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ABSTRACT
This paper addresses the task of projection design for

source separation in the compressive domain, where one ob-
serves a compressed linear mixture of two source signals with
known priors. By positioning that both the sources follow a
Gaussian mixture, we formulate an objective that tightly ap-
proximates the minimum mean squared error and solve the
optimization problem using a gradient-based approach. In the
blind setting, where the mixing ratio unknown, we propose a
cross-validation approach to independently estimate the mix-
ing ratio. We also provide a number of numerical results on
synthetic and real image data that validate our findings. To
the best of our knowledge, this is the first effort in projection
design for prior-based source separation.

Index Terms— compressed sensing, projection design,
source separation, Bayesian estimation, cross-validation

1. INTRODUCTION

Source separation refers to the problem of identifying the con-
stituents of a mixture of signals. It arises in many applications
in image source separation [1, 2], audio [3], cancer genetics
[4] etc. A large part of literature focuses on the problem of
Blind Source Separation (BSS), where one aims to recover
unobserved source signals and mixing weights from a lin-
ear mixture [5]. The task is intrinsically ill-defined and re-
quires additional assumptions and/or prior knowledge to be
solved reliably. Popular methods to address the BSS prob-
lem by imposing additional constraints on the source signals
include independent component analysis – where the source
signals are separated by minimizing mutual information be-
tween sources [6], dictionary-based separation by exploiting
sparsity priors [7, 8], and informed source separation – where
side information is used to assist the separation process [9–
11]. [11, 12] consider variants of the source separation prob-
lem where MAP estimation is performed on a compressed
linear mixture.

Compressed sensing (CS) theory dictates that signals have
a fully or approximately sparse representation can be recov-
ered with minimal information loss from certain corrupted
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lower dimensional linear projections [13, 14]. While CS the-
ory provides guarantees on recovery for randomized projec-
tions with entries drawn from Gaussian/Bernoulli distribu-
tions, it has been shown that additional information about the
signal can be incorporated into the inference task to improve
estimation performance [15, 16]. Popular approach to de-
signing projections typically optimize on quality metrics like
the mutual coherence, average coherence, estimation mean
square error (MSE), entropy of projections etc. under a vari-
ety of sensing constraints [12, 16–20].

To incorporate statistical priors efficiently, the Statisti-
cal Compressive Sensing (SCS) framework provides per-
formance guarantees for recovery of signals drawn from a
Gaussian mixture (GM) prior [21]. GMs are simple yet
effective priors on natural image patches degraded by noise,
subsampling or linear effects [22, 23] and have been shown to
achieve state-of-the-art results in various applications across
image and video processing [21–24]. Theoretically, the ver-
satility of GMs comes from the analogy that they can be seen
as the Bayesian counterpart of the union-of-subspaces model
where each subspace corresponds to the covariance matrix of
a component of the GM [25]. While the minimum MSE esti-
mator has analytical form for a linear model with GM priors
on signal and noise, the performance measure (MMSE) does
not have a closed form. Recent works attempt the projection
design problem by optimizing on an analytical upper bound
[11, 12] or an analytical lower bound [19].

In this work, we revisit findings on the tightness of these
approximations from [26] and formulate a design objec-
tive that uses a combination of the two, based on the signal
strengths. We pose an optimization problem that capitalizes
on a tight approximation of the estimation MSE of both con-
stituent signals and solve it using a gradient-based approach.
To extend the proposed method to the blind separation set-
ting, we also propose a cross-validation (CV) approach to
estimate the mixing weights of the linear mixture of the two
signals. The remainder of the paper is organized as follows:
in Section 2 we describe our imaging model and build the
preliminaries for our setup. Section 3 presents the proposed
design objective, the optimization problem thus formed and
a CV-based scheme for estimating the mixing weights. We
validate our approach using experiments on synthetic data
and real images in Section 4, highlighting the benefits of the
new approach, and conclude in Section 5.
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2. PRELIMINARIES

As alluded above, our goal is to study the source separation
problem in settings where we may design the projection ma-
trix Φ based on prior information on the signals and noise.
We consider the standard linear mixing model:

y = Φ(x+ λc) + η (1)

where {x, c} ∈ Rn are the similarly scaled signals compos-
ing the linear mixture with mixing ratio λ, and y ∈ Rm is the
measurement vector corrupted by additive noise η.

2.1. Acquisition Model

We consider the image acquisition model in [27] (hereby re-
ferred to as Block-SPC) which uses a digital micromirror de-
vice (DMD) as a spatial light modulator. The scene is divided
into non-overlapping blocks of a fixed size (say 16×16 when
n = 16) and sensed independently across blocks. The model
can thus be expressed as yi = Φ(xi + λci) + ηi, where
{xi, ci} are the ith vectorized patches with n resolution el-
ements. The elements of Φ are implemented as reflectivity
levels of the DMD and hence, a practical sensing matrix faces
optical constraints. For example, the DMD of Block-SPC is
capable of 256 levels of reflectivity, imposing Φij ∈ P , where
P is the set of 8−bit uniformly quantized values ∈ [0, 1].

2.2. Modeling Priors on Images

In this work, we assume that an image is composed of non-
overlapping patches, each constituted by a linear mixture of
two signals {xi, ci}, drawn independently from known mix-
ture distributions having Qx and Qc components, and cor-
rupted by noise ηi drawn from a known Gaussian N (0,Ση).

p(x) =

Qx∑
j=1

πx,j N (x|µx,j ,Σx,j),

p(c) =

Qc∑
j=1

πc,j N (c|µc,j ,Σc,j)

(2)

Note that the covariance matrices are not assumed to be full-
rank. In fact, learned priors on natural image patches have
been observed to furnish non-degenerate covariance matrices
with fast eigenvalue decay, in analogy to compressible signals
for conventional CS [21].

2.3. Minimizing the Estimation MSE

For the standard linear setup y = Φx + η, the aim of CS is
to design a decoder and projection matrix pair that minimizes
the mean-squared error (MSE) associated with the recovered
signal x̂. The projection design problem can be stated as

Φ∗ = arg min
Φ∈O

min
x̂Φ∈X

Ex,η[‖x− x̂Φ(y)‖2] (3)

where O is a (possibly constrained) class of matrices and X
is a (possibly constrained) class of estimation strategies. The
nature of constraints imposed by O governs the nature of the
optimization problem posed above. A large body of existing
work focuses on energy-constrained designs, which impose
a constraint on the Frobenius norm of the projection matrix:
since each row is a linear operator, this constraint amounts to
a constraint on average energy per row of the matrix. While
these constraints are well-suited for applications in commu-
nications applications and facilitate closed-form optimization
using a waterfilling-based approach [17, 29], they do not rep-
resent optical constraints levied by a practical compressive
imager [27]. In accordance with the acquisition model dis-
cussed in Section 2.1, we focus on optically-constrained de-
signs, where O = {Φ : Φij ∈ P}.

3. METHODS

3.1. Optimization Objective for Bayesian Design

We first study the optimization objective for the case of zero-
mean Gaussian priors on signals and then extend the idea to
GM priors, accordingly. For the Gaussian case with signal co-
variance matrices Σx,Σc and noise covariance Ση , the MAP
estimates from the compressive mixture (1) are given by

x̂ = ΣxΦ
T (ΦΣxΦ

T + Ση̂x)−1y

ĉ = λΣcΦ
T (λ2ΦΣcΦ

T + Ση̂c)−1y
(4)

where Ση̂x = λ2ΦΣcΦ
T + Ση and Ση̂c = ΦΣxΦ

T + Ση

are the effective noise covariance matrices. Estimation the-
ory dictates that the MAP estimate is optimal in the MSE
sense [30] and the expected estimation errors MΦ,x =

E[‖x− x̂‖22] and MΦ,c = E[‖c− ĉ‖22] can be computed
as traces of the corresponding error covariance matrices

Mx = trace
{ Kx︷ ︸︸ ︷

Σx −ΣxΦ
T (ΦΣxΦ

T + Ση̂x)−1ΦΣx

}
Mc = trace

{
Σc −ΣcΦ

T (ΦΣcΦ
T + Ση̂c)−1ΦΣc︸ ︷︷ ︸

Kc

}
(5)

We choose an optimization objective of the form J =
Mx + k · Mc, parametrized by k > 0 to tune the impor-
tance of signal c with respect to x. This parameter facilitates
flexibility in design objective based on the intended applica-
tion: choosing k = 1 gives equal importance to both signals,
whereas k � 1 would focus on recovery of x. For the partic-
ular choice of k = 0, the objective resembles that of matrix
design for compressive clutter removal for Gaussian sources,
where the second signal is treated as structured noise.

For the more general scenario of GM priors (2), an anal-
ysis of various approximations to the MMSE metricMx re-
veals two viable closed-form estimates: a lower bound based



Fig. 1: Empirical MMSEMx (blue) and its analytical bounds

on oracular model-selection and an upper bound based on the
linear MMSE estimator [26]. We have

ML
x =

∑
k,l

πx,k πc,lMx|k,l ≤Mx ≤MU
x (6)

whereML
x is the oracular MMSE,Mx|k,l denotes the Gaus-

sian MMSE corresponding to mixture components k, l in (5)
andMU

x represents the linear MMSE corresponding to aver-
age signal covariances of x, c1. Figure 1 shows the trends in
the empirical MMSE of x and the bounds suggested by (6)
as a function of the mixing ratio λ for a simulated linear
mixture. The empirical MMSE is computed as the expected
MSE of the analytical MMSE estimator over a large number
of randomized runs. We note from Fig. 1 that for the regime
λ < 0.6 (SNR> 5), i.e. when signal x is stronger than clutter
λc, the lower boundML

x is tight and presents a good approx-
imation to the intractable MMSEMx. Conversely, the upper
boundMU

c presents a tight approximation to the intractable
Mc over this low SNR regime (with respect to c). A suitable
objective function for the λ < 0.6, hence, can be obtained by
using appropriate analytical forms for the expected estimation
MSEs as follows

J =ML
x + kMU

c (7)

Thus using our observations from Fig. 1, we have arrived
at a principled criterion for projection design for prior-based
source separation.

3.2. Gradient-based Optimization

The optimization objective for projection design thus be-
comes Φ∗ = arg minΦ∈O ML

x + kMU
c where O is as per

1the linear estimator fits a Gaussian prior on the source distribution, resulting
in the average signal covariance matrix

Section 2.3. The objective function is differentiable and
gradients can be computed with respect to elements of Φ

∂Mx|k,l

∂Φρω
= −trace

{
K2
x|k,l(Φ

TJρω + JωρΦ)Σ−1
η̂x

}
∂ML

x

∂Φρω
=

Qx∑
k=1

Qc∑
l=1

πx,kπc,l ·
∂Mx|k,l

∂Φρω

∂MU
c

∂Φρω
= −trace

{
K2
c(Φ

TJρω + JωρΦ)Σ−1
η̂c

}
(8)

where KU
c ,Kx|k,l are defined as per (5) for the corresponding

distributions, as defined in (6). The constrained minimization
problem is solved by projected gradient descent (on the set
O) with adaptive step size. A multi-start strategy is adopted
to combat the non-convexity of the objective function.

3.3. Cross-validation for Estimating Mixing Ratio

So far, the design strategy assumes knowledge of the mixing
ratio to be available a priori. However, a compressive imager
may suffer from clutter of unknown strength (usually weaker
than the image signal). Instead of imposing a Bayesian hy-
perprior on the mixing ratio, we use cross-validation (CV),
a strategy widely used in CS literature for estimating signal
support, noise level, optimizer parameters etc. [8, 31, 32].

For any projection matrix Φ and compressive measure-
ment y obtained according to (1), we split the measurements
into two sets: the estimation set yest and the validation set
yCV (respectively generated by modified projection matrices
Φest and ΦCV ). We feed the estimation set to the decoder ∆
and generate estimates of the signals x̃, c̃. These estimates
are then used to evaluate the model parameters (here, λ) over
the validation set, i.e., yCV

λ∗ = arg min
λ∈Y

E [‖yCV −ΦCV (x̃+ λc̃)‖2] (9)

where Y is the set of candidate mixing ratios and the expec-
tation is taken over all possible partitions.

4. EVALUATION

We evaluate the performance of our proposed method on real
and synthetic data of varying complexity. We consider the
Block-SPC model with 12.5% compressive measurements.

To demonstrate the fidelity of the proposed objective to
the chosen task and its dependence on the knowledge of λ,
we conduct a simulation experiment on signals with Gaussian
priors and a wide range of mixing ratios λ. Starting with a
random Φ0 ∈ O, we design the projection matrix using the
proposed method (k = 0.4) and compare the recovery per-
formance with matrices designed (a) agnostic to structure of
c and (b) using a conservative λ (∼ 3). Figure 1 shows the
trends in recovery error for both signals as a function of λ. We



(a) Mixture (x+ λc) (b) Random Φ (c) J =MU
x (d) J =ML

x

Fig. 2: Compressive clutter removal: recovered signals x̂ from 12.5% measurements of a binary mixture (a) using: (b) random
projections, (c) projections designed using J = MU

x (upper bound, LMMSE), and (d) projections designed using J = ML
x

(lower bound, oracular). PSNR (b-d): 20.01, 20.42, 21.35. Zoom into electronic version for a better view.

Fig. 3: PSNR trends for compressive source separation of sig-
nals x (solid lines) and c (dashed lines) drawn from Gaussian
priors using different projections (k = 0.4)

observe that the knowledge of λ aids recovery and projections
designed with this knowledge outperform the others in terms
of PSNR. We also note that the particular choice of k = 0.4
lays more emphasis on recovery of x: this is evident from the
improved reconstruction quality of x, when compared to c.

To demonstrate the appropriateness of the analytical lower
bound, we conduct an experiment with GM priors on both
signals with lx = lc = 10. Each mixture component is zero-
mean with fast eigenvalue decay in their covariance matrices.
Figure 4 shows the trends in recovery performance of pro-
jections designed with the lower bound (proposed, k = 0),
with the upper bound [12] and random projections. Over the
regime λ < 1, the tightness of the lower bound ensures better
recovery of signals with the proposed objective function.

Finally, we show results from the compressive recovery
of image signals from a binary mixture (λ = 0.1). We con-
sider two classes of signals – images of natural scenes and
fingerprint images – and independently learn GM priors with
20 components each using MAP-EM on a large set of patches
from well-curated datasets. Figure 2 shows a sample mixture
and recovered signals using (b) random projections, (c) pro-
jections designed with the lower bound, and (d) with the up-

Fig. 4: PSNR trends for compressive source separation of sig-
nals x (solid lines) and c (dashed lines) drawn from Gaussian
mixture priors using different projections (k = 0)

per bound2 (proposed, k = 0). The proposed method offers
better reconstructions, both visually and quantitatively. The
reader is directed to the supplemental material [33] for results
on a wider set of images.

5. CONCLUSION

We investigated the problem of projection design for com-
pressive source separation, with optical constraints and sta-
tistical priors on signals. Imposing a GM prior on the con-
stituents of a binary mixture, we propose an optimization ob-
jective that closely approximates the MMSE error in closed-
form and solve it using a gradient-based approach. We also
describe a cross-validation scheme for inferring the mixing
ratio λ of the binary mixture, generalizing the estimation pro-
cess to the blind setting. Matrices designed using the pro-
posed method are superior in terms of visual quality and re-
construction error when compared to random matrices and
those designed solely for the upper bound. Experiments on
simulated data validate the fidelity of the design scheme and
its dependence on the knowledge of λ. A more thorough anal-
ysis of this dependence and the sensitivity of the design to
stochasticity in λ is deferred to a subsequent effort.

2Sensing matrices are appended with a row of 1s to estimate the block mean
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