
Stereo

CS 763

Ajit Rajwade



Contents

• Introduction – stereo in the human eye

• Stereo vision – simplest case

• Epipolar geometry

• Uncalibrated stereo

• Correspondence problem and how to “solve” 
it



What is (geometric, binocular) stereo?

• A technique to reconstruct the 3D scene 
underlying two images taken from two different 
(usually very close) viewpoints.

• Biological motivation: Our brain infers the 3D 
structure of the scene from the difference
between the images formed by the left and right 
eyes. 

• Of course, the brain makes use of other cues for 
inferring depth, but stereo is the most basic one.



Stereo vision: human eye

• Hold your index finger an arm’s length away. 

• Look at it through the left eye keeping the 
right eye closed.

• Now look at it through the right eye keeping 
the left one closed.

• You will perceive a shift - this is called as 
stereo disparity and the brain uses it heavily 
to infer depth!



Aim: reconstruct 3D 
shape given two images 
captured by cameras in 
two different positions



Simplest case: stereo

• To perform 3D reconstruction, we must know 
point correspondences – i.e. given a point in 
the left image, which is the corresponding 
point in the right image? 

• Let’s make some assumptions about the 
camera positions!



Simplest case: stereo

• Assume that the pinhole positions of the two 
cameras are known and that their optical axes 
are perfectly aligned (parallel).

P=(X,Y,Z)

Ol=Pinhole1 Or= 
Pinhole2

pl=(xl,yl) pr=(T+xr,yr)

Line OlOr = baseline.

Assume baseline is perpendicular to the 
optical axes. Assume camera X-axis is 
parallel to the baseline.

Let length Ol,Or = T = baseline length. Focal 
length = f.

Triangles POlOr and Pplpr are similar.
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Simplest case: stereo

• From similarity of triangles, we have:
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Disparity – a spatially varying quantity. At each 
point (x,y) in the left image, we have disparity 
d(x,y) and x+d(x,y) is the x-coordinate of its 
corresponding point in the second image.

Note that y-coordinates are equal because of our 
assumption that the X axis of the cameras is 
parallel to the baseline. 
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P=(X,Y,Z)

X direction

Z direction – the optical 
axes (marked in red) are 
perpendicular to the 
image plane – out of the 
plane of the screen

Imaginary plane passing through P and parallel to the image plane

Y direction

Ol=Pinhole1 Or= Pinhole2



Comments

• The search for a point corresponding to one in 
the left image is restricted to a line parallel to 
the X axis, as the y-coordinates are the same! 
This is called the epipolar line.

• A point in the left image may not have a 
counterpart in the right image (shadows, 
specularities, occlusions, difference in field of 
view between the cameras), but if it does, it 
must lie on the epipolar line.



Comments

• Disparity and depth (i.e. distance from camera 
image plane) are inversely proportional. So 
distance to faraway objects can be measured less 
accurately than to nearby ones.

• Disparity is directly proportional to focal length 
(as you increase focal length, magnification 
increases).

• Disparity is directly proportional to baseline 
length – but a large baseline is a problem (due to 
missing correspondences as the fields of view will 
be very different!)

2d

fT

d

Z

d

fT

xx

fT
Z

lr















Two notes of caution

• In most practical stereo systems, it is 
unreasonable to assume that the optical axes 
of the two cameras are parallel. We will deal 
with the case of unaligned cameras on the 
next bunch of slides.

• Even with parallel optical axes, the 
correspondence problem is not at all easy! We 
will deal with this problem later.



Parameters of a stereo system

• Intrinsic parameters – focal lengths, optical 
centers, camera resolutions

• Extrinsic parameters – rotation and 
translation to align the coordinate systems of 
the two cameras.

• The intrinsic or extrinsic parameters or both 
are often unknown. Stereo reconstruction is 
essentially a calibration problem! 



Epipolar Geometry

• Let’s now study the case where the optical 
axes of the cameras were not aligned.

• But we will assume full knowledge of camera 
parameters (intrinsic and extrinsic).

• This is called as fully calibrated stereo.



Camera reference frames are related as follows:
where Pr and Pl are coordinates of point P in the reference frame of the left and right 
cameras. The image of P in the two image planes has coordinates pl and pr.

)( TPRP lr 

Rotation 
matrix

Translation 
vector

•The line joining Ol and Or intersects the image planes at point el and er – called as 
the (left/right) epipoles. The left epipole is the image of Or and right epipole is the 
image of Ol. 
•The points P, Ol and Or form the epipolar plane for point P. The epipolar plane 
intersects each image plane in the (left/right) epipolar line for point P. 



Epipolar Constraint:
Given pl, the point P can lie at any point on the line from Ol to pl. The image of ray Ol pl on 
the right image plane is contained in the right epipolar line (Why? Because Ol, pl and P are 
collinear – hence their images under perspective projection on the right image plane must 
also be collinear). 

This is called the epipolar constraint. What this means is that the point on the right 
image plane corresponding to pl (i.e. point pr) is restricted to lie on a single line which 
happens to be the right epipolar line. All epipolar lines pass through the respective 
epipoles.



The points P, Ol and Or form the epipolar plane for point P. Hence vectors Pl, OrOl (which 
equals T, the translation vector) and Pr are coplanar. Now Pr = R(Pl-T).  Hence we can write:
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E is the essential matrix. It gives an 
explicit relationship between the 
epipolar lines and the extrinsic 
parameters of the stereo system. What’s 
more – given a set of corresponding 
points (in camera coordinate system), 
one can recover the essential matrix! 
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The essential matrix E gives the 
relationship between the corresponding 
points measured in camera coordinates. 
The fundamental matrix F gives the 
relationship between the corresponding 
points measured in homogeneous 
coordinates with the x and y 
components measured in the pixel 
coordinate system. F also has rank 2.
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Essential and fundamental matrix

• Consider                                .

• These equations tell you that given a fixed 
point pl in the left image, the corresponding 
point in the right image (i.e. pr) lies on a line 
(what’s the equation of the line?).
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Determining fundamental and 
essential matrix

• We now look at an algorithm to determine the 
fundamental matrix given 8 or more pairs of 
corresponding points (in pixel coordinates) from 
the left and right images.

• The algorithm is called Eight-Point Algorithm.
• There is a very similar algorithm for determining 

the essential matrix (given points in camera 
coordinates) from 8 points. 

• As E has only 5 DOF (why?), there exist 
algorithms that require just 5 correspondences, 
but those are a lot more complicated.



Determining fundamental and 
essential matrix

• The fundamental matrix F has 7 DOF (the first 
two rows = 6 DOF + third row = linear 
combination of first two rows, giving 8 DOF –
minus 1 since the scale factor is removed).

• There exist algorithms that need only 7 points, 
but they are not as simple as the 8-point 
algorithm.

• Note: these 8 pairs can be obtained from 
manual input or using SIFT.



Eight point algorithm
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Eight point algorithm

• We solve for f (which contains the 9 entries of 
F) by computing the SVD of A (size N by 9, N ≥ 
8) and taking the column vector from V
corresponding to the least singular value.

• The solution is obtained up to an arbitrary sign 
and scaling constant. 

• Ideally A has rank 8 (proof out of scope) but in 
practice A has rank 9 (due to errors in 
measurement of point coordinates).



Eight point algorithm

• Rearrange elements of f to give F (up to a 
scaling constant and sign).

• F has size 3 by 3, but it should have rank 2, i.e. 
it should be rank-deficient. The previous step 
does not guarantee rank-deficiency.

• So we need another step. Compute SVD of F
and nullify its smallest singular value. This 
gives us the final F.
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Eight point algorithm
In practice, the stability of the estimates can be improved by performing some pre-
and post-processing steps: 
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Estimating epipoles from F

• The left epipole lies on all epipolar lines in the 
left image. Hence we can write: 
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More about using E or F

• We saw how F can be estimated from 8 pairs of 
corresponding points.

• Given F, we get the equation for the epipolar line 
for any point, which will restrict the search space 
for correspondences along this line (instead of 
the whole image).

• If the camera instrinsic parameters are known, 
we can also determine E, and use that to infer R
and T (we will see how this inference is done  
later).



3D reconstruction: known parameters

Ol

Or

Ray l = apl

pl
pr

P’

Ray r = bRTpr

a0pl

T+b0RTpr



3D reconstruction: known parameters

• The rays r and l may not intersect in practice 
due to measurement errors.

• Instead we find a line segment s perpendicular 
to both r and l, with one endpoint on r and 
another on l. 

• Thus we have s lying on the line w = pl x RTpr.

• We treat the midpoint of s as the point of 
intersection of rays r and l. The midpoint is the 
point of minimum distance from rays r and l.



3D reconstruction: known parameters

• The concerned segment starts at point a0pl on ray 
l and ends at point T+b0RTpr on ray r.

• A point on segment s (note that segment s lies on 
line w) can be expressed as a0pl + c0w = 
a0pl + c0 (pl x RTpr).

• Hence we have T+b0RTpr = a0 pl + c0 (pl x RTpr). 
Solve for the coefficients a0,b0,c0.

• Moral of the story: With known camera 
parameters, 3D reconstruction is essentially 
unambiguous. Accuracy depends on noise level.



3D reconstruction: only intrinsic 
parameters are known.

• Assumptions: intrinsic parameters known, N = 8+ 
pairs of corresponding points are available.

• Essential matrix E (instead of fundamental matrix 
F) can be easily computed as pixel coordinates 
can be converted to camera coordinates. 

• But 3D coordinates can be computed only up to 
an unknown scale factor since extrinsic 
parameters are unknown.

• The scale factor can be determined if you knew 
beforehand the exact distance between 2 points 
in the scene.



3D reconstruction: only intrinsic 
parameters are known.

RSE 
Remember: E is known only up to an 
unknown scale and sign!

Normalized essential matrix

Now estimate the components of T – but 
these can be recovered only up to an 
unknown common sign and scaling factor.
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3D reconstruction: only intrinsic 
parameters are known.
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3D reconstruction: only intrinsic 
parameters are known.
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3D reconstruction: only intrinsic 
parameters are known.
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3D reconstruction: only intrinsic 
parameters are known.

• To summarize:
Our input was a set of N = 8+ corresponding points from two 

images taken with cameras of known intrinsic parameters. The 
extrinsic parameters of the stereo system (i.e. rotation and 
translation between the optical axes of the two cameras) are 
unknown.

 In such a case, you can estimate only the direction of the baseline 
vector (i.e. translation direction T) and not its magnitude.

 You can estimate the 3D coordinates of the points only up to an 
unknown scale.

 I will once again remind you: we assume correspondences were 
available or were manually marked. Automated correspondences 
is not an easy problem, and we will study it soon.



3D reconstruction: intrinsic and 
extrinsic parameters are unknown

• Consider equations for a corresponding pair of 
points:

• Now consider:
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3D reconstruction: intrinsic and 
extrinsic parameters are unknown

• This means that for any invertible matrix A
(size 4 by 4), exactly the same pair of images 
would be produced by cameras with 
projection matrices P1A and P2A, and 3D 
points whose coordinates are given by 

{A-1(Xi|Yi|Zi|1)t}.



Correspondence problem

• Several methods:

Correlations/squared difference based 
methods

Optimization method for inferring the 
disparity map

 Feature-based methods/ Constrained 
methods – based on dynamic programming



Assumptions

• We will assume the case of coordinate systems of 
the two cameras being parallel (only a 
simplification – the method is applicable to the 
more general case), and their X axes being 
parallel to the baseline.

• Consider pl = (xl,yl) and pr = (xr,yr) are images of a 
given point (X,Y,Z) in the two cameras.

• Assume that the gray-levels of corresponding 
points in the two images are equal.

• So, Il (xl,yl) = Ir(xr,yr).



Assumptions

• Is this brightness constancy assumption valid 
here?

• Yes, if object is Lambertian.

• Violations: noise, specularity, shadows, 
occlusion, non-Lambertian surfaces



Remember: epipolar constraint!

But ambiguity remains!



For each epipolar line

For each pixel in the left image

• compare with every pixel on same epipolar line in right image

• pick pixel with minimum match cost

This leaves too much ambiguity, so:

Improvement:  match patches (also called windows)
(Seitz)

Slide taken 
from a 
University of 
Washington 
course on 
computer 
vision – Steve 
Seitz

Method 1: Comparing patches using 
correlation or squared differences



Method 1: Correlation or squared 
difference

• Assume most scene points are visible from 
both cameras (perfectly reasonable)

• Corresponding image regions are similar.

• Define image region as a square-shaped patch 
of size (2K+1) x (2K+1). 



Method 1: Correlation or squared 
difference

• For each pixel (xl,yl) in Il, and every possible 
displacement (d(x),0), find coordinates (xr,yr)= 
(xl,yl)+(d(x),0) in Ir such that the SSD is 
minimized or Correlation is maximized:
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R(pl) – the search window –
chosen to be small to avoid very 
faraway similar patches from 
being selected
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Method 1: Correlation or squared 
difference

• If there is illumination difference between the 
two images, you can maximize normalized 
cross-correlation instead
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W = 3 W = 20

• Effect of window size

• Some approaches have been developed to use an 
adaptive window size (try multiple sizes and select 
best match)

(Seitz)
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Method 2: Feature-based methods

• Instead of computing SSD over intensity, 
compute it over features such as some 
combination of

(i) image gradient magnitude/orientation

(ii) average/variance of intensity values in a 
window

• The latter may make the search faster. 



Method 3: Optimization method to 
infer disparity map
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Method 3: Variational method to infer 
disparity map
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Taking derivatives w.r.t. d(x,y):

We can solve for d(x,y) at all locations iteratively using methods 
such as Jacobi.



Method 4: Dynamic programming

• There is one important constraint we didn’t 
impose so far! Ordering constraint.

Ordering constraint… …and its failure



The ordering constraint fails if a given 3-D point 
(N here) falls onto the forbidden zone of another 
3-D point (M). In the left image ($\Pi$), m is to 
the right of n, but in the right image ($\Pi'$), this 
ordering is reversed.

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT11/node5.html
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Method 4: Dynamic programming
• Step 1: Run an edge detection algorithm on both 

images.
• Remember: As we assumed parallel optical axes 

along Z direction with X-direction baseline, the 
epipolar lines are horizontal.

• Step 2: For each scanline Ll (epipolar line) in the 
left image, form a list of edge points. Form a 
similar list of edge points in the right image on 
the same scanline (denoted Lr). 

• The number of points in these lists may be 
unequal – let’s denote it as M and N respectively.





Method 4: Dynamic programming
• We want to assign nodes from the left list to nodes 

in the right one. 

• The ordering constraint must be obeyed – if point al

is located before bl on Ll, then ar (the node to which 
al is assigned) must be located before br (the node 
to which bl is assigned) on Lr. 

• The assignment of correspondences can be framed 
as a problem of finding a path in a bounded 2D grid 
with top-left corner at (0,0) and bottom-right corner 
at (M,N) (see next slide).



Source of figure: Ohta and 
Kanade, “Stereo by Intra- and 
Inter- scanline search using 
dynamic programming”, IEEE 
TPAMI, 1985

 Edge points on left scanline – vertical 
lines

 Edge points on right scanline –
horizontal lines

 Find a legal path through this grid from 
grid-point (0,0) to grid-point (M,N) 
having least cost. A legal path moves 
from top-left to right-bottom corner of 
the grid monotonically, i.e. without 
moving backwards.

 A path contains a list of grid-points. 
Grid-point q = (m,n) is part of a path if 
edge point m in Ll is assigned to edge 
point n in Lr. 

Vertical lines: edges on the left 
scanline
Horizontal lines: edges on the 
right scanline
Grid-points = points of 
intersection of the horizontal and 
vertical lines



Method 4: Dynamic programming

• While searching for correspondence between 
a pair of edge points, one on Ll (say point pl) 
and one on Lr (say point pr), the edge points 
on the left of pl and pr (on Ll and Lr

respectively) should already be processed!

• Start-point and end-point of Ll and Lr are both 
treated as edge-points for convenience.



Method 4: Dynamic programming

• We will denote the cost of a path from grid-point 
k to grid-point m as D(m,k). If k = (0,0) (i.e. top-
left corner of the grid), then we simply denote 
the cost as D(m).

• The cost of a path is the sum total of the costs of 
its constituent primitive paths. A primitive path 
between grid-points k and m is a path that 
consists of a single straight line segment.

• The cost of the primitive path between m and k is 
denoted as d(m,k).



Method 4: Dynamic programming



Let grid-point m = (al,ar) and let grid-point m’ = (bl,br).
Then d(m,m’) = some measure of similarity between the intensity values in the interval 
(bl,al) on Ll and the interval (br,ar) on Lr. 

Lr

Ll

m=(al,ar)
m’=(bl,br)



Method 4: Dynamic programming

• Occlusions are intervals on the left scanline which 
have no match in the right scanline – represented 
by horizontal primitive paths (i = 0, in i = (i,j)).

• Disocclusions are intervals on the right scanline
that have no match from the left scanline –
represented by vertical primitive paths (j = 0, in i
= (i,j)).

• Occlusions and disocclusions are assigned fixed 
costs.



Stereo Correspondences

… …

Left scanline Right scanline
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Stereo Correspondences

… …
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Search Over Correspondences

Three cases:

–Sequential – add cost of match (small if intensities agree)

–Occluded – add cost of no match (large cost)

–Disoccluded – add cost of no match (large cost)

Left scanline

Right scanline

Occluded Pixels

Disoccluded Pixels

Slide taken from a University of Washington course on 
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Stereo Matching with Dynamic 
Programming

Dynamic programming yields the 
optimal path through grid. This is 
the best set of matches that 
satisfy the ordering constraint
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