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Abstract original image and is not extensible to real-world dengjsin
situations. Hence we need criteria for parameter selection
Despite the vast body of literature on image denoising, that do not refer to the original image. In this paper, we-clas

relatively little work has been done in the area of automat- sify these criteria into two types: (1) independence-based
ically choosing the filter parameters that yield optimal fil- criteria that measure the degree of independence between
ter performance. The choice of these parameters is crucialthe denoised image and the residual, and (2) criteria that
for the performance of any filter. In the literature, some measure how noisy the residual image is, without referring
independence-based criteria have been proposed, whichto the denoised image. We contribute to and critique crite-
measure the degree of independence between the denoiseth of type (1), and proposed those of type (2). Our criteria
image and the residual image (defined as the difference be-nake the assumption that the noise is i.i.d. and additiveé, an
tween the noisy image and the denoised one). We contributg¢hat a loose lower-bound on the noise variance is known.
to these criteria and point out an important deficiency in- This paper is organized as follows: Section 2 reviews ex-
herent in all of them. We also propose a new criterion isting literature for filter parameter selection, followeyg a
which quantifies the inherent ‘noiseness’ of the residual im description of the proposed criteria in Section 3, expenime
age without referring to the denoised image, starting with tal results in Section 4 and discussion in Section 5.
the assumption of an additive and i.i.d. noise model, with
a loose lower bound on the noise variance. Several (_ampiri- 2 Literature Review
cal results are demonstrated on two well-known algorithms:
NL-means and total variation, on a database of 13 images
at six different noise levels, and for three types of noise di
tributions.

In PDE-based denoising, the choice of stopping time for
the PDE evolution is a crucial parameter. Some researchers
propose to stop the PDE when the variance of the residual
equals the variance of the noise, which is assumed to be
) known [18], [24]. This method ignores higher order statis-
1. Introduction tics of the noise. Others use a hypothesis test between the

empirical distribution of the residual and the true noise di

Contemporary literature on image denoising is certainly tribution [16] for polynomial order selection in regressio
very vast. Some of the popular approaches include par-based smoothing. However the exact variance of the noise
tial differential equations (PDESs) [15], wavelet thresting or its complete distribution is usually not known in praatic
[8], learning-based approaches like KSVD [10] and non- situations. A decorrelation-based criterion indepenigient
local approaches [4]. More recently, new approaches basegroposed in [14] and [2] does not require any knowledge
on spatially-varying regressions [20] and spatially vagyi  of the noise distribution except that the noise is indepen-
convolutions [19] have also been developed. An approachdent of the original signal. As per this criterion, the opim
to filtering using level curves in a mean-shift framework has filter parameter is chosen to be one which minimizes the
been developed in [17]. correlation coefficient between the denoised and the resid-

The typical denoising technique requires tuning parame- ual images, regardless of the noise variance. This criterio
ters that are critical for its optimal performance. In desaoi  however has some problems: (1) in the limit of extreme
ing experiments reported in contemporary literature, the fi oversmoothing or undersmoothing, the correlation coeffi-
ter performance is usually measured by the mean-squaredient is undefined as the denoised image could become a
error (MSE) between the denoised and the original image.constant image, (2) it is too global a criterion (though us-
The parameters are picked so as to yield the least MSE valuéng a sum of local measures is a ready alternative) and (3) it
for a particular filter, but this requires knowledge of the ignores higher-order dependencies. A solution to the third



issue is suggested by us in Section 3. the assumption that when the noisy image is filtered opti-

It should be noted that all the aforementioned criteria (as mally, the residual would contain mostly noise and very lit-
also the ones we suggest in this paper) are necessary btte signal and hence it would be independent of the denoised
not sufficient for parameter selection. Gilboa et al. [11] image. It has been experimentally reported in [14] that the
attempt to alleviate this by selecting a stopping time that absolute correlation coefficient (denoted&s) betweenD
seeks to maximize the signal-to-noise-ratio (SNR) diyectl andR decreases almost monotonically as the filter smooth-
Their method however requires an estimate of the rate ofing parameter is increased (in discrete steps) from a lower
change of the covariance between the residual and the noisbound to a certain ‘optimal’ value, after which its value in-
w.r.t. the filtering parameter. This estimate in turn regsiir  creases steadily until an upper bound. However, CC ignores
full knowledge of the noise distribution. Saddled with this anything higher than second-order dependencies. To-allevi
method is the assumption that the covariance between thete this problem, we propose to minimize the mutual infor-
residual for any image and the actual noise, can be esti-mation (MI) betweerD andR, as a criterion for parameter
mated from a single noise-image generated from the sameselection. This has been proposed as a (local) measure of
noise distribution. This assumption is not justified théore noiseness earlier in [3], but it has been used in that paper
ically though experimental results are impressive (se¢ [11 only as an indicator of areas in the image where the residual
for more details). Vanhamel et al. [21] propose a crite- is unfaithful to the noise model, rather than as an explicit
rion that maximizes an estimate of the correlation betweenparameter-selection criterion. In this paper, we also pro-
the denoised image and the true, underlying image. Thispose to use the following information-theoretic measufes o
estimate, however, can be computed only by using somecorrelation from [6] (see page 47) as independence criteria
assumptions that have only experimental justification. In

wavelet thresholding methods, risk based criteria have bee (R, D) =1— H(R|D) _ MI(R,D) B
proposed for the optimal choice of the threshold for the ’ H(D) H(D)

wavelet coefficients. Some of these (such as SURE - Stein’s H(D|R) MI(R,D)

unbiased risk estimator) [8] again require complete knowl- ma(R, D) =1— H(R) = H(R) @)

edge of the noise model, whereas others merely use the

number of samples in the image (the size of the unknownHere H(X) refers to the Shannon entropy of, and
signal) for computation of the threshold [7]. Although sev- H(X|Y) refers to the conditional Shannon entropy of
eral asymptotic properties have been proved for these estigivenY'. 7, and, both have values bounded from 0 (full
mates, we are not aware of their small sample-size behavindependence) to 1 (full independence).

ior (which is the practical setting). Recently, Brunet et al A problem with all these criteria (CC,M};, 1) lies in
have developed no-reference quality estimates of the MSEthe inherent probabilistic notion of independence itskf.
between the denoised image and the true underlying imagehe extreme case of oversmoothing, the ‘denoised’ image
[3]. These estimates do not require knowledge of the origi- may turn out to have a constant intensity, whereas in the
nal image, but they do require knowledge of the noise vari- case of extreme undersmoothing (no smoothing or very lit-
ance and obtain a rough, heuristic estimate of the covaianc tle smoothing), the residual will be a constant (zero) signa
between the residual and the noise. Moreover the perfor-in such cases;'C, i, 7, are ill-defined wheread/ I turns
mance of these estimates has been tested only on Gaussiaut to be zero (jts least possible value). What this indicates

noise models. is that these criteria have the innate tendency to favor ex-
treme cases of under- or over-smoothing. In practical appli
3. Theory cations, one could evade this issue by choosing a local min-

imum of these measures within a heuristically chosen inter-
val in the parameter landscape from Octg but we wish

to drive home a more fundamental point about the inherent
flaw in using independence measures. Moreover, it should
be noted that localized versions of these measures (i.e. sum
of local independence measures) may produce false optima
if the filtering algorithm smoothes out local regions with
fine textures at intermediate steps.

3.1 Independence measures

In what follows, we shall denote the denoised image ob-
tained by filtering a noisy imagé as D, its corresponding
residual ask (note thatR = I — D) and the true image un-
derlying I asJ. As mentioned earlier, independence-based
criteria have been developed in image processing litezatur
In cases where a noisy signal is oversmoothed (locally or
globally), the residual image clearly shows the distinetfe 3-2 Characterizing residual ‘noiseness’
tures from the image (referred to as ‘method noise’ in [4]).

This is true even in those cases where the noise is indepen- Given the fact that the assumed noise model is i.i.d.
dent of the signal. Independence-based criteria are based oand signal independent, we expect the residual produced



by an ideal denoising algorithm to obey these characteris-test (denoted a®) are all indicators of the ‘noiseness’ of a
tics. Therefore, patches from residual images are expectedesidual (the lower the value, the noisier and hence more
to have similar distributions if the filtering algorithm has desirable the residual). Hence these measures act agacriter
performed well. Our criterion for characterizing the resid for filter parameter selectioh We prefer the criteri@ and

ual ‘noiseness’ is rooted in the framework of statistical hy K to h because they do not require a significance level to
pothesis testing. We choose the two-sample Kolmogorov-be specified a priori.

Smirnov (KS) test to check statistical homogeneity. The  The advantage of the KS-based measure over Ml or CC

two-sample KS test-statistic is defined as is that values of? and K are high in cases of image over-
K = sup |Fi(z) — Fa(z)] @) smoothing (as. th_e res!dual will then co_ntam more and more
z structure). This is unlike MI or CC which will attain false

whereF, (z) and F»(z) are the respective empirical cumu- minima._ This is demonstrated in Fig_ure 1 Wher_e the de-
lative distribution functions (ECDF) of the two samples, Créase in the values of Mi or CC at high smoothing levels

computed withV; and N, points. Under the null hypothe- is quite evident. Just like MI or CC, the KS-based criteria
sis whenV; — oo, Ny — oo, the distribution ofi tendsto ~ d0 not require knowledge of the noise distribution or even
the Kolmogorov distribution, and is therefore independent the exact noise variance. However all these criteria coelld b

of the underlying true CDFs themselves. Thereforekhe fooled by the pathological case of zero or very low denois-
value has a special meaning in statistics. For a ‘signifieanc INd- This is because in the very initial stages of denoising
level’ « (the probability of falsely rejecting the null hypoth-  (0btained by, say, running a PDE with a very small stepsize
esis that the two ECDFs were the same), At be the for very few |terat|ons), the residual is likely to be devqfd
statistic value such th@(K < K,) = 1 —a. The null hy- structure and independent of the (under)smoothed image.
Consequently, all measures: MI, CE,and P will acquire
(falsely) low values. This problem can be avoided by mak-
ing assumptions of the range of values for the noise variance
(or a loose lower-bound), without requiring exact knowl-
edge of the variance. This has been the strategy followed
implicitly in contemporary parameter selection experitsen
(e.g. in [14] the PDE stepsizes are chosen to be 0.1 and 1).
In all our experiments, we make similar assumptions. The
exception is that KS-based measures do not require any up-
per bound on the variance to be known: just a lower bound
suffices.

pothesis is said to be rejected at lewef Y2 K > K.
Given a value of the test-statistic computed empirically
from the samples (denoted &s), we termP(K < f()
(under the null-hypothesis) as the p-value.

Most natural images (apart from homogenous textures)
show a considerable degree of statistical dissimilarity. T
demonstrate this, we performed the following experiment
on all 480 images from the Berkeley database [13]. Each
image at four scales with successive downsampling fac-
tor of % was tiled into non-overlapping patches of sizes
s x s wheres € {16,24,32}. The two-sample KS test
for a = 0.05 was performed for patches from these images.

The average rejection rate Wi, which indicates that dif- ] — A

ferent regions from each image have different distribigion % " /\\ ]
It should be noted that the tiling of the image into patches o —— PHEAN ]
was very important: a KS test between sample subsets fromr = \’\

random locations produced very low reject rates. A simi-
lar experiment with the same scales and patch sizes run or
pure Gaussian noise images resulted in a rejection rate o
only 7% for o = 0.05. Next, Gaussian noise of = 0.005 ®
(for intensity range [0,1]) was added to each image. Each »
image was filtered using the Perona-Malik filter [15] for 90 1
iterations with a step size of 0.05 and edgeness criterion of
~ = 40 and the residual images were computed after the last
iteration. The KS-test was performedat= 0.05 between
patch pairs from each residual image. The resulting rejec-  Figure 1. Plots of CC, MI, P and MSE on an

tion rate was41%, indicating strong heterogeneity in the image subjected to upto 16000 iterations of
residual values. As structural patterns were clearly igsib total variation denoising.

in all these residual images, we therefore conjecture that s

tistical heterogeneity is a strong indicator of the preseasfc

structure. Moreover the percentage reject rate (denoted as

h), the average value of the KS-statistic (if€) and the av- For computingP, there is the assumption that the pairwise tests be-
erage negative logarithm of the p-values from each pairwisetween individual patches are all independent, for the séképlicity.

o L L L L L L L
0 2000 4000 6000 8000 10000 12000 14000 16000




4 Experimental Results [11] (assuming knowledge of the noise distribution) and
Vanhamel's method [21].

To demonstrate the effectiveness of the proposed crite-
ria, we performed experiments on all the 13 images from
Lansel’'s benchmark dataset [1]. Allimages from the dataset4.1 Validation method
were down-sized fromil2 x 512 to 256 x 256. We experi-
mented with 6 noise levels; € {107*,5x107%,107%,5x In order to validate ther or T’ estimates produced by
107?,0.01,0.05} on an intensity range of [0,1], and with  these criteria, it is important to see how well they are in
three additive zero-mean noise distributions: Gaussta (t tune with those filter parameter values that are optimal with
most commonly used assumption), bounded uniform (noiseregard to different well-known quality measures between
due to quantization) and negative exponential (noise modelhe denoised image and the original image. The most com-
used for SAR imagery). The lower-bound assumed on themonly used quality measure is the MSE. However as doc-
noise variance was0~° in all experiments. Two filtering  umented beautifully in [23], MSE has several limitations.
algorithms were tested: the non-local means (NL-means)Hence we also experimented with structured similarity in-
filter [4] and total variation (TV) [18]. The equation for the = dex (SSIM) developed in [22]; with the L1 difference be-

NL-means filter is as follows: tween the denoised and the original image; and with the
A 3 w (@) (ax) CC,Ml, n; andr values between the denoised and the orig-
[(z) = ZEN@SE) (4)  inalimage (as well as with the sum of their local versions).
ka EN(xz;SR) Wk (I)
wy(z) = exp ( _ lg(z; QR) — q(w; QR)HQ) ) 4.2 Results on NL-Means

g

Results on NL-Means for Gaussian noise of six different
variances are shown in Tables 1 through td®all these
tables, Ax = absolute difference betweerX® values as
predicted by the criterion, and the optimaX” value. The
‘X’ value is defined to be the quality measu’é ‘between
the denoised and the true image, chosen here tb, @ the
SSIM.dox is the absolute difference between th@alue
for NL-means predicted by the criterion and thevalue
when the quality measut® was optimal. The other quality
measures are not shown here to save space. The last two
rows of the tables indicate the minimum and maximum of

) . the optimal quality measure values across all the 13 images
h, PandK using two-sample K tests on non-overlapping on which the experiments were run (which gives an idea

12 x 12 patches; and,,, P, and K,, values computed us- X
: i ; about the range of the optimaly values).
ing KS-test between the residual and the true noise samples . , . -
. . ; Some results on the ‘stream’ and ‘mandrill’ images are
(which we know here as these are synthetic experiments).

. ) : " . ~“'shown in Figure 2 and 3 with the corresponding residuals.
All information theoretic quantities were computed using Experiments were also performed on imaaes dearaded with
40 bins as the image size was6 x 256 (the optimal num- P P 9 9

, ; 1/3 bounded uniform noise of total width x 5 x 10~* and

ber of bins forn samples i€ (n'/?)). g . . :
L LN . L 2 x 5 x 107° (on an intensity range of [0,1]) with results
The total variation (TV) filter is obtained by minimizing the ) .2 . :
: X shown in Tables 7 and 8. Similar experiments were run with
following energy: : : . o
negative exponential noise where these criteria performed
well. The results are not shown here due to insufficient
E(I) = /Q |VI(z)|dx (6) space.

_ _ _ _ For low and moderate noise levels, it was observed that
for an image defined on the domaid, which gives a  the criteriaP or K produced errors an order of magnitude
geometric heat equation PDE that is iterated sdfianes  petter than MIy, andz, (which were the closest competi-
starting from the given noisy image as an initial condition. tors) and even two orders of magnitude better than CC. Our
The stopping timel" is the equivalent of the smoothing opservation was that CC and information theoretic criteria
parameter here. For the TV filter, in addition to all the tend to cause undersmoothing for NL-means. At high noise
criteria mentioned before, we also tested Gilboa's method|eyels, we saw that all criteria produced a high error in pre-

2Note that we use to denote the smoothing parameter of the fiitering diction of the optimal parameter. An explanation for this is
algorithm andz? to denote the variance of the noise. that the NL-means algorithm by itself does not produce very

wherel(z) is the estimated smoothed intensity(z; SR)

is a search window of diametétR around pointe, wy,(x)

is a weight factorg(z; QR) is a patch of diametep R cen-
tered atz and o is a smoothing parametér In our ex-
periments, a patch size o2 x 12 was used, with a search
window of 50 x 50.0 was chosen by running the NL-means
algorithm for 55 differentr values for smoothing, from the
set{l1:1:10,20 : 20 : 640,650 : 50 : 1200}. The op-
timal o values were computed using the following criteria:
CC(D,R), MI(D,R),n(D,R),n2(D, R); sum of local-
ized versions of all above measures otRax 12 window;




good results at high noise levels, and requires highlues

which produce highly structured residuals. For lewal- Table 1. (NLMeans)Gauss. noise o2 = 0.0001.
ues, it produces residuals that resemble noise in the sensge_ N Assiar | dossiar
of various criteria, but this leads to hugely undersmoothed[, 0.088 1 10.462| 0.002 7 692
estimates. P 0031 | 7538 | 0.005 | 12.462
An interesting phenomenon we observed was that the 77 0040 | 7.846 | 0.004 10.308
same KS-test based measures (i2, and K,,) between ole] 0.0851 9.846 | 0.010 17.846
the residuals and the.actual npise samples (vyhich we know M 01891 17.0771 0.011 18.615
as these are synthetic experlmentg) often did not perfor " 0189 17.0771 0.011 18.615
as well as the KS-test measures (i.B.and K) between 01761 18 0.011 50769
pairs of patches from the residual. We conjecture that this :ZQ Vi 0'055 8769 0'007 16.154
is owing to biases inherent in the NL-means algorithm (as hoca 0.851 3'1 169 0'009 16.385
in many others - see [5]) due to which the residuals have dif- PNM 00871 132311 0002 | 4923
ferent means and variances as compared to the actual noise,~ Y : : : :
even though the residuals may be homogenous. We checke K_NM 0.215] 19.385| 0.001 5.538
experimentally that the variance of the residuals produced Min 2.225| - 0.838 -
by NL-means undes values optimal in an L1-sense was Max 9.147] - 0.986 -
significantly different from the noise variance.
4.3 Effect of patch size on the KS test Table 2. (NLMeans)Gauss. noise o2 = 0.0005.
- Api | dopy | Assiv | dossiv
The KS test employed here operates on image patches. i 0.029| 7.692 | 0.003 12.769
The patch-size can be a crucial parameter: too low a patch P 0.010 | 4.615 | 0.006 17.385
size (say2 x 2) will lead to reduction in the discrimina- K 0.014| 5.385 | 0.004 15.077
tory power of the KS test for this application and cause | CC 0.068| 8.462 | 0.007 15.077
(false) rejection for all filter parameters, whereas tochhig | A7 0.087 | 14.615| 0.009 19.692
a patch size will lead to (false) acceptance for all filter pa- m 0.087 | 14.615| 0.009 19.692
rameters. We chose a patch size so that the number of sanj-;,, 0.232] 19.923] 0.015 26.538
ples for estimation of the cumulative was sufficient. This [ gcalMI | 0.155 | 14.615]| 0.005 13.538
was determined in such a way that the maximum absolute7, - 0436| 28.154| 0.003 | 8
error between the estimated and true underlying CDFs was™p 0.0471 10.769] 0.003 | 9.692
no more than 0.1 with a probability of 0.9. Then, using K, 0128 16.154 | 0.001 5846
the Dvoretzky-Kiefer-Wolfowitz inequality, it follows it Min 26831 - 0.884 N
there should be at least 149 samples [9]. Hence we chose AV iax 9.383 - 0.981 -

patchsize ofi2 x 12. However, we also performed an ex-

periment with NL-means where the KS-test was performed
across multiple scales from 12 to 60 in steps of 8 (for an
image of size256 x 256), and averagé, P and K values Table 3. (NLMeans)Gauss. noise o2 = 0.001.

were calculated. However for the several experiments de- - Arq dor1 Agssiyv | dossim
scribed in the previous sections, we just used the patchsize h 0.041| 9.231 | 0.004 16.154
of 12 x 12, as the multiscale measure did not produce sig-| P 0.024 | 5.385 | 0.005 16.923
nificantly better results. K 0.035| 7.692 | 0.004 14.615
cc 0.151| 16.154| 0.004 12.308
4.4 Results on Total Variation MI 0.126 | 19.231| 0.008 18.462
m 0.126 | 19.231| 0.008 18.462
Results for total variation diffusion with Gaussian noise | 72 0.157 | 26.923| 0.013 29.231
of varianceb x 10~* and5 x 103 are shown in Tables 9 and Local MI | 0.191| 20.308| 0.003 10.308
10. For this method, the KS-based measures performed well A, 0.218| 22.308| 0.001 6.154
in terms of errors in predicting the correct number of itera- | P, 0.041] 10 0.002 12.308
tions and the correct quality measures, but not as well as MI| K, 0.100| 15.385| 0.001 6.923
within the restricted stopping time range. The results were| Min 3.069 ]| - 0.879 -
also compared to those obtained from Gilboa’s method [11]| Max 9.601 | - 0.976 N

which performed the best, though we would like to remind



Table 4. (NLMeans)Gauss. noise o2 = 0.005.

- Ay dory Agsiv | dossim
h 0.206 33.846 0.003 24.615
P 0.207 | 33.846 | 0.003 24.615
K 0.488 | 43 0.005 33.769
cc 2.253 | 92.308 | 0.034 55.385
MI 2.677 | 79.538 | 0.054 67.231
™ 2.720 | 81.077 | 0.054 68.769
N2 2.119 | 105.231| 0.053 105.231
Local M|l | 3.889 | 107.846| 0.069 74

hy, 1.337 | 38 0.032 38

P, 1.335 | 33.538 | 0.033 36.615
K, 1.336 | 33.538 | 0.034 42.769
Min 4838 | - 0.791 -

Max 10.695]| - 0.955 -

Table 5. (NLMeans)Gauss. noise o2 = 0.01.

- Arq dory Assinv | dossim
h 12.121| 226.692| 0.202 177.462
P 12.121| 226.692| 0.202 177.462
K 12.121| 226.692| 0.202 177.462
ccC 8.886 | 207.154| 0.149 157.923
MI 11.701| 224.462| 0.195 175.231
m 11.701| 224.462| 0.195 175.231
M2 6.218 200 0.119 163.077
Local MI | 12.121| 226.692| 0.202 177.462
hy, 1.891 | 60.923 | 0.045 64

P, 3.642 | 86.462 | 0.081 108

K, 3.649 | 88 0.082 115.692
Min 6.285 | - 0.735 -

Max 11.661| - 0.933 -

Table 6. (NLMeans)Gauss

. noise o2 = 0.05.

Table 7. (NLMeans)Unif. noise width = 0.001.

- A dora Agsrm | dossim
h 14.704 | 906.154 | 0.183 643.846
P 11.290| 838.462 | 0.140 576.154
K 9.597 805.385 0.118 543.077
cc 18.959 | 1020 0.249 757.692
MI 19.435| 1026.154| 0.253 763.846
™ 19.550| 1027.692| 0.255 765.385
N2 19.435| 1026.154| 0.253 763.846
Local MI | 19.783| 1030.769| 0.258 768.462
hy, 24516 | 1028.462| 0.305 796.923
P, 26.721| 1120.769| 0.325 858.462
K, 26.721| 1120.769| 0.325 858.462
Min 11.748 | - 0.555 -

Max 17.478 | - 0.806 -

- Apr | dora Agsim | dossim
h 0.055| 9.692 | 0.003 10.923
P 0.013 | 5.692 0.006 14.923
K 0.021| 6.615 | 0.005 14.000
CC 0.087 | 11.077 | 0.009 17.231
Ml 0.188| 13.385| 0.007 17.077
m 0.188 | 13.385| 0.007 17.077
72 0.267| 16.846 | 0.009 19.000
Local Ml | 0.244 | 17.077 | 0.011 21.692
hy, 0.770| 30.231| 0.008 14.538
P, 0.054 | 10.308 | 0.003 7.231
K, 0.114 | 14.462 | 0.001 4.615
Min 2.339| -0.887 | -1.195 | -
Max 9.176| -0.985| -2.011 | -
Table 8. (NLMeans)Unif. noise width = 0.01.
- Apy | dopy Agssin | dossim
h 0.034 | 10.769 | 0.005 18.462
P 0.027 | 9.231 0.005 20.000
K 0.042 | 12.308 | 0.005 16.923
CcC 0.430| 34.615| 0.004 14.615
Ml 0.137| 16.923 | 0.007 27.692
m 0.137| 16.923 | 0.007 27.692
N2 0.125| 21.538 | 0.011 35.385
Local MI | 0.477 | 36.308 | 0.004 16.308
hy, 0.025| 9.231 | 0.004 20.000
P, 0.020| 9.231 | 0.006 26.154
K, 0.025| 10.769 | 0.006 27.692
Min 3.522| -0.860| -1.148 | -
Max 9.835| -0.970| -1.834 | -
Table 9. (TV)Gauss. noise o2 = 0.0005.
- Apr | dtra Agsrm | dtssim
h 0.558 | 53.462 | 0.006 56.538
P 0.522| 48.462 | 0.006 52.308
K 0.513 | 46.538 0.006 50.385
CccC 3.487| 365.000| 0.088 371.923
Ml 0.103| 20.769 | 0.001 23.077
m 0.103| 20.769 | 0.001 23.077
N2 2.478 | 267.692| 0.062 274.615
Local Ml 0.479| 36.923 | 0.005 32.308
hoy, 0.538| 69.615 | 0.007 76.538
P, 0.523| 68.846 | 0.007 75.769
K, 0.528 | 69.615 | 0.007 76.538
Gilboa [11] 0.050| 10.231 | 0.001 16.385
VanHamel [21]| 0.818 | 51.954 | 0.009 45,031
Min 2.622 | - 0.975 -
Max 4426 | - 0.995 -




Figure 2. Images with Gaussian noise with
02 =5x 1072 denoised by NLMeans. Parame-
ter selected for optimal noiseness measures:
(a): P, (c) K, (e) CC, (g9) MI; and optimal qual-
ity measures: (i) L1, (k) SSIM, (m) Ml between
denoised image and residual. Correspond-
ing residuals in (b),(d),(f),(h),(),(),(n). ZOOM
IN PDF FOR A BETTER VIEW.

(m) Q)

Figure 3. Images with Gaussian noise with
02 =5x 1072 denoised by NLMeans. Parame-
ter selected for optimal noiseness measures:
(a): P, (c) K, (e) CC, (g) MI; and optimal qual-
ity measures: (i) L1, (k) SSIM, (m) Ml between
denoised image and residual. Correspond-
ing residuals in (b),(d),(f),(h),(),(),(n). ZOOM
IN PDF FOR A BETTER VIEW.

the reader that Gilboa's method requires knowledge of the proposed noiseness measures require no other assumptions
full noise distribution. Also, in the case of total variatio except that (1) the noise should be i.i.d. and additive, and
the KS-based measures did not outperform MI. An expla- that (2) a loose lower bound on the noise variance is known
nation for this is that the total variation method is unable g prevent false minima with extreme undersmoothing. Un-
to produce homogenous residuals for its optimal parametefjike CC or MI, the KS-based noiseness measures are guar-
set, as itis specifically tuned for piecewise constant irsage anteed not to eyield false minima in case of oversmoothing.
This assumption does not hold good for commonly occur- e Ks-pased noiseness criteria require averaging of the
ring natural images. As against this, NL-means is afilterex- p o i values from different patches. For future work
pressly _derived from the ass_umption that patches i_n ‘clean’ ihis can be replaced by performikgsample versions of the
natural images (and those with low or moderate noise) havey jmogorov-Smirnov tests or related tests such as Cramer

several similar patches in distant parts of the image. von-Mises [12] between individual patches versus a pooled
sample containing the entire residual image. This will pro-
duce a singlgs or P value for the whole image.

The assumption of i.i.d. noise may not hold in some de-

In this paper, we have contributed to and critiqued noising scenarios. In case of a zero-mean Gaussian noise
independence-based criteria for filter parameter selectio model with intensity dependent variances, a heuristic ap-
and presented a criterion that measures the homogeneity oproach would be to normalize the residuals suitably us-
the residual statistics. On the whole, we have contributeding feedback from the denoised intensity values (regarding
to the paradigm of exploiting statistical properties of the them as the ‘true’ image values) and then running the KS-
residual images for driving the denoising algorithm. The tests. The efficacy of this approach needs to be tested on

5 Discussion and Avenuesfor Future Work
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