horizontal and
vertical lines



Method 4: Dynamic programming

* While searching for correspondence between
a pair of edge points, one on L, (say point p|)
and one on L, (say point p,), the edge points
on the left of p,and p, (on L, and L,
respectively) should already be processed!

* Start-point and end-point of L, and L, are both
treated as edge-points for convenience.



Method 4: Dynamic programming

 We will denote the cost of a path from grid-point
k to grid-point m as D(m,k). If k = (0,0) (i.e. top-
left corner of the grid), then we simply denote
the cost as D(m).

 The cost of a path is the sum total of the costs of
its constituent primitive paths. A primitive path
between grid-points k and m is a path that
consists of a single straight line segment.

* The cost of the primitive path between m and k is
denoted as d(m,k).



Method 4: Dynamic programming

Now, D(m) can be defined recursively as

D(m) = ?T {dm,m - i)+ D(m - i)}
i

D(0)=0
where m = (m,n),i=(i,j),0 <i< m,
O0<j<ni+j#0,0=(0,0).
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Fig. 3. 2D search plane for intra-scanline search. Intensity profiles are
shown along each axis. The horizontal axis corresponds to the left
scanline and the vertical one corresponds to the right scanline. Verti-

cal and horizontal lines are the edge positions, and path selection is
done at their intersections.

Let grid-point m = (a,,a,) and let grid-point m’ = (b,,b,).
Then d(m,m’) = some measure of similarity between the intensity values in the interval
(b,a) on L, and the interval (b,a,) on L,.



Method 4: Dynamic programming

* Occlusions are intervals on the left scanline which
nave no match in the right scanline — represented
oy horizontal primitive paths (i =0, ini = (i,j)).

* Disocclusions are intervals on the right scanline
that have no match from the left scanline —
represented by vertical primitive paths (j=0, ini
= (7).

* Occlusions and disocclusions are assigned fixed
costs.



Slide taken from a University of Washington course on
computer vision — Steve Seitz

Stereo Correspondences

Left scanline Right scanline




Slide taken from a University of Washington course on
computer vision — Steve Seitz

Stereo Correspondences

Left scanline Right scanline

Match —/%
\ May
N Match '

Occlusion Disocclusion




Slide taken from a University of Washington course on
computer vision — Steve Seitz

Search Over Correspondences

Occluded Pixels
Left scanline [T

v Vv v Vv

Right scanline [T

Disoccluded Pixels

Three cases:
—Sequential — add cost of match (small if intensities agree)
—Occluded — add cost of no match (large cost)
—Disoccluded — add cost of no match (large cost)



Stereo Matching with Dynamic

Slide taken from a

University of Programming
Washington
course on
computer vision — Occluded Pixels
Steve Seitz -
Start Left scanline
Dynamic programming yields the
optimal path through grid. This is
O the best set of matches that
g 2, satisfy the ordering constraint
O Q
o I =y
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End



