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Abstract

We present a new color image compression algorithm for RGB images. In ourprevious work
[6], we presented a machine learning technique to derive a dictionary of orthonormal basis triples
for compact representation of an ensemble of color image patches from a training set. The patches
were represented as 3D arrays of sizen× n× 3, and our technique was based on the higher order
singular value decomposition (HOSVD), an extension of the singular value decomposition (SVD)
to higher order matrices [3]. The learning scheme exploited the cross-coupling between the R,G,B
channels by implicitly learning a color space. In this paper, we show the benefits of represent-
ing color image patches as 2D matrices of sizen × 3n and learning a dictionary of orthonormal
basis pairs. We also present a method to leverage greater representational power from a learned
dictionary without increasing its size. We present experimental results on all these variants of our
method and compare them to JPEG and JPEG2000.

1 Introduction

Contemporary compression algorithms such as JPEG or JPEG-2000 use fixed bases such as the
discrete cosine transform (DCT) or wavelet transform for building dictionaries for compact repre-
sentation, exploiting the well-known fact that the projection coefficients of natural images or image
patches onto these bases are sparse. Nevertheless, these bases areuniversal - properties specific
to restricted classes of data may be better represented by tuning the bases tothese data on the fly,
using machine learning techniques. Such a philosophy has been previously adopted in papers such
as [2], [4] and in our previous work [5], [6]. The gist of our approach from [5] was to learn a small
number of matrix orthonormal basis pairs from a training set of patches belonging to gray-scale
images in such a way that the projection of the patches onto at least one of those bases was sparse.
Given an image to be compressed and an allowed error value, its patches were projected onto the
particular basis pair that yielded the sparsest possible representation without exceeding the error
value.

In color (RGB) image compression, it is a well-known fact that independent compression of
the R, G, B channels is sub-optimal as it ignores the inherent coupling between the channels. Com-
monly, the RGB images are converted to YCbCr or some other decorrelated color space followed
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by independent compression in each channel. This method is also part of the JPEG/JPEG-2000
standards. In [6], our approach from [5] was extended to handle color (RGB) images by represent-
ing color image patches as 3D matrices of sizen×n×3 and learning triples of orthonormal bases.
The overall learning scheme was based on the HOSVD [3], which can be regarded as the analog
of the SVD to higher order matrices. In this method, the RGB images were not converted to any
decorrelated color space. Instead, a color space tuned to the training data was learned implicitly
using tensor algebra.

In this paper, we revisit the approach from [6]. We switch from the 3D representation of the
color image patch to a 2D representation in the form of matrices of sizen × 3n. We demonstrate
superior experimental results and also discuss intuitive reasons why this representation is superior
to the original one. Secondly, we also provide a method to increase the representational power of
a dictionary of orthonormal basis pairs without increasing its size.

This paper is organized as follows. In Section 2, we review our previouswork for gray-scale
and color image compression.

2 Previous Work

2.1 Compression of gray-scale images

Consider a set of images, each of sizeM1 × M2, divided into (say)N non-overlapping patches
{Pi}, 1 ≤ i ≤ N of sizem1 × m2,m1 ≪ M1,m2 ≪ M2. We exploit the similarity across
these patches by representing them as sparse projections onto someK ≪ N orthonormal bases
{(Ua, Va)} (1 ≤ a ≤ K), learned from the training set itself.

The SVD of an image patchP ∈ Rm1×m2 is given byP = USV T , whereS ∈ Rm1×m2 is
a diagonal matrix of singular values. Now,P can also be represented as a combination ofanyset
of orthonormal bases̄U and V̄ , different from those obtained from the SVD ofP . In this case,
we haveP = ŪSV̄ T whereS is non-diagonal. We now seek to answer the following question:
WhatsparsematrixW ∈ Rm1×m2 will reconstructP from a pair of orthonormal bases̄U andV̄
with the least error‖P − ŪWV̄ T ‖2? Sparsity is quantified by an upper boundT on the number
of non-zero elements inW (denoted as‖W‖0). The optimalW with this sparsity constraint is
obtained by nullifying the least (in absolute value)m1m2−T elements of the estimated projection
matrixS = ŪTPV̄ (due to the orthonormality of̄U andV̄ ).

The overall objective function to learn{(Ua, Va)} for lossy compression is given as follows:

E({Ua, Va, Sia,Mia}) =
N∑

i=1

K∑

a=1

Mia‖Pi − UaSiaV
T
a ‖2 (1)

subject to the following constraints:

∀a UT
a Ua = V T

a Va = I (2)

∀(i, a) ‖Sia‖0 ≤ T (3)

∀i
∑

a

Mia = 1 and∀(i, a) Mia ∈ {0, 1} (4)

whereSia is the projection of theith patch onto theath basis, andMia indicates a membership
of the ith patch onto theath basis. Starting with random orthonormal bases for all{Ua, Va} and
Mia = 1

K
∀(i, a), the matrixSia is computed usingSia = UT

a PiVa and itsm1m2 − T elements
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with smallest magnitude are nullified. The updates forUa are given as follows:

Z1a =
∑

i

MiaPiVaS
T
ia (5)

Ua = Z1a(Z
T
1aZ1a)

− 1

2 (6)

Ua = (Γ1aΨΥT
1a)((Γ1aΨΥT

1a)
T (Γ1aΨΥT

1a))
− 1

2 = Γ1aΥ
T
1a. (7)

where the SVD ofZ1a will give usZ1a = Γ1aΨΥT
1a with Γ1a andΥ1a being orthonormal matrices

andΨ being a diagonal matrix. The basesVa are updated in a similar manner. The membership
values are relaxed so thatMia ∈ [0, 1] leading to a deterministic annealing framework [7]. The
membership values are now obtained by:

Mia =
e−β‖Pi−UaSiaV

T
a ‖2

∑K
b=1 e

−β‖Pi−UbSibV
T

b
‖2
. (8)

whereβ is an annealing parameter. The matrices{Sia, Ua, Va} andM are then updated sequen-
tially following one another in a deterministic annealing framework (increasingβ across iterations)
until Mia turns out to be (nearly) binary. For more details, refer to [6].

For lossy compression of an unseen image (not part of the training set), we fix a mean re-
construction errorδ. A patchQ from this image is now projected onto the particular basis pair
(U⋆

i , V
⋆
i ) (from the set{Ua, Va}) which produces thesparsestprojection matrixS⋆

i that yields

an error‖Pi−U⋆

i
S⋆

i
V ⋆

i

T ‖2

m1m2
≤ δ. Note that different test patches will lead to projection matrices of

differentL0 norms, depending upon their inherent ‘complexity’.

2.2 Extension to color images

We now consider a set of color images represented as 3D matrices, each of sizeM1 × M2 × 3.
We divide the images into totallyN non-overlapping patches{Pi} of sizem1 × m2 × 3,m1 ≪
M1,m2 ≪ M2. We treat each patch as a separate tensor and seek to represent thesepatches
by sparse projections onto triples of someK ≪ N exemplar orthonormal bases{(Ua, Va,Wa)}
learned from the very same training set. For color image patches, the matrices{Wa} actually rep-
resent color spaces learned from the training data and adapted to the specific patches that ‘belong’
to a particular ‘cluster’ (see Equation 15). This is unlike contemporary color image compression
algorithms that usefixedcolor spaces such as RGB or YCbCr.

Let P ∈ Rm1×m2×3 be an image patch. Using HOSVD [3], we can representP as a com-
bination of orthonormal basesU ∈ O(m1)

1, V ∈ O(m2) andW ∈ O(3) in the formP =
S ×1 U ×2 V ×3 W , whereS ∈ Rm1×m2×3 is termed the core-tensor. The operators×i refer
to tensor-matrix multiplication over different axes. The core-tensor has special properties such as
all-orthogonality and ordering. See [3] for more details. Now,P can also be represented as a
combination ofanyset of orthonormal bases̄U , V̄ andW̄ , different from those obtained from the
HOSVD ofP . In this case, we haveP = S ×1 Ū ×2 V̄ ×3 W̄ whereS is not guaranteed to be an
all-orthogonal tensor, nor is it guaranteed to obey the ordering property.

Again, we ask the following question: WhatsparsetensorQ ∈ Rm1×m2×3 will reconstruct
P from a triple of orthonormal bases(Ū , V̄ , W̄ ) with the least error‖P − Q ×1 Ū ×2 V̄ ×3

W̄‖2? Sparsity is again quantified by an upper boundT on ‖Q‖0. The optimal Q with this
sparsity constraint is obtained by nullifying the least (in absolute value)3m1m2 − T elements of

1We refer to the group of orthogonal matrices of sizen× n asO(n).
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the estimated projection tensorS = P ×1 Ū
T ×2 V̄

T ×3 W̄
T (due to the orthonormality of̄U , V̄

andW̄ ).
The overall objective function to learn{(Ua, Va,Wa)} for lossy compression is given as fol-

lows:

E({Ua, Va,Wa, Sia,Mia}) =
N∑

i=1

K∑

a=1

Mia‖Pi − Sia ×1 Ua ×2 Va ×3 Wa‖2 (9)

subject to the following constraints:

∀a UT
a Ua = V T

a Va = W T
a Wa = I (10)

∀(i, a) ‖Sia‖0 ≤ T (11)

∀i
∑

a

Mia = 1 and∀(i, a) Mia ∈ {0, 1}. (12)

HereMia is a binary matrix of sizeN × K which indicates whether theith patch belongs to the
space defined by(Ua, Va,Wa). We first initialize{Ua}, {Va} and{Wa} to random orthonormal
matrices∀a, andMia = 1

K
, ∀(i, a). Using the fact that{Ua}, {Va} and{Wa} are orthonormal,

the projection matrixSia is computed by the rule:

Sia = Pi ×1 U
T
a ×2 V

T
a ×3 W

T
a , ∀(i, a). (13)

We have an update rule forUa:

ZUa =
∑

i

MiaPi(1)(Va ⊗Wa)S
T
ia(1);

Ua = ZUa(Z
T
UaZUa)

− 1

2 = Γ1aΥ
T
1a. (14)

HereΓ1a andΥ1a are orthonormal matrices obtained from the SVD ofZUa, andPi(1) is the first
unfolding of tensorPi [3]. Va andWa are updated similarly by second and third unfolding of the
tensors respectively. Using the deterministic annealing framework described in Section 2.1, the
membership values are relaxed from being binary to lie in the interval[0, 1]. They are updated as
follows:

Mia =
e−β‖Pi−Sia×1Ua×2Va×3Wa‖2

∑K
b=1 e

−β‖Pi−Sib×1Ub×2Vb×3Wb‖2
. (15)

The tensors{Sia}, the bases{Ua, Va,Wa} and the membershipsMia are then updated sequentially
by deterministic annealing untilMia is (nearly) binary.

The lossy compression of an unseen image, under allowed errorδ follows a procedure very
similar to that described in Section 2.1.

3 Suggested Improvements

3.1 Matrix representation for color image patches

In Section 2.2, a 3D matrixX ∈ Rm1×m2×m3 was expressed in the formX = S×1U ×2 V ×3W

whereU ∈ O(m1), V ∈ O(m2),W ∈ O(m3), S ∈ Rm1×m2×m3 . This is equivalently expressed
as follows:

X(1) = U · S(1) · (V ⊗W )T (16)
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Table 1: Dictionary storage for different patch representations, forK bases/basis-pairs/basis-triples.
Color image patches are of sizem1 ×m2 × 3.

Patch Representation Dictionary Storage
Vector (3m1m2 × 1) K × 9m2

1m
2
2

2D (m1 × 3m2) K × (m2
1 + 9m2

2)
3D (m1 ×m2 × 3) K × (m2

1 +m
2
2 + 32)

whereX(1) is the first unfolding ofX with X(1) ∈ Rm1×m2m3 and⊗ stands for the matrix Kro-
necker product [3].

Now consider that we represent the color image patch not as a 3D matrix of sizem1×m2× 3,
but as a 2D matrix of sizem1 × 3m2. Therefore, we will switch to learning orthonormal basis
pairs, with bases of sizeU ∈ O(m1) andV ∈ O(3m2), as opposed to learning triples of the form
U ∈ O(m1), V ∈ O(m2) andW ∈ O(3) as in Section 2.2. Learning orthonormal bases from
the spaceO(3m2) provides greater representational power as compared to learning bases that are
constrained to the specific formV ⊗W (as in Equation 16 and equivalently in Section 2.2) where
V ∈ O(m2) andW ∈ O(3) (since we haveV ⊗W ∈ O(m2)×O(3)). For this reason, we employ
this 2D representation of a color image patch. Note that in such a representation, the learning of the
column space of the patch matrices as well as the color space occurs together in a coupled manner.

In the extreme case, Equation 16 can be expressed as

Xvec
(1) = (U ⊗ V ⊗W )TSvec

(1) (17)

where the superscript ‘vec’ stands for the representation of an array of sizem1×m2×3 as a vector
of size3m1m2× 1. This simple vectorial representation of the patch affords good representational
capability, as the orthonormal bases will turn out to have size3m1m2×3m1m2. The matrix based
representation of the image patch followed in our work certainly gives rise toan artificial row-
column segregation, unlike a vectorial patch representation. However, vectorial representations
lead to a computationally expensive algorithm and lead to larger dictionary storage. We believe,
therefore, that them1×3m2 representation yields the best tradeoff between representational capa-
bility and algorithm efficiency (optimization speed and dictionary size). We have also observed that
patches of this size yield the best compression performance (see experimental results). From color
image patches of sizem1 × m2 × 3 and assumingK bases/basis-pairs/basis-triples are learned,
the dictionary storage sizes for the following three patch representations are shown in Table 1: (1)
vectors of size3m1m2 × 1, (2) 2D arrays of sizem1 × 3m2, (3) 3D arrays of sizem1 ×m2 × 3.

3.2 Improving the representational power of the dictionary

In our previous techniques (see equations 1 and 9), we restricted ourselves to learningK basis-
pairs or basis-triples. However, this force-fits a coupling between theU andV bases in Equation 1,
or between theU , V andW bases in Equation 9. Instead, we can learnK bases{Ua}, 1 ≤ a ≤ K

and{Vb}, 1 ≤ b ≤ K just as before, but now allow allK2 pairings. Similarly for the 3D case, we
could learnK bases{Ua}, {Vb} and{Wc} where1 ≤ a, b, c ≤ K and allow allK3 triples. This
allows for a greater variety of basis-pairs to be represented without increasing the storage required
for the dictionary. We shall refer to this variant as the ‘2D method with cross-indices’ and the one
from the previous section as the ‘2D method without cross-indices’.
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3.3 Objective function

We now present the objective function for learning bases by combining theideas from the two
previous sections. Consider the training (color, RGB) images divided intoN non-overlapping
patches{Pi} of sizen × n × 3. We shall represent each patchPi as a matrix of sizen × 3n
and learnK orthonormal matrix pairs of the form{(Ua, Vb)} where1 ≤ a, b ≤ K =

√
K and

Ua ∈ O(n), Vb ∈ O(3n). The objective function is given as follows:

E({Ua, Vb, Siab,Miab}) =
N∑

i=1

K∑

a=1

K∑

b=1

Miab‖Pi − UaSiabV
T
b ‖2 (18)

subject to the following constraints:

∀(a, b) UT
a Ua = V T

b Vb = I (19)

∀(i, a, b) ‖Siab‖0 ≤ T (20)

∀i
∑

a

∑

b

Miab = 1 and∀(i, a, b) Miab ∈ {0, 1} (21)

whereSiab is the projection of theith patch onto the(a, b)th basis pair, andMiab indicates a fuzzy
membership of theith patch onto the(a, b)th basis pair. Starting with random orthonormal bases
for all {Ua},{Vb} andMiab =

1
K

∀(i, a, b), the matrixSiab is computed usingSiab = UT
a PiVb and

its 3m1m2 − T elements with smallest magnitude are nullified. The updates forUa are given as
follows:

Z1a =
∑

i,b

MiabPiVbS
T
iab (22)

Ua = Z1a(Z
T
1aZ1a)

− 1

2 (23)

Ua = (Γ1aΨΥT
1a)((Γ1aΨΥT

1a)
T (Γ1aΨΥT

1a))
− 1

2 = Γ1aΥ
T
1a. (24)

where the SVD ofZ1a will give usZ1a = Γ1aΨΥT
1a with Γ1a andΥ1a being orthonormal matrices

andΨ being a diagonal matrix. The basesVb are updated in a similar manner. The membership
values are obtained by:

Miab =
e−β‖Pi−UaSiabV

T

b
‖2

∑K
c=1

∑K
d=1 e

−β‖Pi−UcSicdV
T

d
‖2
. (25)

The matrices{Siab, Ua, Vb} andMiab are then updated sequentially following one another in a
deterministic annealing framework untilMiab turns out to be (nearly) binary.

4 Experimental Results

We now present our experimental results for compression of color images. The first experiment
was performed on a subset of 54 images from the CMU-PIE database2. The CMU-PIE database
contains images of several people against cluttered backgrounds with a large variation in pose,
illumination, facial expression and occlusions created by spectacles. All the images are available in
an uncompressed (.ppm) format, and their size is631×467 pixels. We chose 54 images belonging
to one and the same person (labelled in the database as ‘04055.jpg’), and used patches from exactly

2http://vasc.ri.cmu.edu/idb/html/face/index.html
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Figure 1: RPP-PSNR curves for several competing methods: (1)3D method, (2) 2D method without
cross-indices, (3) 2D method with cross-indices, (4) JPEG,(5) JPEG-2000.

one image for training. The remaining 53 images were used for testing. Duringtraining, we used a
sparsity factor ofT0 = 10 and used patches of size12×12×3 for all three variants of our dictionary
learning method: (1) the 3D method from Section 2.2, (2) the 2D method from Section 3.1, and
(3) the 3D method from Section 3.2 with cross-indices. For the 3D method, we set K = 100,
whereas for the 2D methods, we setK = 20, which produced dictionaries of nearly the same
size. (Note that the dictionary size for the 3D case was100 × (122 + 122 + 32) = 29700 and
20× (122 +362) = 28800 for the 2D case. Also see Table 1.) The RPP-PSNR curves for all these
methods are shown in Figure 1. The performance of the 2D method without cross indices was
superior to the 3D method for PSNR values of 34 to 38. The 2D method with the cross indices,
however, produced results that were clearly superior to the other two techniques. These results
were pitted against JPEG and the Jasper implementation for JPEG2000 [1]. Between RPP values
from 0.5 to 4.5, the PSNR values of the 2D method with cross-indices were distinctly superior to
those produced by JPEG as well as Jasper.

The second experiment was conducted on a more general database, consisting of 150 images
taken from the Uncompressed Colour Image Database (UCID), Version 23. The database contains
images of sceneries and man-made objects, all of size around512× 384. We chosen around 20-25
pictures each of seven different categories, using exactly one image per category for training and
the remaining for testing. One sample training and test image each for five different categories
are shown in Figure 2. For training, we used a sparsity parameterT0 = 20 and patches of size
12×12×3. We performed two experiments: one on images of the original resolution, and the other
on their downsampled versions (of size256× 192). The RPP-PSNR curves are shown in Figure 3.
We should sample reconstructions of one of the images under four different error values in Figure 4.
For this experiment, our method produced curves clearly superior to JPEGbeyond RPP of around
3.8 (on a scale from 0 to 24), though Jasper was the clear winner. We wishto emphasize here that
Jasper (JPEG2000) employs a highly advanced quantization scheme developed jointly by several
people over a period of many years. In [6], we have demonstrated that wavelet based compression
with a simple quantization scheme is unable to produce such good results and our learning-based
method is superior to such an implementation. Some images from the UCID database, such as

3http://www-staff.lboro.ac.uk/ ˜ cogs/datasets/UCID/ucid.html
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Figure 2: Images from five different categories of the UCID database. Zoom into the pdf file for a
better view.
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Figure 3: RPP-PSNR curves for several competing methods on UCID database: For downsampled
images, (1) 2D method without cross-indices, (2) 2D method with cross-indices, (3) 3D method, (4)
JPEG and (5) JASPER. For images of the original resolution, (6) 2D method without cross-indices, (7)
2D method with cross-indices, (8) JPEG and (9) JASPER.

8



Figure 4: Left to right, top to bottom: original image, reconstructions under errors of 0.0002, 0.0003,
0.0006, 0.001, 0.003. Zoom into the pdf file for a better view.Avg. RPP values for first image: 10.46,
8.81, 6.35, 4.83, 2.38 respectively. Avg. RPP values for second image: 6.34, 5.069, 3.28, 2.28, 0.88
respectively.
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Figure 5: RPP-PSNR curves for several competing methods on challenging images from the UCID
database (for images of the original resolution): (1) 2D method without cross-indices, (2) 2D method
with cross-indices, (3) JPEG and (4) JASPER.
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the last six images from Figure 2 (zoom into the figure in the pdf file for a betterview), contain a
huge amount of textured regions and are challenging for any compression algorithm. We present
PSNR/RPP curves on a subset of 25 such images in Figure 5.

5 Conclusions

In this paper, we have presented two variants of our machine learning based techniques for color
image compression. The new variants use a matrix based representation of the color image patch.
We show that this representation produces superior results to the original3D method. We also
clearly demonstrate the benefits of using cross-indices for the learned bases as it allows for a
greater variety of coupling between the row-row and column-column basesfor the patches, without
increasing dictionary size. Our algorithms are tested on two large databasesand are pitted against
JPEG and Jasper with promising results. Future work will involve a deeper look at the quantization
scheme employed in our algorithms for improving the RPP/PSNR curves further, and method for
taking care of the block artifacts that occur due to independent compression of each patch.

We wish to highlight two subtle aspects of our methods. Firstly, our methods canbe employed
very effectively for compression of image databases, by training on patches from subsets of the
images, or randomly selected patches from all the images. For applications such as these, the
training parameters can even be selected on a trial and error basis, settlingin on those specific
values that produced the best RPP-PSNR curves. These values can then be used for generating
the compressed database along with the dictionaries. Secondly, our matrix based representation
allows for significantly faster training than methods such as [2], [4] which use a vector-based
representation, since our bases are of smaller size.
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