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1. PERFORMANCE BOUNDS FOR Q1 AND Q2

Theorem 1: - Bounds for Q1
Abiding by the notations in [1], letB(·) be an (δ, k) RIP obey-
ing linear operator [1], i.e. ∀X 6= 0 and ‖X‖0 ≤ k∣∣∣∣‖B(X)‖22

‖X‖22
− 1

∣∣∣∣ < δ (1)

Let X∗ be the true rank 1 matrix that satisfies the constraints
in Q1, and X̃ be the solution to Q1 for an appropriate choice
of parameters. We define ∆ = X̃ − X?. For a matrix X ∈
Rd×d, XT denotes a matrix with all values zero except the
indices in T , which are set to the corresponding values of X .
∀λ ≥ 2d

1−ρ + d

k
1
2

and δ ≤
√

2− 1 we get

‖∆‖2 ≤
2αε(1− ρ)−1 + 2(1 + ρ)(1− ρ)−1k−

1
2 ‖X̃ −X?

k‖1
1− ( 2d

1−ρ + d

k
1
2

) 1
λ

(2)
where ρ =

√
2δ

1−δ ≤ 1, X?
k is the matrix with the k largest

elements in X? at the corresponding indices and the others

elements to be 0, ε ∼ O(
√
n) and α =

4
√

(I+c)(1+δ)

1−δ . I is the
true intensity of the underlying measurement, i.e. ‖B(X?)‖1,
which is assumed to be known for naturally acquired mea-
surements.
Theorem 2: - Bounds for Q2
Given that the assumptions in section 2.2 hold, and Ψ has suf-
ficiently small RIP constant δ, then, there exist positive abso-
lute constants C1, C2, and C3 such that ifm ≥ c1k log d

k , and
n ≥ C1m then any estimate X̂ of the Algorithm obeys∥∥∥X̂ −X?

∥∥∥
F
≤ C2,

for all rank-one and k×k-sparse matricesX? < 0 with prob-
ability exceeding 1 − e−C3n. The constant C2 depends on√
I and since ε ∼ O(

√
n), we don’t get a dependence on 1√

n

like that in [2]. The proofs of these theorems are inspired by
the performance bounds for compressive phase retrieval pre-
sented in [3] by Ohlsson et. al for the standard CPRL prob-
lem (P1) , and in [2] by Bahamani et. al for the 2-stage sparse
recovery method (P2). We adapted these proofs for Poisson
corrupted signals using the techniques in [4] and [5].
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2. PROVING PERFORMANCE BOUNDS

We briefly present here the proof outline for performance
bounds of Q1 and Q2.

2.1. Proof for Q1

As defined in theorem 1, let B(·) be an (δ, k) RIP obeying
linear operator [1], i.e. ∀X 6= 0 and ‖X‖0 ≤ k∣∣∣∣‖B(X)‖22

‖X‖22
− 1

∣∣∣∣ < δ (3)

Let X∗ be the true rank 1 matrix that satisfies the constraints
in Q1, and X̃ be the solution to Q1 for an appropriate choice
of parameters. We define ∆ = X̃ − X?. For a matrix X ∈
Rd×d, XT denotes a matrix with all values zero except the
indices in T , which are set to the corresponding values of X .
T0 is the index set of the k largest elements of X? in absolute
value, and T c0 is the corresponding complement set. Let T1 be
the index set associated with the k largest elements in absolute
value of ∆T c

0
and T0,1 , T0 ∪ T1 be the union. Let T2 be the

index set associated with the k largest elements in absolute
value of ∆T c

0,1
, and so on. Using the fact that -:

‖∆‖2 = ‖∆T0,1
+ ∆T c

0,1
‖2 ≤ ‖∆T0,1

‖2 + ‖∆T c
0,1
‖2. (4)

We independently derive bounds for both the terms on the
RHS, and then combine the result to get a bound on ‖∆‖2.

Bounds for ‖∆T c
0,1
‖2 can be derived exactly as in the

proof of theorem 8 in [1]. For bounding ‖∆T0,1
‖2, we first

use a technique from [5] to upper bound ‖B(∆)‖2, which
handles Poisson corruption for signals in Q1 and Q2. Some
algebraic manipulation gives

‖B(∆)‖22 = ‖B(X̃ −X?)‖22

= ΣNi=1((

√
(B(X̃)i + c−

√
(B(X?))i + c)2

(

√
(B(X̃)i + c+

√
(B(X?))i + c)2).

1. Since ‖
√
y + c −

√
B(X) + c‖2 is upper bounded by

ε, using triangular inequality we get ‖
√
B(X̃) + c −√

B(X?) + c‖2 ≤ ‖
√
y + c −

√
B(X̃) + c‖2 +

‖
√
y + c−

√
B(X?) + c‖2 ≤ 2ε.



2. For scalars v1 ≥ 0, v2 ≥ 0, we have (
√
v1 +

√
v2)2 ≤

4max(v1, v2). Likewise we also have (BX̃))i ≤ I ,
where I is the true intensity of the underlying measure-
ment, i.e. ‖B(X?)‖1, which is assumed to be known
for naturally acquired measurements. Hence we get

(
√

(B(X̃))i + c+
√

(B(X?))i + c)2 ≤ 4(I + c).

3. Using the results of all the steps above, we have
‖B(∆)‖2 ≤ 4ε

√
I + c.

By a derivation similar to that in [4], one can show that

‖∆T0,1‖2 ≤
αε

1− ρ
+

2ρ

1− ρ
k−1/2‖X̃−X?

k‖1−
1

λ

1

1− ρ
Tr ∆.

(5)
where ρ =

√
2δ

1−δ ≤ 1, X?
k is the matrix with the k largest ele-

ments in X? at the corresponding indices and the others ele-

ments to be 0, and α =
4
√

(I+c)(1+δ)

1−δ . The Tr ∆ term makes
the bound a bit unpractical, and can be eliminated using the
inequality - Tr ∆ ≤ d‖∆‖2. This inequality can obtained by
upper bounding trace by l1 norm and then using the Cauchy
Schwartz inequality subsequently as done in [1]. We observe
that this inequality differs slightly from that in the proof of
the corollary 9 in [1] since ∆ is not k-sparse. Using this in-
equality, and the bounds obtained for ‖∆T0,1‖2 and ‖∆T c

0,1
‖2,

∀λ ≥ 2d
1−ρ + d

k
1
2

and δ ≤
√

2− 1we get

‖∆‖2 ≤
2αε(1− ρ)−1 + 2(1 + ρ)(1− ρ)−1k−

1
2 ‖X̃ −X?

k‖1
1− ( 2d

1−ρ + d

k
1
2

) 1
λ

(6)

2.2. Proof for Q2

First we find an upper bound on ‖Â−A?‖2.
Â is the solution to Q2 and A? is the true low rank matrix.
The performance bounds for estimation of A can be derived
exactly as done in [2], with a modification to the proof of
theorem 1.2 presented [6] to account for the VST based con-
straint to handle Poisson noise. In section 6 of [6], on taking
into account our constraint, and following the steps to bound
‖B(∆)‖2 as done for Q1 above, equation 6.2 in section 6 of
[6] changes to ‖A(H)‖2 ≤ 4ε

√
(I + c), where H = ∆ and

A corresponds to the linear operatorB(·) in Q1. Since the up-
per bound for ‖A(H)‖2 is changed only by a multiplicative
constant, the rest of the proof proceeds in a similar manner to
[6], giving us a bound of the form similar to that in [2] with a
different constant on the R.H.S, i.e.

‖Â−A?‖F ≤
C ′′2 ε√
n
, (7)

for all valid A? , thereby for all valid X?, with probability
exceeding 1− e−C3n for some constant C3. C ′′2 is a constant
that depends on

√
I + c since the ε gets scaled by that factor

due to the VST constraint. We see that the bound we obtained
has a dependence on

√
n as opposed to the theorem 1.2 in [6].

This difference arises due to the fact that the noise vector in
[6] is assumed to be a sphere of radius

√
n, and hence we see

a dependence on
√
n in the 2-stage sparse recovery algorithm

as no such assumption is taken for the noise vector in this
case. The Â estimated from above step now can be used to
get the sparse estimate X̂ . The upper bound on ‖X̂ − X?‖2
can now be derived exactly as done in [2]. This completes the
proof sketch for Q1 and Q2.
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