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Abstract

Despite the vast body of literature on image denoising,
relatively little work has been done in the area of automat-
ically choosing the filter parameters that yield optimal fil-
ter performance. The choice of these parameters is crucial
for the performance of any filter. In the literature, some
independence-based criteria have been proposed, which
measure the degree of independence between the denoised
image and the residual image (defined as the difference be-
tween the noisy image and the denoised one). We contribute
to these criteria and point out an important deficiency in-
herent in all of them. We also propose a new criterion
which quantifies the inherent ‘noiseness’ of the residual im-
age without referring to the denoised image, starting with
the assumption of an additive and i.i.d. noise model, with
a loose lower bound on the noise variance. Several empiri-
cal results are demonstrated on two well-known algorithms:
NL-means and total variation, on a database of 13 images
at six different noise levels, and for three types of noise dis-
tributions.

1. Introduction

Contemporary literature on image denoising is certainly
very vast. Some of the popular approaches include par-
tial differential equations (PDEs) [15], wavelet thresholding
[8], learning-based approaches like KSVD [10] and non-
local approaches [4]. More recently, new approaches based
on spatially-varying regressions [20] and spatially varying
convolutions [19] have also been developed. An approach
to filtering using level curves in a mean-shift framework has
been developed in [17].

The typical denoising technique requires tuning parame-
ters that are critical for its optimal performance. In denois-
ing experiments reported in contemporary literature, the fil-
ter performance is usually measured by the mean-squared
error (MSE) between the denoised and the original image.
The parameters are picked so as to yield the least MSE value
for a particular filter, but this requires knowledge of the

original image and is not extensible to real-world denoising
situations. Hence we need criteria for parameter selection
that do not refer to the original image. In this paper, we clas-
sify these criteria into two types: (1) independence-based
criteria that measure the degree of independence between
the denoised image and the residual, and (2) criteria that
measure how noisy the residual image is, without referring
to the denoised image. We contribute to and critique crite-
ria of type (1), and proposed those of type (2). Our criteria
make the assumption that the noise is i.i.d. and additive, and
that a loose lower-bound on the noise variance is known.

This paper is organized as follows: Section 2 reviews ex-
isting literature for filter parameter selection, followedby a
description of the proposed criteria in Section 3, experimen-
tal results in Section 4 and discussion in Section 5.

2 Literature Review

In PDE-based denoising, the choice of stopping time for
the PDE evolution is a crucial parameter. Some researchers
propose to stop the PDE when the variance of the residual
equals the variance of the noise, which is assumed to be
known [18], [24]. This method ignores higher order statis-
tics of the noise. Others use a hypothesis test between the
empirical distribution of the residual and the true noise dis-
tribution [16] for polynomial order selection in regression-
based smoothing. However the exact variance of the noise
or its complete distribution is usually not known in practical
situations. A decorrelation-based criterion independently
proposed in [14] and [2] does not require any knowledge
of the noise distribution except that the noise is indepen-
dent of the original signal. As per this criterion, the optimal
filter parameter is chosen to be one which minimizes the
correlation coefficient between the denoised and the resid-
ual images, regardless of the noise variance. This criterion
however has some problems: (1) in the limit of extreme
oversmoothing or undersmoothing, the correlation coeffi-
cient is undefined as the denoised image could become a
constant image, (2) it is too global a criterion (though us-
ing a sum of local measures is a ready alternative) and (3) it
ignores higher-order dependencies. A solution to the third



issue is suggested by us in Section 3.
It should be noted that all the aforementioned criteria (as

also the ones we suggest in this paper) are necessary but
not sufficient for parameter selection. Gilboa et al. [11]
attempt to alleviate this by selecting a stopping time that
seeks to maximize the signal-to-noise-ratio (SNR) directly.
Their method however requires an estimate of the rate of
change of the covariance between the residual and the noise
w.r.t. the filtering parameter. This estimate in turn requires
full knowledge of the noise distribution. Saddled with this
method is the assumption that the covariance between the
residual for any image and the actual noise, can be esti-
mated from a single noise-image generated from the same
noise distribution. This assumption is not justified theoret-
ically though experimental results are impressive (see [11]
for more details). Vanhamel et al. [21] propose a crite-
rion that maximizes an estimate of the correlation between
the denoised image and the true, underlying image. This
estimate, however, can be computed only by using some
assumptions that have only experimental justification. In
wavelet thresholding methods, risk based criteria have been
proposed for the optimal choice of the threshold for the
wavelet coefficients. Some of these (such as SURE - Stein’s
unbiased risk estimator) [8] again require complete knowl-
edge of the noise model, whereas others merely use the
number of samples in the image (the size of the unknown
signal) for computation of the threshold [7]. Although sev-
eral asymptotic properties have been proved for these esti-
mates, we are not aware of their small sample-size behav-
ior (which is the practical setting). Recently, Brunet et al.
have developed no-reference quality estimates of the MSE
between the denoised image and the true underlying image
[3]. These estimates do not require knowledge of the origi-
nal image, but they do require knowledge of the noise vari-
ance and obtain a rough, heuristic estimate of the covariance
between the residual and the noise. Moreover the perfor-
mance of these estimates has been tested only on Gaussian
noise models.

3. Theory

3.1 Independence measures

In what follows, we shall denote the denoised image ob-
tained by filtering a noisy imageI asD, its corresponding
residual asR (note thatR = I −D) and the true image un-
derlyingI asJ . As mentioned earlier, independence-based
criteria have been developed in image processing literature.
In cases where a noisy signal is oversmoothed (locally or
globally), the residual image clearly shows the distinct fea-
tures from the image (referred to as ‘method noise’ in [4]).
This is true even in those cases where the noise is indepen-
dent of the signal. Independence-based criteria are based on

the assumption that when the noisy image is filtered opti-
mally, the residual would contain mostly noise and very lit-
tle signal and hence it would be independent of the denoised
image. It has been experimentally reported in [14] that the
absolute correlation coefficient (denoted asCC) betweenD
andR decreases almost monotonically as the filter smooth-
ing parameter is increased (in discrete steps) from a lower
bound to a certain ‘optimal’ value, after which its value in-
creases steadily until an upper bound. However, CC ignores
anything higher than second-order dependencies. To allevi-
ate this problem, we propose to minimize the mutual infor-
mation (MI) betweenD andR, as a criterion for parameter
selection. This has been proposed as a (local) measure of
noiseness earlier in [3], but it has been used in that paper
only as an indicator of areas in the image where the residual
is unfaithful to the noise model, rather than as an explicit
parameter-selection criterion. In this paper, we also pro-
pose to use the following information-theoretic measures of
correlation from [6] (see page 47) as independence criteria:

η1(R,D) = 1 −
H(R|D)

H(D)
=

MI(R,D)

H(D)
(1)

η2(R,D) = 1 −
H(D|R)

H(R)
=

MI(R,D)

H(R)
. (2)

Here H(X) refers to the Shannon entropy ofX, and
H(X|Y ) refers to the conditional Shannon entropy ofX

givenY . η1 andη2 both have values bounded from 0 (full
independence) to 1 (full independence).

A problem with all these criteria (CC,MI,η1, η2) lies in
the inherent probabilistic notion of independence itself.In
the extreme case of oversmoothing, the ‘denoised’ image
may turn out to have a constant intensity, whereas in the
case of extreme undersmoothing (no smoothing or very lit-
tle smoothing), the residual will be a constant (zero) signal.
In such cases,CC, η1, η2 are ill-defined whereasMI turns
out to be zero (its least possible value). What this indicates
is that these criteria have the innate tendency to favor ex-
treme cases of under- or over-smoothing. In practical appli-
cations, one could evade this issue by choosing a local min-
imum of these measures within a heuristically chosen inter-
val in the parameter landscape from 0 to∞, but we wish
to drive home a more fundamental point about the inherent
flaw in using independence measures. Moreover, it should
be noted that localized versions of these measures (i.e. sum
of local independence measures) may produce false optima
if the filtering algorithm smoothes out local regions with
fine textures at intermediate steps.

3.2 Characterizing residual ‘noiseness’

Given the fact that the assumed noise model is i.i.d.
and signal independent, we expect the residual produced



by an ideal denoising algorithm to obey these characteris-
tics. Therefore, patches from residual images are expected
to have similar distributions if the filtering algorithm has
performed well. Our criterion for characterizing the resid-
ual ‘noiseness’ is rooted in the framework of statistical hy-
pothesis testing. We choose the two-sample Kolmogorov-
Smirnov (KS) test to check statistical homogeneity. The
two-sample KS test-statistic is defined as

K = sup
x

|F1(x) − F2(x)| (3)

whereF1(x) andF2(x) are the respective empirical cumu-
lative distribution functions (ECDF) of the two samples,
computed withN1 andN2 points. Under the null hypothe-
sis whenN1 → ∞, N2 → ∞, the distribution ofK tends to
the Kolmogorov distribution, and is therefore independent
of the underlying true CDFs themselves. Therefore theK

value has a special meaning in statistics. For a ‘significance
level’ α (the probability of falsely rejecting the null hypoth-
esis that the two ECDFs were the same), letKα be the
statistic value such thatP (K ≤ Kα) = 1−α. The null hy-
pothesis is said to be rejected at levelα if

√
N1N2

N1+N2

K > Kα.
Given a value of the test-statistic computed empirically
from the samples (denoted aŝK), we termP (K ≤ K̂)
(under the null-hypothesis) as the p-value.

Most natural images (apart from homogenous textures)
show a considerable degree of statistical dissimilarity. To
demonstrate this, we performed the following experiment
on all 480 images from the Berkeley database [13]. Each
image at four scales with successive downsampling fac-
tor of 2

3 was tiled into non-overlapping patches of sizes
s × s wheres ∈ {16, 24, 32}. The two-sample KS test
for α = 0.05 was performed for patches from these images.
The average rejection rate was81% which indicates that dif-
ferent regions from each image have different distributions.
It should be noted that the tiling of the image into patches
was very important: a KS test between sample subsets from
random locations produced very low reject rates. A simi-
lar experiment with the same scales and patch sizes run on
pure Gaussian noise images resulted in a rejection rate of
only 7% for α = 0.05. Next, Gaussian noise ofσ = 0.005
(for intensity range [0,1]) was added to each image. Each
image was filtered using the Perona-Malik filter [15] for 90
iterations with a step size of 0.05 and edgeness criterion of
γ = 40 and the residual images were computed after the last
iteration. The KS-test was performed atα = 0.05 between
patch pairs from each residual image. The resulting rejec-
tion rate was41%, indicating strong heterogeneity in the
residual values. As structural patterns were clearly visible
in all these residual images, we therefore conjecture that sta-
tistical heterogeneity is a strong indicator of the presence of
structure. Moreover the percentage reject rate (denoted as
h), the average value of the KS-statistic (i.e.K) and the av-
erage negative logarithm of the p-values from each pairwise

test (denoted asP ) are all indicators of the ‘noiseness’ of a
residual (the lower the value, the noisier and hence more
desirable the residual). Hence these measures act as criteria
for filter parameter selection1. We prefer the criteriaP and
K to h because they do not require a significance level to
be specified a priori.

The advantage of the KS-based measure over MI or CC
is that values ofP andK are high in cases of image over-
smoothing (as the residual will then contain more and more
structure). This is unlike MI or CC which will attain false
minima. This is demonstrated in Figure 1 where the de-
crease in the values of MI or CC at high smoothing levels
is quite evident. Just like MI or CC, the KS-based criteria
do not require knowledge of the noise distribution or even
the exact noise variance. However all these criteria could be
fooled by the pathological case of zero or very low denois-
ing. This is because in the very initial stages of denoising
(obtained by, say, running a PDE with a very small stepsize
for very few iterations), the residual is likely to be devoidof
structure and independent of the (under)smoothed image.
Consequently, all measures: MI, CC,K andP will acquire
(falsely) low values. This problem can be avoided by mak-
ing assumptions of the range of values for the noise variance
(or a loose lower-bound), without requiring exact knowl-
edge of the variance. This has been the strategy followed
implicitly in contemporary parameter selection experiments
(e.g. in [14] the PDE stepsizes are chosen to be 0.1 and 1).
In all our experiments, we make similar assumptions. The
exception is that KS-based measures do not require any up-
per bound on the variance to be known: just a lower bound
suffices.
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Figure 1. Plots of CC, MI, P and MSE on an
image subjected to upto 16000 iterations of
total variation denoising.

1For computingP , there is the assumption that the pairwise tests be-
tween individual patches are all independent, for the sake of simplicity.



4 Experimental Results

To demonstrate the effectiveness of the proposed crite-
ria, we performed experiments on all the 13 images from
Lansel’s benchmark dataset [1]. All images from the dataset
were down-sized from512× 512 to 256× 256. We experi-
mented with 6 noise levelsσ2

n ∈ {10−4, 5×10−4, 10−3, 5×
10−3, 0.01, 0.05} on an intensity range of [0,1], and with
three additive zero-mean noise distributions: Gaussian (the
most commonly used assumption), bounded uniform (noise
due to quantization) and negative exponential (noise model
used for SAR imagery). The lower-bound assumed on the
noise variance was10−6 in all experiments. Two filtering
algorithms were tested: the non-local means (NL-means)
filter [4] and total variation (TV) [18]. The equation for the
NL-means filter is as follows:

Î(x) =

∑

xk∈N(x;SR) wk(x)I(xk)
∑

xk∈N(x;SR) wk(x)
, (4)

wk(x) = exp
(

−
‖q(x;QR) − q(xk;QR)‖2

σ
) (5)

whereÎ(x) is the estimated smoothed intensity,N(x;SR)
is a search window of diameterSR around pointx, wk(x)
is a weight factor,q(x;QR) is a patch of diameterQR cen-
tered atx and σ is a smoothing parameter2. In our ex-
periments, a patch size of12 × 12 was used, with a search
window of 50 x 50.σ was chosen by running the NL-means
algorithm for 55 differentσ values for smoothing, from the
set{1 : 1 : 10, 20 : 20 : 640, 650 : 50 : 1200}. The op-
timal σ values were computed using the following criteria:
CC(D,R), MI(D,R), η1(D,R), η2(D,R); sum of local-
ized versions of all above measures on a12 × 12 window;
h, P andK using two-sample KS tests on non-overlapping
12 × 12 patches; andhn, Pn andKn values computed us-
ing KS-test between the residual and the true noise samples
(which we know here as these are synthetic experiments).
All information theoretic quantities were computed using
40 bins as the image size was256 × 256 (the optimal num-
ber of bins forn samples isO(n1/3)).
The total variation (TV) filter is obtained by minimizing the
following energy:

E(I) =

∫

Ω

|∇I(x)|dx (6)

for an image defined on the domainΩ, which gives a
geometric heat equation PDE that is iterated someT times
starting from the given noisy image as an initial condition.
The stopping timeT is the equivalent of the smoothing
parameter here. For the TV filter, in addition to all the
criteria mentioned before, we also tested Gilboa’s method

2Note that we useσ to denote the smoothing parameter of the filtering
algorithm andσ2

n
to denote the variance of the noise.

[11] (assuming knowledge of the noise distribution) and
Vanhamel’s method [21].

4.1 Validation method

In order to validate theσ or T estimates produced by
these criteria, it is important to see how well they are in
tune with those filter parameter values that are optimal with
regard to different well-known quality measures between
the denoised image and the original image. The most com-
monly used quality measure is the MSE. However as doc-
umented beautifully in [23], MSE has several limitations.
Hence we also experimented with structured similarity in-
dex (SSIM) developed in [22]; with the L1 difference be-
tween the denoised and the original image; and with the
CC,MI, η1 andη2 values between the denoised and the orig-
inal image (as well as with the sum of their local versions).

4.2 Results on NL-Means

Results on NL-Means for Gaussian noise of six different
variances are shown in Tables 1 through to 6.In all these
tables,∆X = absolute difference between ‘X ’ values as
predicted by the criterion, and the optimal ‘X ’ value. The
‘X ’ value is defined to be the quality measure ‘X ’ between
the denoised and the true image, chosen here to beL1 or the
SSIM.dσX is the absolute difference between theσ value
for NL-means predicted by the criterion and theσ value
when the quality measureX was optimal.The other quality
measures are not shown here to save space. The last two
rows of the tables indicate the minimum and maximum of
the optimal quality measure values across all the 13 images
on which the experiments were run (which gives an idea
about the range of the optimal∆X values).

Some results on the ‘stream’ and ‘mandrill’ images are
shown in Figure 2 and 3 with the corresponding residuals.
Experiments were also performed on images degraded with
bounded uniform noise of total width2 × 5 × 10−4 and
2 × 5 × 10−3 (on an intensity range of [0,1]) with results
shown in Tables 7 and 8. Similar experiments were run with
negative exponential noise where these criteria performed
well. The results are not shown here due to insufficient
space.

For low and moderate noise levels, it was observed that
the criteriaP or K produced errors an order of magnitude
better than MI,η1 andη2 (which were the closest competi-
tors) and even two orders of magnitude better than CC. Our
observation was that CC and information theoretic criteria
tend to cause undersmoothing for NL-means. At high noise
levels, we saw that all criteria produced a high error in pre-
diction of the optimal parameter. An explanation for this is
that the NL-means algorithm by itself does not produce very



good results at high noise levels, and requires highσ values
which produce highly structured residuals. For lowσ val-
ues, it produces residuals that resemble noise in the sense
of various criteria, but this leads to hugely undersmoothed
estimates.

An interesting phenomenon we observed was that the
same KS-test based measures (i.e.Pn and Kn) between
the residuals and the actual noise samples (which we know,
as these are synthetic experiments) often did not perform
as well as the KS-test measures (i.e.P andK) between
pairs of patches from the residual. We conjecture that this
is owing to biases inherent in the NL-means algorithm (as
in many others - see [5]) due to which the residuals have dif-
ferent means and variances as compared to the actual noise,
even though the residuals may be homogenous. We checked
experimentally that the variance of the residuals produced
by NL-means underσ values optimal in an L1-sense was
significantly different from the noise variance.

4.3 Effect of patch size on the KS test

The KS test employed here operates on image patches.
The patch-size can be a crucial parameter: too low a patch
size (say2 × 2) will lead to reduction in the discrimina-
tory power of the KS test for this application and cause
(false) rejection for all filter parameters, whereas too high
a patch size will lead to (false) acceptance for all filter pa-
rameters. We chose a patch size so that the number of sam-
ples for estimation of the cumulative was sufficient. This
was determined in such a way that the maximum absolute
error between the estimated and true underlying CDFs was
no more than 0.1 with a probability of 0.9. Then, using
the Dvoretzky-Kiefer-Wolfowitz inequality, it follows that
there should be at least 149 samples [9]. Hence we chose a
patchsize of12 × 12. However, we also performed an ex-
periment with NL-means where the KS-test was performed
across multiple scales from 12 to 60 in steps of 8 (for an
image of size256 × 256), and averageh, P andK values
were calculated. However for the several experiments de-
scribed in the previous sections, we just used the patchsize
of 12 × 12, as the multiscale measure did not produce sig-
nificantly better results.

4.4 Results on Total Variation

Results for total variation diffusion with Gaussian noise
of variance5×10−4 and5×10−3 are shown in Tables 9 and
10. For this method, the KS-based measures performed well
in terms of errors in predicting the correct number of itera-
tions and the correct quality measures, but not as well as MI
within the restricted stopping time range. The results were
also compared to those obtained from Gilboa’s method [11]
which performed the best, though we would like to remind

Table 1. (NLMeans)Gauss. noise σ2
n = 0.0001.

- ∆L1 dσL1 ∆SSIM dσSSIM

h 0.088 10.462 0.002 7.692
P 0.031 7.538 0.005 12.462
K 0.040 7.846 0.004 10.308
CC 0.085 9.846 0.010 17.846
MI 0.189 17.077 0.011 18.615
η1 0.189 17.077 0.011 18.615
η2 0.176 18 0.011 20.769
Local MI 0.055 8.769 0.007 16.154
hNM 0.851 31.462 0.009 16.385
PNM 0.087 13.231 0.002 4.923
KNM 0.215 19.385 0.001 5.538
Min 2.225 - 0.888 -
Max 9.147 - 0.986 -

Table 2. (NLMeans)Gauss. noise σ2
n = 0.0005.

- ∆L1 dσL1 ∆SSIM dσSSIM

h 0.029 7.692 0.003 12.769
P 0.010 4.615 0.006 17.385
K 0.014 5.385 0.004 15.077
CC 0.068 8.462 0.007 15.077
MI 0.087 14.615 0.009 19.692
η1 0.087 14.615 0.009 19.692
η2 0.232 19.923 0.015 26.538
Local MI 0.155 14.615 0.005 13.538
hn 0.436 28.154 0.003 8
Pn 0.047 10.769 0.003 9.692
Kn 0.128 16.154 0.001 5.846
Min 2.683 - 0.884 -
Max 9.383 - 0.981 -

Table 3. (NLMeans)Gauss. noise σ2
n = 0.001.

- ∆L1 dσL1 ∆SSIM dσSSIM

h 0.041 9.231 0.004 16.154
P 0.024 5.385 0.005 16.923
K 0.035 7.692 0.004 14.615
CC 0.151 16.154 0.004 12.308
MI 0.126 19.231 0.008 18.462
η1 0.126 19.231 0.008 18.462
η2 0.157 26.923 0.013 29.231
Local MI 0.191 20.308 0.003 10.308
hn 0.218 22.308 0.001 6.154
Pn 0.041 10 0.002 12.308
Kn 0.100 15.385 0.001 6.923
Min 3.069 - 0.879 -
Max 9.601 - 0.976 -



Table 4. (NLMeans)Gauss. noise σ2
n = 0.005.

- ∆L1 dσL1 ∆SSIM dσSSIM

h 0.206 33.846 0.003 24.615
P 0.207 33.846 0.003 24.615
K 0.488 43 0.005 33.769
CC 2.253 92.308 0.034 55.385
MI 2.677 79.538 0.054 67.231
η1 2.720 81.077 0.054 68.769
η2 2.119 105.231 0.053 105.231
Local MI 3.889 107.846 0.069 74
hn 1.337 38 0.032 38
Pn 1.335 33.538 0.033 36.615
Kn 1.336 33.538 0.034 42.769
Min 4.838 - 0.791 -
Max 10.695 - 0.955 -

Table 5. (NLMeans)Gauss. noise σ2
n = 0.01.

- ∆L1 dσL1 ∆SSIM dσSSIM

h 12.121 226.692 0.202 177.462
P 12.121 226.692 0.202 177.462
K 12.121 226.692 0.202 177.462
CC 8.886 207.154 0.149 157.923
MI 11.701 224.462 0.195 175.231
η1 11.701 224.462 0.195 175.231
η2 6.218 200 0.119 163.077
Local MI 12.121 226.692 0.202 177.462
hn 1.891 60.923 0.045 64
Pn 3.642 86.462 0.081 108
Kn 3.649 88 0.082 115.692
Min 6.285 - 0.735 -
Max 11.661 - 0.933 -

Table 6. (NLMeans)Gauss. noise σ2
n = 0.05.

- ∆L1 dσL1 ∆SSIM dσSSIM

h 14.704 906.154 0.183 643.846
P 11.290 838.462 0.140 576.154
K 9.597 805.385 0.118 543.077
CC 18.959 1020 0.249 757.692
MI 19.435 1026.154 0.253 763.846
η1 19.550 1027.692 0.255 765.385
η2 19.435 1026.154 0.253 763.846
Local MI 19.783 1030.769 0.258 768.462
hn 24.516 1028.462 0.305 796.923
Pn 26.721 1120.769 0.325 858.462
Kn 26.721 1120.769 0.325 858.462
Min 11.748 - 0.555 -
Max 17.478 - 0.806 -

Table 7. (NLMeans)Unif. noise width = 0.001.
- ∆L1 dσL1 ∆SSIM dσSSIM

h 0.055 9.692 0.003 10.923
P 0.013 5.692 0.006 14.923
K 0.021 6.615 0.005 14.000
CC 0.087 11.077 0.009 17.231
MI 0.188 13.385 0.007 17.077
η1 0.188 13.385 0.007 17.077
η2 0.267 16.846 0.009 19.000
Local MI 0.244 17.077 0.011 21.692
hn 0.770 30.231 0.008 14.538
Pn 0.054 10.308 0.003 7.231
Kn 0.114 14.462 0.001 4.615
Min 2.339 - 0.887 - 1.195 -
Max 9.176 - 0.985 - 2.011 -

Table 8. (NLMeans)Unif. noise width = 0.01.
- ∆L1 dσL1 ∆SSIM dσSSIM

h 0.034 10.769 0.005 18.462
P 0.027 9.231 0.005 20.000
K 0.042 12.308 0.005 16.923
CC 0.430 34.615 0.004 14.615
MI 0.137 16.923 0.007 27.692
η1 0.137 16.923 0.007 27.692
η2 0.125 21.538 0.011 35.385
Local MI 0.477 36.308 0.004 16.308
hn 0.025 9.231 0.004 20.000
Pn 0.020 9.231 0.006 26.154
Kn 0.025 10.769 0.006 27.692
Min 3.522 - 0.860 - 1.148 -
Max 9.835 - 0.970 - 1.834 -

Table 9. (TV)Gauss. noise σ2
n = 0.0005.

- ∆L1 dtL1 ∆SSIM dtSSIM

h 0.558 53.462 0.006 56.538
P 0.522 48.462 0.006 52.308
K 0.513 46.538 0.006 50.385
CC 3.487 365.000 0.088 371.923
MI 0.103 20.769 0.001 23.077
η1 0.103 20.769 0.001 23.077
η2 2.478 267.692 0.062 274.615
Local MI 0.479 36.923 0.005 32.308
hn 0.538 69.615 0.007 76.538
Pn 0.523 68.846 0.007 75.769
Kn 0.528 69.615 0.007 76.538
Gilboa [11] 0.050 10.231 0.001 16.385
VanHamel [21] 0.818 51.954 0.009 45.031
Min 2.622 - 0.975 -
Max 4.426 - 0.995 -
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Figure 2. Images with Gaussian noise with
σ2

n = 5×10−3 denoised by NLMeans. Parame-
ter selected for optimal noiseness measures:
(a): P , (c) K, (e) CC, (g) MI; and optimal qual-
ity measures: (i) L1, (k) SSIM, (m) MI between
denoised image and residual. Correspond-
ing residuals in (b),(d),(f),(h),(j),(l),(n). ZOOM
IN PDF FOR A BETTER VIEW.

the reader that Gilboa’s method requires knowledge of the
full noise distribution. Also, in the case of total variation,
the KS-based measures did not outperform MI. An expla-
nation for this is that the total variation method is unable
to produce homogenous residuals for its optimal parameter
set, as it is specifically tuned for piecewise constant images.
This assumption does not hold good for commonly occur-
ring natural images. As against this, NL-means is a filter ex-
pressly derived from the assumption that patches in ‘clean’
natural images (and those with low or moderate noise) have
several similar patches in distant parts of the image.

5 Discussion and Avenues for Future Work

In this paper, we have contributed to and critiqued
independence-based criteria for filter parameter selection
and presented a criterion that measures the homogeneity of
the residual statistics. On the whole, we have contributed
to the paradigm of exploiting statistical properties of the
residual images for driving the denoising algorithm. The

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n)

Figure 3. Images with Gaussian noise with
σ2

n = 5×10−3 denoised by NLMeans. Parame-
ter selected for optimal noiseness measures:
(a): P , (c) K, (e) CC, (g) MI; and optimal qual-
ity measures: (i) L1, (k) SSIM, (m) MI between
denoised image and residual. Correspond-
ing residuals in (b),(d),(f),(h),(j),(l),(n). ZOOM
IN PDF FOR A BETTER VIEW.

proposed noiseness measures require no other assumptions
except that (1) the noise should be i.i.d. and additive, and
that (2) a loose lower bound on the noise variance is known
to prevent false minima with extreme undersmoothing. Un-
like CC or MI, the KS-based noiseness measures are guar-
anteed not to eyield false minima in case of oversmoothing.

The KS-based noiseness criteria require averaging of the
P or K values from different patches. For future work,
this can be replaced by performingk-sample versions of the
Kolmogorov-Smirnov tests or related tests such as Cramer
von-Mises [12] between individual patches versus a pooled
sample containing the entire residual image. This will pro-
duce a singleK or P value for the whole image.

The assumption of i.i.d. noise may not hold in some de-
noising scenarios. In case of a zero-mean Gaussian noise
model with intensity dependent variances, a heuristic ap-
proach would be to normalize the residuals suitably us-
ing feedback from the denoised intensity values (regarding
them as the ‘true’ image values) and then running the KS-
tests. The efficacy of this approach needs to be tested on



Table 10. (TV)Gauss. noise σ2
n = 0.005.

- ∆L1 dtL1 ∆SSIM dtSSIM

h 0.665 129.615 0.008 102.692
P 0.493 109.615 0.006 80.385
K 0.430 102.308 0.006 73.077
CC 2.156 350.769 0.073 376.923
MI 0.422 88.846 0.012 118.077
η1 0.422 88.846 0.012 118.077
η2 1.849 296.923 0.063 331.538
Local MI 5.475 270.769 0.084 240.769
hn 0.194 59.615 0.008 96.538
Pn 0.221 74.231 0.008 115.000
Kn 0.216 75.769 0.008 116.538
Gilboa [11] 0.094 60.000 0.002 42.000
VanHamel [21] 4.658 303.400 0.068 262.631
Min 4.995 - 0.892 -
Max 11.284 - 0.980 -

denoising algorithms that are capable of handling intensity
dependent noise. In case the noise obeys a Poisson distri-
bution (for which the variance is equal to the mean, and
hence which is neither fully additive nor multiplicative),
there are two ways to proceed: either apply a variance sta-
bilizer transformation which converts the data into that cor-
rupted by Gaussian noise with variance of one, or else suit-
ably change the definition of the residual itself.

Moreover, the existence of a universally optimal param-
eter selector is not yet established: different criteria may
perform better or worse for different denoising algorithms
or with different assumptions on the noise model. This is,
as per our survey of the literature, an open problem in im-
age processing. Lastly, despite encouraging experimental
results, there is no established theoretical relationshipbe-
tween the performance of noiseness criteria for filter param-
eter selection and the ‘ideal’ parameters in terms of image
quality criteria like MSE. A detailed study of risk-based cri-
teria such as those in [7] may be important in this context.
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