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Abstract

Blind compressive sensing (CS) is considered for reconstruction of hyperspectral data imaged by a

coded aperture camera. The measurements are manifested as a superposition of the coded wavelength-

dependent data, with the ambient three-dimensional hyperspectral datacube mapped to a two-dimensional

measurement. The hyperspectral datacube is recovered using a Bayesian implementation of blind CS.

Several demonstration experiments are presented, including measurements performed using a coded

aperture snapshot spectral imager (CASSI) camera. The proposed approach is capable of efficiently

reconstructing large hyperspectral datacubes. Comparisons are made between the proposed algorithm

and other techniques employed in compressive sensing, dictionary learning and matrix factorization.

Index Terms

hyperspectral images, image reconstruction, projective transformation, dictionary learning, non-parametric

Bayesian, Beta-Bernoulli model, coded aperture snapshot spectral imager (CASSI).

I. INTRODUCTION

Feature-specific [1] and compressive sensing (CS) [2]–[4] have recently emerged as important areas

of research in image sensing and processing. Compressive sensing has been particularly successful

in multidimensional imaging applications, including magnetic resonance [5], projection [6], [7] and

diffraction tomography [8], spectral imaging [9], [10] and video [11], [12]. Conventional sensing systems

typically first acquire data in an uncompressed form (e.g., individual pixels in an image) and then perform

compression subsequently, for storage or communication. In contrast, CS involves acquisition of the data

in an already compressed form, reducing the quantity of data that need be measured in the first place.

To perform CS, the underlying signal must be sparse or compressible in a basis or frame. In CS the

underlying signal to be measured is projected onto a set of vectors, and the vectors that define these
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compressive measurements should be incoherent with the vectors defining the basis/frame [4], [13]. If

these conditions are met, one may achieve highly accurate signal reconstruction (even perfect, under

appropriate conditions), using nonlinear inversion algorithms.

In most CS research it is assumed that one knows a priori the underlying basis in which the signal is

compressible, with wavelets and local cosines [14] popular choices. Let x ∈ RM represent the underlying

signal of interest, and x = Ψc̃ + ν̃, with ν̃ ∈ RM ; the columns of Ψ ∈ RM×M define an orthonormal

basis, c̃ ∈ RM is sparse (i.e., ‖c̃‖0 �M ), and ‖ν̃‖2 � ‖x‖2. The vector ν̃ represents residual typically

omitted after lossy compression [14].

Rather than directly measuring x, in CS we seek to measure y ∈ Rm, with m � M ; measurements

are defined by projecting x onto each of the rows of Σ ∈ Rm×M . Specifically, we measure y = Φc̃+ ε̃,

with Φ = ΣΨ and ε̃ = Σν̃ + δ̃; δ̃ accounts for additional measurement noise. The aforementioned

incoherence is desired between the rows of Σ and columns of Ψ. Several nonlinear inversion algorithms

have been developed for CS inversion and related problems [15]–[20].

In this paper we consider an alternative measurement construction and inverse problem. Rather than

seeking to measure data associated with a single x ∈ RM , we seek to simultaneously recover multiple

{xi}i=1,N , and since we analyze N signals jointly, we also infer the underlying dictionary with which

the data may be represented. Specifically, we wish to measure {yi}i=1,N and jointly recover {xi}i=1,N ,

with xi ∈ RM and yi ∈ Rm, again with m � M . It is assumed that each xi = Dci + νi, where

D ∈ RM×K , and typically K > M (D is an overcomplete dictionary); ci is sparse, and νi again

represents residual. Each measurement is of the form yi = Φici + εi, with Φi ∈ Rm×K defined in terms

of matrix Σi ∈ Rm×M as Φi = ΣiD, and εi = Σiνi + δi. In [21] the authors assumed Σi was the

same for all i, and in [22] it was demonstrated that there are significant advantages to allowing Σi and

hence Φi to change with index i. In [21], [22] theoretical underpinnings are developed, with illustrative

simulated experiments; in this paper we demonstrate how this framework may be applied to a real CS

camera, with application to hyperspectral imaging. A key distinction with conventional CS is that we

seek to recover D and {ci}i=1,N simultaneously, implying that when performing the measurement we

are “blind” to the underlying D in which each xi may be sparsely rendered. This is achievable because

we process N signals {yi}i=1,N jointly, and the framework has been referred to as blind CS [21].

Signal models of the form xi = Dci + νi are also called factor models, where the columns of D

represent factor loadings. If one assumes that {ci}i=1,N are block sparse (the sparsity patterns of {ci}i=1,N

are manifested in B � N blocks), and if νi is assumed to be Gaussian, then this may also be viewed as

a Gaussian mixture model (GMM). Models of this form have been employed successfully in CS [23].
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The GMM representation may be used to approximate a manifold [23], and manifold signal models have

also proven effective in CS [24]. The xi = Dci+νi representation is also related to a union-of-subspace

model [25], particularly when {ci}i=1,N are block sparse. The factor model, GMM, manifold and union-

of-subspace models for xi have been demonstrated to often require far fewer CS measurements [23]–[25]

than the ortho-basis model xi = Ψc̃i + ν̃i. While the reduced number of CS measurements required of

such formulations is attractive, previous CS research along these lines has typically assumed a priori

knowledge of the detailed signal model. One therefore implicitly assumes prior access to appropriate

training data, with which the signal model (e.g., dictionary D) may be learned; access to such data may

not always be possible. In blind CS [21], [22] the form of the signal model xi = Dci + νi is assumed,

but D and {ci}i=1,N are inferred jointly based on {yi}i=1,N (implying joint learning of the detailed

signal model and associated data {xi}i=1,N ).

Blind CS is related to dictionary learning [26]–[28], in which one is given {xi}i=1,N , and the goal is

to infer the dictionary D. In many examples of this form one is given a large image, which is divided into

small (overlapping) blocks (“patches”), with the collection of N patches defining {xi}i=1,N . Application

areas include image denoising and recovery of missing pixels (“inpainting”). In most previous dictionary

learning research the underlying data {xi}i=1,N was assumed observed (at least partially, in the context

of inpainting), and compressive measurements were not employed.

We extend dictionary learning to blind CS, and demonstrate how this framework may be utilized to

analyze data measured by a real CS camera. We again note that while there exists significant prior

research on theoretical aspects of CS [21], [22], there is very little work on its application to a real

physical system. Specifically, we consider a coded aperture snapshot spectral imaging (CASSI) camera

[29], [30], and demonstrate that data measured by such a system is ideally matched to the blind-CS

paradigm. Previous inversion algorithms applied to CASSI data did not employ the blind-CS perspective.

The reconstruction was accomplished using optimization algorithms, such as gradient projection for sparse

reconstruction (GPSR) [29], and two-step iterative shrinkage/thresholding (TwIST) [30]. GPSR assumes

sparsity of the entire image in a fixed (wavelet) basis, while TwIST is based on a piecewise-flat spatial

intensity model for hyperspectral images. These methods do not account for correlation in the datacube as

a function of wavelength, nor do they explicitly take into account the non-local self-similarity of natural

scenes [31]. We develop a new inversion framework based on Bayesian dictionary learning, in which (i)

a dictionary is learned to compactly represent patches in the form of small spatio-spectral cubes, and (ii)

a Gaussian process is employed to explicitly account for correlation with wavelength. Related research

was considered in [32], but each row of Σi was composed of all zeros and a single one. In this paper
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we demonstrate how these methods may be applied to the CASSI camera, with more sophisticated Σi.

The remainder of the paper is organized as follows. In Section II we present a summary of the CASSI

camera, and how it yields measurements that are well aligned with the blind-CS paradigm. In Section

III we describe how the proposed Bayesian dictionary-learning framework may be employed for blind-

CS inversion. Experimental results are presented in Section IV, with comparison to alternative inversion

algorithms. Some issues and observations pertaining to optimal aperture code design in the CASSI system

are discussed in Section V. Conclusions are provided in Section VI.

II. CASSI CAMERA AND BLIND CS

A. Mathematical representation of CASSI measurement

Assume we are interested in measuring a hyperspectral datacube X ∈ RNx×Ny×Nλ , where the data

at each wavelength corresponds to an Nx × Ny image, and Nλ represents the number of wavelengths.

Let Xj ∈ RNx×Ny represent the image at wavelength λj , for j ∈ {1, . . . , Nλ}. In a CASSI camera,

each of the Xj is multiplied by the same binary code C ∈ {0, 1}Nx×Ny , where typically the code is

constituted at random, with each element drawn Bernoulli(p), with p ∈ (0, 1) (typically p = 0.5). After

this encoding, each wavelength-dependent image is represented as X̂j = Xj · C, where · denotes a

pointwise or Hadamard product.

Let X̂j(u, v) represent pixel (u, v) in image X̂j . We now define a shifted version of X̂j , denoted Sj ;

Sj(u, v) = X̂j(u − `j , v), where `j > 0 denotes the shift in pixels at wavelength λj , with `j 6= `j′

for j 6= j′; typically the shift `j is a smooth increasing function of wavelength, manifested physically

via a dispersive element [9], [10]. In defining Sj(u, v) = X̂j(u − `j , v), we only consider u for which

u− `j ∈ {1, . . . , Nx}, and other components of Sj(u, v) will not be measured, as made clear below.

The above construction yields a set of shifted, wavelength-dependent images {Sj}j=1,Nλ . The CASSI

measurement is a single two-dimensional image M, where component M(u, v) =
∑Nλ

j=1 Sj(u, v), de-

fined for all v ∈ {1, . . . , Ny} and u for which Sj is defined for all j. Note that component M(u, v)

corresponds to a superposition of coded data from all wavelengths, and because of the shifts {`j}j=1,Nλ ,

the contribution toward M(u, v) at the different wavelengths corresponds to a different spatial location

in the original datacube X. This also implies that the portion of the coded aperture contributing toward

M(u, v) is different for each of the wavelengths.

A schematic of the physical composition of the CASSI camera is depicted in Figure 1. Note that

the wavelength-dependent shift is manifested with a dispersive element [29], [30], characterized by

wavelength-dependent velocity through a material of fixed dimension.
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Fig. 1. Summary of CASSI measurement process (see [30] for description of physical hardware). (a) The CASSI measurement

corresponds to passive hyper spectral emissions from an object (left) which manifests space-dependent images at multiple

wavelengths. Each of these wavelength-dependent images is point multiplied by a binary spatial coded aperture. A dispersive

element then causes a wavelength-dependent translation in one dimension. The final 2D CASSI measurement corresponds to

summing all of the wavelength-dependent data at a given spatial pixel. (b) The sum of space-dependent pixels may be interpreted

as summing a “sheared” coded mini-datacube.

B. Blind CS representation

Consider a d×d contiguous block of pixels in the measured CASSI image M; let this set of pixels be

denoted yi ∈ Rm, where m = d2. Because of the wavelength-dependent shift through the hyperspectral

datacube through which M is constituted, there is a spatially sheared set of voxels from the original

datacube that contribute toward yi (see Figure 1); let this sheared subset of voxels define a vector

xi ∈ RM , where M = Nλd
2. Further, we may consider all possible (overlapping) d × d contiguous

patches of pixels in M, yielding the set of measurement vectors {yi}i=1,N , with corresponding sheared

January 29, 2013 DRAFT



6

mini-datacubes {xi}i=1,N .

We model each xi in terms of a dictionary xi = Dci+νi, with ci sparse and ‖νi‖2 � ‖xi‖2. Further,

we may express yi = Φici + εi, with Φi = ΣiD and with εi as defined in the Introduction. With the

CASSI code design, each Σi is a known sparse binary vector, and the dependence on i is naturally

manifested by the CASSI spatially-dependent coded aperture and wavelength-dependent shifts.

We consider the importance of the two key components of the CASSI design: (a) wavelength-dependent

shifts (dispersion) and (b) the coded aperture. Concerning (b), if there is no coded aperture, then the

projections Σi are independent of index i. It was proven in [22] that the effectiveness of blind CS is

significantly enhanced if Σi changes with i. Additionally, if there is no wavelength-dependent code,

any permutation of the order of the wavelength-dependent signals will yield the same measurement,

undermining uniqueness of the inversion. Concerning (a), if there is no dispersion, the measurement M

would have a form like the original code, with data entirely absent at spatial locations at which the code

blocks photons. Further, at the points at which photons are not blocked by the code, all spectral bands at

a given spatial location are simply added to constitute the measurement. This implies that all pixels in M

at which non-zero data are measured correspond to the same type of projection measurement (with no

spatial dependence to the projection measurement), which the theory in [22] indicates is detrimental to

blind-CS performance. Through the joint use of a coded aperture and dispersion, each Σi has a unique

form across each d × d spatial patch and as a function of wavelength, as encouraged in [22] (i.e., the

{Σi}i=1,N have spatial and spectral variation as a function of i). The importance of these features of the

CASSI measurement are discussed further in Section III-D, when discussing computations.

C. Multi-frame CASSI

The compression rate of the CASSI system as discussed above is Nλ : 1, as there is a single image

M measured, from which the goal is to recover Nλ spectral bands, each of the same spatial extent as

M. In [30] the authors devised a means by which the compression rate can be diminished (with the

richness of measured data enhanced), through the measurement of T images {Mt}t=1,T , where each

Mt is measured in the same basic form as described above. To implement this physically, the camera

is placed on a piezoelectric translator, allowing quick translation of the camera to T different positions

relative to the scene being measured. While different coding patterns could be obtained using a rotating

wheel of masks as well, the translator system was seen to be adequate, and in fact, provided two degrees

of freedom (translations in X and Y directions) as opposed to a single in-plane rotation. Since the scene

is fixed (or changes slowly relative to the piezoelectric translations), the T snapshots effectively yield
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T different coded projections on a given hyperspectral datacube (while the code is the same for all T

measurements, it is shifted to different positions with respect to the scene being measured). Each of

the T images, {Mt}t=1,T , is divided into patches of the form {yit}i=1,N ;t=1,T , which are analyzed as

discussed above, effectively increasing the quantity of data available for inversion. Multi-frame CASSI

has a compression rate of Nλ : T .

III. BAYESIAN BLIND CS INVERSION

A. Basic model

Beta process factor analysis (BPFA) is a non-parametric Bayesian dictionary learning technique that has

been applied for denoising and inpainting of grayscale and RGB images [27], and it has also been utilized

for inpainting hyperspectral images [32] with substantial missing data. The beta process is coupled with

a Bernoulli process, to impose explicit sparseness on the coefficients {ci}i=1,N . Specifically, consider

the representation

yi = ΣiDci + εi, ci = si · zi, εi ∼ N (0,
1

γε
Im), si ∼ N (0,

1

γs
IK) (1)

where zi ∈ {0, 1}K , symbol · again represents the Hadamard vector product, and Im denotes the M×M

identity matrix. To draw sparse binary vectors {zi}i=1,N , consider

zik ∼ Bernoulli(πk), πk ∼ Beta(aπ/K, bπ(K − 1)/K), dk ∼ f(d) (2)

with the prior f(d) discussed below; πk defines the probability with which dictionary element dk is

used to represent any of the xi. In the limit K → ∞, note that for finite aπ and bπ each draw

from Beta(aπ/K, bπ(K − 1)/K) is favored to be near zero, implying that it is likely that most πk

will be negligibly small, and most dictionary elements {dk}k=1,K are unlikely to be utilized when

representing {xi}i=1,N . One may show that the number of non-zero components in each zi is drawn

from Poisson(aπ/bπ), and therefore although the number of dictionary elements K goes to infinity, the

number of dictionary elements used to represent any xi is finite (i.e., ‖ci‖0 is finite). Gamma priors

are placed on γs and γε, γs ∼ Gamma(as, bs) and γε ∼ Gamma(aε, bε), with hyperparameter settings

discussed when presenting results.

Note that we have assumed a zero mean i.i.d. Gaussian model for each the noise vectors {εi}i=1,N .

We have visually noticed that the noise affecting actual CASSI measurements has a very low variance.

The noise in an actual CASSI system may follow a statistical model different from the zero mean i.i.d.

Gaussian model. However, we do not consider that the incorporation of such a model will have any

noticeable effect on our results.
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Concerning the prior f(d) on the columns of D, we wish to impose the prior belief that the hy-

perspectral datacube is likely (but not required) to vary smoothly as a function of spatial location and

wavelength. We therefore draw

dk ∼ N (0,Ω) (3)

where Ω is an M × M covariance matrix. The form of Ω defines the correlation structure imposed

on each dk. The following construction has proven effective in the context of the hyperspectral data

considered here. Recall that each dk is used to expand/represent a sheared mini-datacube xi, i.e., xi =∑K
k=1 cikdk + νi, where ci = (ci1, . . . , ciK)T is sparse and ‖νi‖2 � ‖xi‖2. Let rj ∈ R2 represent

the spatial location and λj the wavelength of the jth component of xi. A distance is defined between

components j and j′ of xi, as

`(j, j′) = ‖rj − rj′‖22 + β(λj − λj′)2 (4)

and therefore `(j, j′) characterizes the weighted spatial-spectral difference between components (rj , λj)

and (rj′ , λj′) of any xi. The goal is to impose through Ω that if `(j, j′) is small, then the corresponding

components of xi should be correlated. The (j, j′) component of Ω is defined here as

Ω(j, j′) = exp[−`(j, j′)/2σ2] (5)

We discuss the setting of β and σ when presenting results. Other forms for the definition of `(j, j′) are

clearly possible, with the one considered here an example means of linking correlation in the dictionary

element to spatial-spectral proximity. Note that here, we are representing each mini-datacube xi as a

sparse linear combination of spatio-spectral dictionary vectors {dk}. Thus, we are imposing sparsity in

a spatial as well as spectral sense. Nevertheless, we have found the added regularization afforded by the

GP to be useful, as demonstrated in the experimental results.

B. Multi-frame CASSI

Assume we measure T frames of CASSI measurements, {Mt}t=1,T . Each of these images can be

represented in terms of a set of overlapping d × d patches, as above, and therefore we manifest T

different projection measurements for each underlying xi. Specifically, for xi we perform measurements

yit = ΣitD(si · zi) + εit (6)

where Σit represents the CASSI projection matrix for measurement t of xi. Therefore, the multiframe

CASSI design [30] allows multiple classes of projection measurements on the same xi, substantially
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enhancing robustness for inference of D and {ci}i=1,N , recalling ci = si · zi. The priors within the

Bayesian blind-CS formulation are exactly as elucidated in the previous subsection, but now a given ci

is essentially inferred via multiple {Σit}t=1,T .

C. Relationship to previous models

The basic construction proposed here may be related to other models proposed in the CS and dictionary

learning communities. To see this, note that for multi-frame CASSI the posterior density function of model

parameters may be represented as

p({D, {si}, {zi}, γs, γε, {πk}}|{yit}) ∝ Gamma(γs|as, bs)Gamma(γε|aε, bε) (7)

×
∏
i,t

N (yit|ΣitD(si · zi),
1

γε
Im)

∏
i,k

N (sik|0, γ−1s )Bernoulli(zik|πk)

×
∏
k

N (dk|0,Ω)Beta(πk|aπ/K, bπ(K − 1)/K)

The log of the posterior may therefore be expressed as

− log p({D, {si}, {zi}, γs, γε, {πk}}|{yit}) = (8)

γε
2

∑
i,t ‖yit −ΣitD(si · zi)‖22 + 1

2

∑
k d

T
kΩ−1dk (9)

+ log Gamma(γs|as, bs) + log Gamma(γε|aε, bε) (10)

+γs
2

∑
i,k s

2
ik +

∑
k log Beta(πk|aπ/K, bπ((K − 1)/K) +

∑
i,k log Bernoulli(zik|πk) (11)

In the work considered here we will seek an approximation to the full posterior, via Gibbs sampling,

as discussed in the next subsection. However, there is much related work on effectively seeking a point

approximation for the model parameters, via a maximum a posterior (MAP) solution, corresponding to

inferring model parameters that minimize (8).

The two terms in (9) are widely employed in optimization-based dictionary learning (see for example

[33]–[38], and the references therein). The first term in (9) imposes an `2 fit between the model and

observed data {yit}, and the second term imposes regularization on the dictionary elements {dk}k=1,K ,

which constitute the columns of D. For the special case in which Ω = Im, the second term in (9) reduces

to 1
2

∑
k ‖dk‖22, which corresponds to widely employed `2 regularization on the dictionary elements. The

term log Gamma(γε|aε, bε) effectively imposes regularization on the relative importance of the two terms

in (9), via the weighting γε. The terms in (11) impose explicit sparsity on the weights ci = si · zi, and
γs
2

∑
i,k s

2
ik = γs

2

∑
i ‖si‖22 again imposes `2 regularization on {si}.
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The sparsity manifested via (11) is the most distinctive aspect of the proposed model, relative to

previous optimization-based approaches [33]–[38]. In that work one often places shrinkage priors on the

weights ci, via `1 regularization γs
∑

i ‖ci‖1; in such an approach all the terms in (11) are essentially

just replaced with γs
∑

i ‖ci‖1. So an optimization-based analog to the proposed approach is of the form

[36]

γε
∑
i,t

‖yit −ΣitD(si · zi)‖22 +
∑
k

dTkΩ−1dk + γs
∑
i

‖ci‖1 (12)

In optimization-based approaches one seeks to minimize (12), and the parameters γε and γs are typically

set by hand (e.g., via cross validation). Such approaches may have difficulties for blind CS, for which

there may not be appropriate training data to learn γε and γs a priori. One advantage of the Bayesian

setup is that we infer posterior distributions for γε and γs, along with similar posterior estimates for all

model parameters (there is no cross-validation).

We also note that there are other ways to constitute sparsity of {ci}. Specifically, all of the terms in

(11) may be replaced by a shrinkage prior. Letting cik denote the kth component of ci, we may draw

cik ∼ N (0, α−1ik ), and place a gamma prior separately on each of the αik. Related priors have been

considered in [39]–[41]. We choose to employ the beta-Bernoulli construction because it imposes that

components of ci are exactly zero (not just negligibly small), and via the beta-Bernoulli construction [42],

explicit priors are placed on the number of non-zero components of each ci. However, this is essentially

a modeling choice, and the methods in [39]–[41] may also be employed to impose sparsity (or near

sparsity) on {ci}.

Finally, note that in (7), we have assumed all patches {yit} are statistically independent. This is not an

accurate assumption, as neighboring patches overlap with one another. Within the same basic statistical

framework as discussed above, one may impose statistical dependence (like a Markov random field) on the

binary weights {zi} [43] as a function of spatial location, thereby accounting for statistical dependencies

between proximate patches. We have examined this approach within the context of hyperspectral data,

and have not found significant performance improvement to warrant the added computational complexity

(e.g., one must introduce a Metropolis Hastings step to the computations, which can be expensive).

D. Gibbs Sampling

Inference is performed by Gibbs sampling, which consists of iteratively sampling from the conditional

distribution of each parameter, given the most recent values of the remaining ones [44]. The conditional

distributions given below can all be derived using standard formulae for conjugate priors [45]. In the

following formulae, the symbol ‘−’ refers to ‘all other parameters except the one being sampled’.
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Sampling dk:

p(dk|−) ∝
∏
i,t

N (yit|ΣitD(si · zi),
1

γε
Im)N (dk|0,Ω), (13)

p(dk|−) ∼ N (dk|µdk,Σdk), (14)

Σdk = (Ω−1 + γε
∑
i,t

s2ikz
2
ikΣ

T
itΣit)

−1 (15)

µdk = γεΣdk

∑
i,t

ziksikΣ
T
ity(i,t,−k), (16)

y(i,t,−k) = yit −ΣitD(si · zi) + Σitsikzikdk. (17)

The expression for sampling Σdk (and hence, µdk) reveals the importance of having projections that vary

spatially. While the matrices ΣT
itΣit are of low rank, their (weighted) summation will have full rank,

assuming (a) that there are sufficiently many patches for which zik = 1, and (b) that the {Σit} vary

spatially and employ (non-zero weights) different components of the mini-datacube.

Sampling zik:

p(zik|−) ∼ Bernoulli(
p1

p1 + p0
), (18)

p1 = πk exp (−γε
2

(
∑
t

s2ikd
T
kΣT

itΣitdk − 2sikd
T
kΣT

ity(i,t,−k))), (19)

p0 = 1− πk. (20)

Sampling sik:

p(sik|−) ∼ N (sik|µsik, σsik), (21)

σsik = (γs + γεz
2
ikd

T
kΣT

itΣitdk)
−1, (22)

µsik = γεσsikzikd
T
k

∑
t

ΣT
ity(i,t,−k). (23)

Sampling πk:

p(πk|−) ∼ Beta(aπ/K +
∑
i

zik, bπ(K − 1)/K +N −
∑
i

zik). (24)

Sampling γs:

p(γs|−) ∼ Γ(as +
1

2
KNT, bs +

1

2

∑
i

sTi si). (25)

Sampling γε:

p(γε|−) ∼ Γ(aε +
1

2

∑
i,t

‖Σit‖0, bε +
1

2

∑
i,t

‖yit −ΣitD(si · zi)‖2). (26)

Traditionally, Gibbs sampling is run for many burn-in iterations to allow for mixing, followed by the

collection phase [44].
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IV. EXPERIMENTAL RESULTS

A. Parameter Settings for BPFA

An encoded image of size Nx×Ny is divided into N = (Nx−d+1)(Ny−d+1) overlapping patches,

each of size d× d. When learning the dictionary D, which is shared among all N patches, we typically

select 10 to 20% of the patches (depending on the size of N ), selected uniformly at random from the

different spatial locations in the acquired image. Since N is typically quite large, it has been found that

it is unnecessary to use all N patches from a given image to learn D well. This is because most natural

images exhibit a high degree of self-similarity at the level of small patches [31]. The Gibbs sampler yields

multiple dictionaries (one for each of the collection samples). Computing an average of these dictionary

samples would be inappropriate owing to the possiblity of label switching or sign changes. Hence, the

maximum likelihood sample is used to define D. In other words, out of Nc collection samples, we

choose sample number l (1 ≤ l ≤ Nc), if ∀m, l 6= m, 1 ≤ m ≤ Nc,
∏K
k=1 p(d

(l)
k |−) ≥

∏K
k=1 p(d

(m)
k |−).

Traditionally, MCMC based methods need to be run for several (typically a few thousand) iterations

to “burn in”, followed by a collection phase where the obtained samples are averaged to yield a final

estimate [44]. However, we observed that the Gibbs sampler yielded excellent results with as few as 30

iterations. Executing more iterations of the Gibbs sampler did not improve the results significantly (and

did not worsen the results). This was also observed for the BPFA model for denoising and inpainting

applications in earlier work in [27], [43]. We don’t have a complete theoretical understanding of this

behavior, but suspect that it may be because the posterior probability density is highly peaked.

After the dictionary is so learned in situ for a given CASSI-measured image, the learned D is then

fixed and used to infer ci for all patches i, and from this an estimate to the underlying patch pixel

values is Dci. Since multiple overlapping patches are employed, the final pixel value at each point in

the underlying image is represented as the average from all overlapping patches (we also average across

collection samples).

We used the same BPFA settings in all experiments, without requiring tuning for specific types of

data. We set K = 32 and d = 4. For a datacube of Nλ wavelengths, the inferred patches are of size

d2Nλ× 1. We set K to a relatively small value, to aid computational efficiency; one may make K large

and infer the subset of dictionary elements required, at increased computational expense [27], [46] (this

was found to be unnecessary). The parameters for the hyperpriors were set as follows: aπ = 0, bπ = N
2 ,

aε = bε = aα = bα = 10−6. The parameters of the GP prior for the dictionary elements were set to

σ = 5, β = 1. These are standard parameter settings, i.e., they were not ‘tuned’. Moreover, perturbations to
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the hyperparameters to within ±20% of their original values had no effect on the reconstruction results.

Importantly, we have also empirically observed that in situ dictionary learning on each new CASSI

image was necessary to obtain good inversion results (the data-dependent dictionaries aided inversion

performance).

B. Comparisons with Other Methods

BPFA results are compared to the following alternative methods:

1) TwIST (Two-step Iterative Shrinkage/Thresholding) [19]. This algorithm performs a descent on

energy function

E(x) =

T∑
t=1

‖yt −Σtx‖2 + τΥ(x). (27)

where x and {y}t=1,T are the original and encoded data, respectively. The term Υ(x) is a

regularizer, which could be chosen to impose sparsity in some basis (e.g., wavelet), or chosen

to be the total variation (TV) of the underlying 3D spatio-spectral cube x (as considered in this

paper). The TV term is defined as follows:

TV(x) =
∑
λ

∑
iy,ix

√
(x(iy + 1, ix, λ)− x(iy, ix, λ))2 + (x(iy, ix + 1, λ)− x(iy, ix, λ))2 (28)

where iy, ix index discrete spatial coordinates, and λ indexes wavelengths. The parameter τ is

a tradeoff between the likelihood and the regularizer, and depends on the noise variance. This

algorithm was used for the CASSI inversion in [30], where superior results have been reported

using the TV regularizer as opposed to a sparsity-based term. We performed experiments with

different values of τ and wherever possible picked the value of τ that yielded the least mean

squared error (MSE) with respect to the ground truth (when available). Generally, we observed that

this “optimal” τ was close to 0.3 (the scale of the original data was [0,1]).

2) KSVD [26]. Tuned here for the multi-frame CASSI problem (T > 1), KSVD seeks to minimize

E(D,S = [s1|s2|...|sN ]) =
∑
i,t

‖yit −ΣitDsi‖2 s.t. ∀i, ‖si‖0 ≤ T0

where D ∈ RMNλ×K is a dictionary, S ∈ RK×N is a matrix of dictionary coefficients, and T0

is a parameter that governs the sparsity of the dictionary codes. In practice the optimization for

KSVD proceeds in two phases. Given a fixed dictionary, sparse coding is typically performed using

Orthogonal Matching Pursuit (OMP) using either a fixed mean squared error e (as we do here) or

a fixed sparsity level T0. The dictionary is then updated atom by atom, using an incremental form
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of the singular value decomposition (SVD) of a carefully defined error matrix [26]. The sparse

coding and dictionary update steps are performed in an iterative manner. KSVD requires careful

selection of various parameters: the number of dictionary atoms K and the error e for OMP. In our

experiments, we set K = 32 for the sake of computational speed (and consistency with the BPFA

settings) and e = 0.002 (the latter because measurement noise was typically very low).

3) Max-norm matrix factorization (referred to hereafter as MaxNorm) [47]. This is a state-of the-art

matrix factorization method, which uses the matrix “max-norm” as a regularizer, and has been

successful in matrix completion problems. Tuned here for the multi-frame CASSI problem (again,

this mean T > 1 CASSI images are performed per hyperspectral datacube), this technique seeks

to minimize

E(D,S = [s1|s2|...|sN ]) =
∑
i,t

‖yit −ΣitDsi‖2 s.t. (29)

‖D‖22,∞ ≤ B, ‖ST ‖22,∞ ≤ B

where D ∈ RMNλ×K is a dictionary and S ∈ RK×N is a matrix of dictionary coefficients. The

max-norm of matrix D is defined as ‖D‖22,∞ = maxj
√∑

k D2
jk. The max-norm implicitly imposes

an upper bound B on the maximum absolute value of any pixel from the underlying image. In

our experiments, we set B = 1 as the original data had elements in the range [0,1], and K = 32

(consistent with the BPFA and KSVD settings). The matrices D and S were inferred using stochastic

gradient descent with a dynamic step-size, on mini-batches of 1500 patches. Performing the gradient

descent usually violates the max-norm constraints, even when starting from a feasible point, and

therefore it was necessary to enforce the constraints by projection of the updated variables onto

the constraint set. This was done by rescaling those rows of D and columns of S whose norms

exceeded
√
B, in order to make those norms equal to

√
B (see Section 3 of [47]). The step-size

for the descent was chosen to be the maximum value in the interval (0,2], which decreased the

energy E(D,S) after imposition of the constraints.

For TwIST and KSVD, we used software provided online1, and suitably modified them for the CASSI

problem. For MaxNorm, we used our own implementation of the algorithm described in [47]. As in

the BPFA computations, for MaxNorm and KSVD we used only a small fraction (10 to 20%) of the

overlapping patches for dictionary learning. All patches were sparse-coded and their reconstructions were

averaged to yield the final image.

1http://www.lx.it.pt/∼bioucas/TwIST/TwIST.htm, http://www.cs.technion.ac.il/∼elad/software/
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C. Computation time

We have implemented the BPFA algorithm in C. Reconstruction of a 1000 × 700 × 24 dataset (24

wavelengths) using 8 frames takes 28 minutes on a 3.4 GHz AMD Phenom II processor. This includes

about 7-10 minutes for dictionary learning. The computational requirements of KSVD were similar to

BPFA, while TwIST yielded the fastest reconstructions. In our experience, MaxNorm was computationally

the most expensive method, as it required an adaptive selection of the step-size in gradient descent (taking

care to ensure that the energy does not increase after projection onto the constraint set), and it typically

required a large number of iterations to converge. In our experiments, we set an upper limit of 70 on

the number of iterations of gradient descent in the MaxNorm method; our experiments also revealed that

these many iterations were necessary to obtain a good result.

D. Reconstruction Quality Metrics

The MSE or the PSNR (peak signal to noise ratio) is the most popular measure to evaluate the quality

of a reconstruction, if the underlying ground truth is known. The PSNR is however often not fully

representative of image quality in a perceptual sense [48]. Hence we compute two other measures to

quantify reconstruction quality: (a) the high frequency PSNR or HF-PSNR (defined below), and (b) the

Structural Similarity Index (SSIM) from [48]. Textured regions in an image contain significant high

frequency information, which some techniques like TwIST tend to smooth out. However, the PSNR is a

global quality measure which does not quantify errors in individual spatial frequency bands. Hence, it is

useful to calculate the MSE between the magnitudes of the higher spatial frequency Fourier coefficients

of every channel of the true and reconstructed images. Given a reference image I and an estimate J, this

MSE (averaged over the spectral channels) is given by:

e =
1

Nλ|H|
∑
λ

∑
h∈H
‖Îλ,h − Ĵλ,h‖2 (30)

where Îλ,h refers to the magnitude of the hth Fourier coefficient from the spectral channel λ of the image

I, and H refers to a set of higher frequencies. In our experiments, we divided the frequency plane into

equal-sized bins denoted as bi,j , where i and j are bin indices along the two axes, and 1 ≤ i ≤ 32 and

1 ≤ j ≤ 32. The set H contained frequencies from the bin corresponding to the highest frequencies

from both axes, i.e. from b32,32. The corresponding PSNR value, computed as 10 log10
Îm×Îm

e where

Îm := maxλ,h∈H Îλ,h, is hereafter referred to as HF-PSNR.

The measure SSIM has been proposed in the recent image processing literature [48] to quantify full-

reference grayscale image quality. Its values always lie in the range [0,1], and it is known to represent
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perceptual image quality better than MSE or PSNR [48]. The SSIM is calculated by adding up values

of a local index of similarity between corresponding patches from the two images being compared. The

local similarity index is based on three quantities: the similarity between the mean intensity value of

the two patches, the similarity between the standard deviation of the intensities in the two patches, and

the cross-correlation between the two patches. We compute the SSIM values between every channel of

the true and reconstructed image, and calculate an average of these per-channel SSIM values. The SSIM

values are computed using software provided online2 and using the default patch-size of 11× 11.

E. Results on Synthetic Encodings of Phantoms and Natural Scenes

We first present reconstruction results on three synthesized CASSI datasets, all encoded with a binary

coded mask (with values defined Bernoulli(0.5)) as employed in the real CASSI experiments discussed

below. These experiments employed the forward model (dispersion) characteristic of the actual CASSI

system, and zero-mean white Gaussian noise was added to constitute the final simulated data (with

standard deviation equal to 1% of the maximum amplitude in the hyperspectral datacube). This low noise

is characteristic of the actual CASSI system, and therefore we do not consider high-noise simulations

here, nor do we consider noise from other statistical models. Note that these synthetic examples are linked

to the physical geometry of the CASSI system, as this constitutes a physical manifestation of a blind

CS problem; however, these simulations also demonstrate the ability of the Bayesian blind CS setting on

general problems of this form, which may be extended to systems beyond CASSI (the proposed Bayesian

inversion method is not explicitly tied to the CASSI geometry).

In the simulated CASSI measurements, and in the physical measurements discussed in Section IV-G,

wavelengths from 450-650 nm are considered, except for a phantom dataset for which wavelengths from

500-2000 nm are considered. A “frame” of CASSI images is defined by one of the T two-dimensional

CASSI measurements discussed in Section III-B. For Nλ wavelengths in the inferred datacube, each

spatial image at a particular wavelength is termed a “channel”, and therefore we refer to an Nλ channel

CASSI datacube. In an Nλ measurement, the channels 1, . . . , Nλ are indexed from smallest to largest

measured wavelength. The T different frames are manifested via translations of up to 20 µm (implemented

in practice with a piezo system), which corresponds to a translation of up to 24 pixels. See [30] for details

on how the translations and multiple frames are measured in practice.

The first dataset of size 512× 512× 50 is a synthetically created phantom. The phantom consists of

2https://ece.uwaterloo.ca/∼z70wang/research/ssim/
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17 regions: 16 circularly shaped non-overlapping regions and one region corresponding to a background.

Within each region, the spectral patterns are constant. The spectral patterns used here correspond to those

recorded from a variety of drugs (the reference data were measured using an independent camera, and

will be made available for comparisons). The original spectral patterns for each drug consisted of 1300

wavelengths, out of which we uniformly sampled 50, taking care to preserve the overall (macroscopic)

shape of the original pattern. We refer to these data henceforth as the Phantom data. The second dataset,

of size 1021× 703× 25, is an image of a photograph of birds, observed at 25 wavelengths (henceforth

referred to as the Birds data). The Birds data were acquired using a pushbroom imager built on CASSI

hardware. The coded aperture in the CASSI system was replaced by a vertical slit (of effective width 1

pixel). This system acquires a 2D space-wavelength slice of the 3D data cube in each time step. The full

(noncompressive) data cube for a static object is acquired by translating the slit along the dispersion axis.

This optical system is described in [49]. The third dataset is of size 820× 820× 31 (31 wavelengths). It

was obtained online3, from a hyperspectral image database at the University of Manchester [50]; these

data are henceforth referred to as the Objects data. Sample encoded images of all three datasets, as

well as colored (RGB) pictures of the latter two scenes, are shown in Figure 2. The RGB images are

not spatially aligned with the coded measurements and are provided only for reference. In fact, for the

Objects data, the RGB image even shows a slightly different part of the scene as compared to what was

imaged with the hyperspectral sensor.

We display the reconstruction results by plotting images corresponding to a subset of the wavelengths

from the reconstructed hyperspectral image. The dominant wavelengths in the datasets in this paper fall

within the visible spectrum (except for the Phantom data). Hence, the data at wavelength λ (in all datasets

except the Phantom data) can plotted using a specifically chosen color in the RGB format. This color

is obtained using a “color matching function” which takes two inputs: the wavelength λ and a signal

magnitude value, and outputs an RGB tuple. The particular color matching function we used is CIE 1964

10-degree (International Commission on Illumination), a convention commonly used in color display4

[51]. For the Phantom dataset, the results are displayed using a simple grayscale map. All hyperspectral

datacubes are plotted on a common scale from 0 to 1. Note that images at different wavelengths are not

individually rescaled. Although the birds dataset includes one violet/indigo colored bird, the wavelengths

corresponding to these colors (≤ 450 nm) were masked off with a band-pass filter during actual acquisition

3http://personalpages.manchester.ac.uk/staff/david.foster/Hyperspectral images of natural scenes 02.html
4http://cvrl.ioo.ucl.ac.uk/cmfs.htm
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TABLE I

RECONSTRUCTION QUALITY MEASURES (PSNR, HF-PSNR, SSIM) FOR 3-FRAME (T = 3) RECONSTRUCTION USING

BPFA, KSVD, MAXNORM AND TWIST.

Dataset Quality metric BPFA KSVD MaxNorm TwIST

Phantom (512× 512× 45) PSNR 30.9 17 23.76 22.36

HF-PSNR 41.61 28 31.3 30.52

SSIM 0.934 0.6 0.84 0.8388

Birds (synthetic) (1000× 703× 25) PSNR 30.8 17 25 29.33

HF-PSNR 45.11 26.8 27.51 41.31

SSIM 0.95 0.4 0.81 0.89

Scene with objects (820× 820× 31) PSNR 27.04 25.18 19.89 26.74

HF-PSNR 58.19 55.53 51.04 56.28

SSIM 0.824 0.789 0.6 0.759

of the underlying data used to synthesize CASSI measurements.

Reconstruction results for the three datasets (for a subset of the wavelengths) are shown in Figures

3, 4 and 5, respectively, alongside corresponding ground-truth and reconstruction PSNRs. The PSNR,

HF-PSNR and SSIM values are all presented in Table I. In case of all three measures, the higher values

correspond to better image quality, and we observe that BPFA always produces significantly higher values

than other methods (this is especially true for the SSIM and HF-PSNR).

Fig. 2. Top row, first image: Example CASSI measurement for the Phantom dataset. Top row, last two images: Example CASSI

measurement (left) and RGB representation (right) for the Birds dataset. Bottom two images: Example CASSI measurement

(left) and RGB representation (right) for the Objects dataset. The RGB representations are not spatially aligned with the coded

measurements (especially for the Objects dataset) and are provided for reference only.
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For the Phantom data (see sample encoded image in Figure 2), we observed that BPFA and MaxNorm

preserved the spectral properties of the data, which TwIST and KSVD were unable to, as evident from

Figure 3. For instance, the signal magnitude in the first and last two channels is very low, a constraint

which KSVD and (to a lesser extent) TwIST fail to satisfy. For several regions, BPFA and MaxNorm

preserve the spectral variation beautifully. This can be observed from the comparative spectral plots in

Figure 6 – the spectral patterns in this figure were averaged over a 5 × 5 neighborhood around points

selected from different regions of the phantom. A point to be noted here is that BPFA easily outperformed

TwIST on this dataset (which has a relatively larger number of channels than the other datasets presented

in this paper) even though the image was a piecewise-constant cartoon, an image model that is favored by

TwIST. BPFA outperformed all methods including MaxNorm in terms of all three image quality metrics.

For the Birds dataset, we observed that BPFA preserves the spectral properties of the data much better

than the other methods, as seen in Figures 4 (compare to Figure 2) and 7. For instance, the signal

magnitude for the first wavelength is actually very low, and hence very little structure is visible in the

original image at this wavelength. While the BPFA result is similar to the ground truth, the TwIST

and KSVD reconstruction (and to a lesser extent the MaxNorm result) show a considerable amount of

(inappropriate) structure at this wavelength. We found that KSVD does not reproduce the variation in

spectral profiles across wavelengths, and tends to produce nearly uniform spectral responses. MaxNorm

preserves spectral patterns well, however it tends to produce noisy artifacts spatially. TwIST tends to erase

subtle textures (a well-known problem with the TV regularizer, which assumes a piece-wise constant

intensity model for natural images). Further, at various various wavelengths, TwIST produces artifacts.

BPFA, on the other hand, preserves the spatial textures well. In the bottom row of Figure 4, we show

a zoomed-in version of a small portion of the 19th wavelength of the bird image (denoting the first

wavelength the smallest considered), and its reconstruction using BPFA, KSVD, MaxNorm and TwIST.

One can see that MaxNorm produces noisy grainy artifacts, while TwIST tends to erase subtle textures

present on the head and below the eye of the bird. The BPFA result is devoid of these artifacts. Moreover,

the BPFA result produced a higher PSNR value than other methods. In Figure 7, we also present sample

spectral plots at a few points – the spectral patterns are averaged over a small spatial neighborhood of

5× 5. One can observe that the BPFA plots are closer to the ground truth.

Given the success of the KSVD algorithm in denoising and inpainting of grayscale images, the

inadequate performance of KSVD on reconstruction from CASSI data warrants detailed explanation.

To begin with, we again note that the exact same number of dictionary elements was used in both KSVD

and BPFA, and the amount of noise added in the simulated snapshots was negligible. The tendency of
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KSVD to produce nearly uniform spectral responses has been observed earlier for color (RGB) images

in [28], and the authors used a special weighting scheme (designed for RGB) inside the OMP sparse

coding to overcome this problem. However, here we are considering diverse spectral patterns over several

wavelengths, and devising a similarly appropriate scheme is beyond the scope of this paper. In fact, in

previous work on denoising and inpainting of hyperspectral images [32], it has been observed that BPFA

outperformed KSVD significantly. Furthermore, there is a lot of difference in the manner in which sparse

codes are updated in KSVD and BPFA. Given a dictionary, the sparse codes for each patch are updated

independently in KSVD. In BPFA, we have a hierarchical model for {sik} as well as {zik}, which are

governed by parameters γs and {πk} respectively. The parameters γs and {πk} are also inferred along

with the dictionary vectors and the dictionary coefficients. While such dependencies on the sparse codes

could be adopted within the KSVD algorithm, doing so falls outside the scope of our paper. A popular

optimization-based method that incorporates the notion of group sparsity is the method proposed in [52],

where it was used for image denoising and demosaicking. However, this method essentially works with

groups of structurally similar patches. Finding groups of similar patches is a meaningful operation in

experiments on image denoising or demosaicking. However, in the case of experiments with a system

like CASSI, this is not possible, since the original signal has been modulated by random aperture patterns

to produce the measured snapshots.

For the Objects data (see Figures 2 and 5), which has greater spectral diversity than the Birds dataset,

we make the following observations. BPFA and TwIST are able to recover the spectral properties well,

although BPFA produced a slightly higher PSNR. However, the BPFA result preserves some object

boundaries better than the TwIST result, as shown in Figure 8; observe how TwIST blurs out the

boundaries of the robot and the letter ‘P’, which BPFA preserves. The KSVD result shows some errors in

recovery of the spectral properties; for instance, it produces undesirably high intensities for the maroon

rucksack and the red-colored block in the ‘violet’, ‘blue’ and ‘green’ channels - see rows 1, 2 and 3

(channels 2, 4 and 6) of Figure 5. Similarly, although the MaxNorm algorithm performed well on the

Birds dataset, it often failed to preserve spectral variations on the Objects data. For instance, it produces

a much stronger intensity on the red vase for wavelength 500 nm (in row 3 of Figure 5) or the maroon

rucksack for wavelength 660 nm (in row 5 of Figure 5), as compared to the ground truth (see Figure 2).

Here again, BPFA produced a higher PSNR value than other methods.

The GP prior on the dictionary elements imposes the belief that the spectral patterns vary smoothly, a

reasonable assumption obeyed by hyperspectral data, including all the simulated datasets we have worked

with as well as the data underlying the real CASSI acquisitions from Section IV-G. We studied the effect
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TABLE II

EFFECT OF GP ON RECONSTRUCTION (SYNTHESIZED OBJECT DATASET).

# samples for dictionary learning PSNR with GP PSNR without GP

5000 24.82 22.68

10000 25.99 23.81

20000 26.45 24.66

50000 27.2 25.2

of the GP prior on BPFA dictionary elements as follows. For the Object data with T = 3 CASSI frames,

we used different numbers of patches (of size 4 × 4) in dictionary learning, from 5000 to 50,000 per

frame (out of a total of 6.9 × 105 patches). Keeping all other parameters the same, we performed the

reconstruction with and without the GP prior (σ = 5) on the dictionary elements. As observed in Table

II, the reconstruction PSNRs were better with the GP prior than without. The relative advantages of a

good GP prior are the strongest with smaller sample sizes. With increasing sample sizes, the GP prior

may not be not be as important (but this comes at increased computational cost).

F. Simultaneous Reconstruction and Inpainting

For the Birds dataset, we performed an additional experiment using BPFA: we deliberately removed

(i.e., set to zero) 70% of the pixels from the encoded CASSI images, with these removed pixels selected at

random. This implies only 30% of the data need be measured, consistent with related studies with BPFA

applied to RGB and hyperspectral data [27]. We reconstructed the original hyperspectral datacube, after

suitably modifying the forward model, i.e., by nullifying appropriate entries from the Σit matrices. The

results for this experiment are shown in Figure 9. The reconstruction PSNR does reduce from 30.8 (based

upon all CASSI data measured) to 28.85 (with 30% measured per frame). However, despite the reduced

data, the fine textures on the wings of the birds, as well as the spectral patterns, are generally reconstructed

well. The reduced measurements does introduce noisy artifacts, however these can be discerned only upon

careful zooming. While one may not wish to utilize such a reduced number of CASSI measurements

in practice, these experiments demonstrate that the inpainting capabilities of BPFA considered in [27]

generalize to CASSI measurements.
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Fig. 3. Reconstruction results for the Phantom data using 3 frames - for channels 1, 11, 17, 22, 33, 38 and 44 (corresponding

to wavelengths 501, 801, 981, 1131, 1461, 1611 and 1791 nm). From left to right in each row - Col. 1: true image, Col. 2:

BPFA, Col. 3: KSVD , Col 4: MaxNorm, and Col. 5: TwIST.

G. Results on Real Data

We now present results to demonstrate that our method which based on blind CS works on actual data

acquired by the CASSI system. This is an important contribution, as blind CS has not been applied to

CASSI acquisitions so far.
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We again consider the Birds dataset, of size 1021 × 703 × 24, and a dataset of size 404 × 400 × 23

that images holly leaves and fruits (referred to as Holly data). The measured CASSI snapshot images

are shown in Figure 10. The CASSI reconstructions (based on the real measure data) presented in this

section are compared to the Birds data (mentioned previously), which were acquired using a different (and

non-compressive) hyperspectral imaging setup (see Section IV-E for details). During actual measurement

of the Birds scene by the CASSI system, a band-pass filter was used, which blocked wavelengths beyond

680 nm (in addition to the filter which blocked wavelengths below 450 nm). Hence the Bird data here

has only 24 channels (as against 25 channels in Section IV-E), and the signal intensity in the 24th channel

(wavelength 700 nm) is very low. For this dataset, we report results on BPFA with the number of frames set

to T = 4 and T = 12. These results are displayed in Figure 11 alongside the independent “ground truth”

measurement and a 24-frame reconstruction using TwIST. The ground truth image was collected using

a slightly different physical setup, and hence is slightly misregistered with the CASSI reconstructions;

it has an intensity profile that resembles the underlying scene that was measured by the CASSI system,

but is not identical to it. Therefore, the PSNR values computed with reference to the ground truth image

(after a registration over translation parameters) are only an approximation. As expected, we see a distinct

visual improvement in the BPFA results when the number of frames is increased from 4 to 12; this holds

true for spectral properties as well as quality of recovery of texture patterns (zoom into Figure 11).

TwIST tends to incorrectly reconstruct some detailed structure in channels 1 and 24, absent in the

ground truth. In fact, this artifact is present even in the T = 24 frame TwIST reconstruction, whereas the

BPFA result with a smaller number of frames does not exhibit this artifact. For this dataset, we again

observed that KSVD was unable to recover spectral properties, whereas MaxNorm produced a good

reconstruction, albeit with a few errors. For instance, it overestimated the intensity of the smaller bird in

channels 16 and 19 (rows 6, 7 and 8 of Figure 11). The PSNR values for these results are presented in

Table III. Note that, as the ground truth was misregistered, we measured the reconstruction PSNRs after

performing a coarse registration over translation in the X and Y direction ranging from -7 to +7.

Results for the Holly dataset are shown in Figure 12. As there is no ground truth available for these

data, we report PSNR values with reference to a T = 24 TwIST reconstruction. BPFA is able to capture

important spectral properties of the Holly scene, even with only T = 4 frames; note how the holly

fruits (which are red in color) become brighter as the wavelength increases. As compared to TwIST, we

observed that BPFA and MaxNorm (all with T = 4 frames) produced a better definition of the boundaries

between the different fruits, which TwIST tends to blur out. This can be observed in the last row (channel

23) of Figure 12. Although MaxNorm produced a higher PSNR than BPFA for this dataset, we emphasize

January 29, 2013 DRAFT



24

TABLE III

PSNR VALUES FOR 4-FRAME RECONSTRUCTION OF DIFFERENT DATASETS USING BPFA, KSVD, MAXNORM AND TWIST.

Dataset BPFA KSVD MaxNorm TwIST

Real-birds:Ground-truth image after coarse registration 16.2 10.2 14.82 14.15

that it was computationally far more expensive than BPFA (120 minutes with MaxNorm as opposed to

45 minutes for BPFA).

In the case of some practical compressive sensing systems, the available forward model may be not

be accurate, because precise calibration may be infeasible. In such cases, it is important to examine the

effect of mis-calibration on the reconstruction results. However, in all our experiments with real CASSI

acquisitions, the available forward model explicitly accounts for practical issues such as the effect of blur

on the mask pattern or subpixel misalignments (see Section 3 of [30] for more details) and is not merely

based on the ideal mask pattern. Our convincing experimental results indicate that the available forward

model is accurate, and hence we do not consider a separate study of the effect of mis-calibration to be

crucial.

V. CHOICE AND DESIGN OF MASK/PROJECTION MATRIX FOR CASSI

In all of the examples presented above, the CASSI mask was designed as binary, with elements of 0

or 1, with a probability 0.5 for each binary value. It is of interest to consider possible optimization of the

projection matrix within the CS measurements. There have been studies that have examined design of the

CS projection matrices [53], [54], and such approaches were also consider in the context of this study.

The framework in [54] assumes that the underlying signals {xi} of interest are drawn from a Gaussian

mixture model (GMM), and under this setting the design of optimal projection matrices was considered.

We first discuss how we may specialize our signal model readily to a GMM setting.

Recall that, for the problem considered here, xi ∈ RM represents the data in a sheared mini datacube

of the overall hyperspectral datacube. In Section III-A we developed a signal model for each xi, as

being represented in terms of a sparse linear combination of dictionary elements. In this setting each

xi uses a specific subset of columns of D, specified by the sparse vector zi. In equation (1) we now

further assume that the sparse vector zi is drawn from a mixture model, with L mixture components,

and each mixture component is characterized by a specific usage of dictionary elements (a specific zl

is associated with the lth mixture component). If all other aspects of the model remain unchanged, this
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implies that the {xi} are drawn from a Gaussian mixture model. Specifically, assume that xi is drawn

from a mixture of L components, and variable ζi ∈ {1, . . . , L} denotes which mixture component xi is

drawn from. If µl ∈ (0, 1) represents the probability of mixture component l, with
∑L

l=1 µl = 1, then

ζi ∼
∑L

l=1 µlδl, with δl a point measure concentrated at l. From (1), upon marginalizing out the si, we

have xi ∼ N (0, 1
γs

DΛζiD
T + 1

γν
IM )), where γν is the noise precision and Λζi = diag(zζi); hence,

Λζi selects columns of D, defined by zζi , for representing xi. This GMM construction is equivalent to

saying that the xi come from a union of subspaces [25], where here we have L subspaces, each of which

is characterized by which columns of D are employed within the respective mixture component. This is

therefore a reasonable signal model, which using the theory in [54] we may employ to design optimal

projection matrices.

Within the context of these experiments, we consider hyperspectral imagery similar to that considered

in the above discussions, and we designed an associated GMM signal model for data {xi}. We then

used the theory in [54] to design optimal masks, with the goal of maximizing the mutual information

between the underlying {xi} and the measured {yi}. This was done with the restriction that the mask

used at each spectral band was a shifted version of the same template, with the wavelength-dependent

mask shift defined by the CASSI dispersion. We did this design under the assumption that the mask may

take values in the range [0, 1], which may be implemented with a gray-scale graded mask. This design

is therefore even more general than the binary {0, 1} mask considered in the above experiments.

After designing masks of this type, we compared CS recovery for the type of data considered above.

After an extensive set of simulated experiments, we found that the designed masks yielded only very

slightly better CS recovery performance that using the simple binary mask with {0, 1} elements, drawn

Bernoulli(0.5). This is attributed to the fact that the requirement that the masks at the different wave-

lengths be a shifted version of the same template mask is very restrictive. Additionally, the big gains in

designed masks found in [54] were manifested by adaptive masks, in which a sequence of compressive

measurements were performed, and the mask changed sequentially for the next measurement based on the

previous compressive measurements (with mask designed and adapted to optimize the mutual information

between the underlying signal and the measured data). However, this would require time-dependent

and fast adaptation of the CASSI mask, which is a significant challenge. Further, this adaptation must

be performed within localized hyperspectral mini batches, which is quite complicated to implement in

practice. Therefore, from a practical standpoint, and after extensive simulations and testing, our experience

indicates that the simple binary mask, drawn Bernoulli(0.5) provides a good balance between simplicity

and performance. Other Bernoulli probabilities were considered beyond 0.5, and extensive experiments
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indicated that a probability of 0.5 yielded best performance.

VI. CONCLUSION

The beta process factor analysis (BPFA) model has been employed for inversion of CASSI hyper-

spectral compressive measurements. Based on several experiments with synthesized and real compressive

measurements, BPFA was demonstrated to generally perform better than other related inversion methods,

specifically TwIST, KSVD and MaxNorm. Encouraging results were demonstrated on multi-frame mea-

surement of images (multiply translated coded aperture). Our method makes the assumption of smooth

variation of image intensity values across spectra, a reasonable assumption obeyed by most hyperspectral

images. This explains the uniformly good performance of our method on both simulated and real datasets

in this paper. The BPFA formulation is Bayesian, and inference is performed based upon Gibbs sampling.

In practice we have found that a very small number of Gibbs samples are required to obtain high-quality

datacube reconstructions. Although it has not been emphasized here, the posterior collection samples may

be used to infer uncertainty (e.g., variance) of the inferred datacube. We have generally found that three

snapshots are needed for good quality recovery of the spectral patterns. This number is not universal and

will depend on the nature of the spectral patterns, the coded aperture and the sparsity of image patches

in the learned basis. Developing more precise relationships between these and the minimum number of

snapshots required, is an interesting avenue for future work.

The dictionary learning approach presented in this paper is related to previous approaches based on

‘endmember spectral signatures’ [55], which are popular in hyperspectral image processing. Consider the

spectral pattern in a hyperspectral image X ∈ RNx×Ny×Nλ at pixel location i, denoted as Xi ∈ RNλ×1.

The vector Xi can be considered to be a weighted average (more specifically, a convex combination) of

a number ‘endmember spectral signatures’, each of which specifies the spectral pattern of a particular

material or geographical entity such as vegetation, roads, water-bodies, etc. This is especially true of

lower resolution hyperspectral images, as acquired in remote sensing applications. Thus we have Xi =∑Ne
j=1 ρ

j
is
j where {sj}Nej=1 are the endmember spectral signatures and {ρj}Nej=1 are the endmember mixing

proportions (i.e., coefficients of the convex combination). The total number of endmembers Ne is usually

far smaller than Nλ. There exist several recent research papers which exploit this fact to perform efficient

and accurate endmember unmixing (i.e., estimation of the mixing coefficients) and reconstruction of

hyperspectral images from compressive measurements of very low dimensionality [10], [56]–[59]. For

instance, in the work of Li et al. [10] or Martin et al. [59], unmixing and reconstruction are performed by

constrained minimization of the total TV norm of all endmember coefficients, assuming fixed endmember
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signatures. In addition, the method by Golbabaee et al. in [56] also exploits the inherent low-rank nature

of hyperspectral datacubes represented as matrices, by minimizing a matrix nuclear norm term in addition

to the TV norm, within a similar constrained minimization framework. The work by Zhang et al. [58]

also estimates the endmember signatures in situ from the compressed measurements, along with the

mixing coefficients, in an alternating minimization framework. The approach by Golbabaee et al. in [57]

estimates mixing proportions by treating them as sparse linear combinations of vectors from a known

(e.g., wavelet) basis.

In this paper the dictionary learning is closely related to endmember learning. In this paper the

dictionary has been learned based on the goal of fitting the data, and we have not used endmember

information to impose prior knowledge about material properties. In future research it is of interest to

extend the framework developed here, in which we employ prior knowledge about the types of materials

that may be sensed, and leverage known endmember libraries. In this setting, we may assume access

to an endmember library of possible materials that may be encountered. When inferring an appropriate

dictionary for the data under test, each of the dictionary elements in our inversion method may either be

drawn from the known endmember library, or new dictionary elements may be inferred from the Gaussian

dictionary prior. It is anticipated that this approach may yield significant performance improvements, by

leveraging the aforementioned and vast prior research on endmember design and the associated linkage

to known material characteristics.

The CASSI system corresponds to projecting a three-dimensional datacube into a coded two-dimensional

measurement. We have recently applied a similar methodology to another class of compressive video

measurements [60], with very encouraging results. In [60] the authors learned a dictionary offline based

upon training data. Using methods discussed in this paper, details of which will be reported elsewhere,

we have been able to invert compressive measurements of the type in [60] with dictionary learning and

recovery performed in situ (like in the CASSI recovery). This points out the generality and utility of the

proposed Bayesian dictionary learning for inversion of compressively measured high-dimensional data

(the statistical methodology extends the CASSI system we have used here for demonstration).
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Fig. 4. First four rows: Channels 1, 10, 19, 25 (wavelengths 398, 467, 591, 725 nm). In each row, Col. 1: true image, followed

by reconstructions with Col. 2: BPFA, Col. 3: KSVD, Col. 4: MaxNorm, Col. 5: TwIST (all with T = 3 frames). Bottom row:

Zoomed-in subimages from channel 19. From left to right - original, reconstructions with BPFA, KSVD, MaxNorm and TwIST.

Best viewed electronically, with monitor settings at highest brightness and contrast; zoom in electronically to study results.
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Fig. 5. Top to bottom, the rows correspond to channels 2, 6, 10, 14, 18, 26, 31 (wavelengths 420, 460, 500, 540, 580, 660,

710 nm). In each row, Col. 1: true image, followed by T = 3 frame reconstructions using Col. 2: BPFA, Col. 3: KSVD, Col.

4: MaxNorm and Col. 5: TwIST. Best viewed electronically, with monitor settings at highest brightness and contrast; zoom in

electronically to study results.
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Fig. 6. Left two images: Overlay of reconstructed spectral patterns (using BPFA, TwIST, MaxNorm and KSVD) for two regions

from the phantom, against the original patterns, Rightmost image: Overlay of spectral patterns of 17 regions from the phantom,

reconstructed using BPFA, against the original patterns
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Fig. 7. Comparison between average spectral patterns computed over small neighborhoods around four points chosen from

the synthetic birds dataset and its reconstructions using BPFA, KSVD, MaxNorm and TwIST. The four points are highlighted

in red, in the bottom-right sub-figure.
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Fig. 8. A small portion of channel 26 (wavelength 660 nm) of the image in Figure 5. Left to right, top to bottom: true image,

followed by T = 3 frame reconstructions using BPFA, KSVD, MaxNorm and TwIST. Best viewed electronically, with monitor

settings at highest brightness and contrast; zoom in electronically to study results.
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Fig. 9. Left to right, top to bottom: Channels 1, 4, 7, 10, 13, 16, 19, 22, 25 (wavelengths 398, 417, 439, 467, 500, 541,

591, 651, 726 nm). In each group of three image, leftmost: true image, middle: BPFA (3 frames, 100% data, PSNR 30.8) and

rightmost: BPFA (3 frames, 30% data, PSNR 28.85). Best viewed electronically, with monitor settings at highest brightness and

contrast; zoom in electronically to study results.

Fig. 10. Sample encoded images (real acquisition): Birds dataset (left), and Holly leaf dataset (right)
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Fig. 11. From top to bottom the rows correspond to channels 1, 4, 7, 10, 13, 16, 19, 23, 24 (wavelengths 398, 417, 439, 467,

500, 541, 591, 674, 699 nm). In each rows - Col. 1: Original (misregistered), Col. 2 and 3: TwIST - 24 frames and 4 frames

(PSNR 14.15), Col. 4 and 5: BPFA with 4 frames (PSNR 16.2) and 12 frames (PSNR 17.1), Col. 6: KSVD (PSNR 10.2), Col. 7:

MaxNorm (PSNR 14.82). PSNRs computed after a coarse registration with the ground-truth image. Best viewed electronically,

with monitor settings at highest brightness and contrast; zoom in electronically to study results.
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Fig. 12. From top to bottom, the rows correspond to channels 1, 12, 16, 20, 23 (wavelengths: 460, 522, 555, 598, 642 nm).

In each row, Col. 1: 24-frame TwIST reconstruction, Col. 2: 4 frame TwIST reconstruction (PSNR 29.0), Cols. 3 to 5: BPFA

reconstruction with 4, 8, 12 frames (PSNRs 29.03, 33.8, 34.26 resp.), Col. 6: 4-frame KSVD reconstruction (PSNR: 23.86),

Col. 7: 4-frame MaxNorm reconstruction (PSNR 30.2). PSNRs measured w.r.t. 24-frame TwIST reconstruction. Best viewed

electronically, with monitor settings at highest brightness and contrast; zoom in electronically to study results.
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