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Abstract

We present a new color image compression algorithm for RGB images. lprevious work
[6], we presented a machine learning technique to derive a dictionanyhafrrmal basis triples
for compact representation of an ensemble of color image patches framiadrset. The patches
were represented as 3D arrays of size n x 3, and our technique was based on the higher order
singular value decomposition (HOSVD), an extension of the singular v&ocendposition (SVD)
to higher order matrices [3]. The learning scheme exploited the crogdiogbetween the R,G,B
channels by implicitly learning a color space. In this paper, we show thefiteeaErepresent-
ing color image patches as 2D matrices of size 3n and learning a dictionary of orthonormal
basis pairs. We also present a method to leverage greater represahiabiorr from a learned
dictionary without increasing its size. We present experimental resultd threse variants of our
method and compare them to JPEG and JPEG2000.

1 Introduction

Contemporary compression algorithms such as JPEG or JPEG-2000ecdédises such as the
discrete cosine transform (DCT) or wavelet transform for building dietiees for compact repre-
sentation, exploiting the well-known fact that the projection coefficientsiifnal images or image
patches onto these bases are sparse. Nevertheless, these baseésesal - properties specific
to restricted classes of data may be better represented by tuning the bémsetdata on the fly,
using machine learning techniques. Such a philosophy has been phgw@dapted in papers such
as [2], [4] and in our previous work [5], [6]. The gist of our apaoh from [5] was to learn a small
number of matrix orthonormal basis pairs from a training set of patchesdialpto gray-scale
images in such a way that the projection of the patches onto at least onsefthses was sparse.
Given an image to be compressed and an allowed error value, its patcteeprajected onto the
particular basis pair that yielded the sparsest possible representatiautattceeding the error
value.

In color (RGB) image compression, it is a well-known fact that indepehdampression of
the R, G, B channels is sub-optimal as it ignores the inherent coupling &etwe channels. Com-
monly, the RGB images are converted to YCbCr or some other decorreldtedpace followed
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by independent compression in each channel. This method is also paet $#PHG/JPEG-2000
standards. In [6], our approach from [5] was extended to handibe (RGB) images by represent-
ing color image patches as 3D matrices of sizen x 3 and learning triples of orthonormal bases.
The overall learning scheme was based on the HOSVD [3], which caedaeded as the analog
of the SVD to higher order matrices. In this method, the RGB images were ne¢ted to any
decorrelated color space. Instead, a color space tuned to the traitengatalearned implicitly
using tensor algebra.

In this paper, we revisit the approach from [6]. We switch from the 3Weasentation of the
color image patch to a 2D representation in the form of matrices ofisizedn. We demonstrate
superior experimental results and also discuss intuitive reasons whephésentation is superior
to the original one. Secondly, we also provide a method to increase tresespational power of
a dictionary of orthonormal basis pairs without increasing its size.

This paper is organized as follows. In Section 2, we review our previauk for gray-scale
and color image compression.

2 Previous Work

2.1 Compression of gray-scaleimages

Consider a set of images, each of size x M,, divided into (say)N non-overlapping patches
{P;},1 < i < N of sizem; x mg,m; < My,ma < M. We exploit the similarity across
these patches by representing them as sparse projections ontdsegeV orthonormal bases
{(Ua, Vo) } (1 < a < K), learned from the training set itself.

The SVD of an image patck € R™*™2 is given byP = USVT, whereS € R™*™2 js
a diagonal matrix of singular values. No,can also be represented as a combinaticangfset
of orthonormal base& andV, different from those obtained from the SVD &% In this case,
we haveP = USVT whereS is non-diagonal. We now seek to answer the following question:
Whatsparsematrix W € R™*™2 will reconstructP from a pair of orthonormal basés andV
with the least erroff P — UWVT||?? Sparsity is quantified by an upper boufan the number
of non-zero elements il (denoted a4/ ||p). The optimal W with this sparsity constraint is
obtained by nullifying the least (in absolute value)ms — 1" elements of the estimated projection
matrix S = U PV (due to the orthonormality di andV/).

The overall objective function to lead{U,, V,,)} for lossy compression is given as follows:

N K
E({Ua; V(17 Siay Mza}) = Z Z MzaHR - UaSiaVaTH2 (1)
i=1a=1
subject to the following constraints:
YaUIU, =VIV, =1 (2)
V(i,a) [[Siallo < T 3)
Vi > M, =1and¥(i,a) M;, € {0,1} (4)

whereS;, is the projection of the&!” patch onto the:'" basis, and\/;, indicates a membership
of thei*" patch onto thei'" basis. Starting with random orthonormal bases fo{&l, V,} and
M, = % (i, a), the matrixS,, is computed using;, = U! P,V, and itsm;ms — T elements



with smallest magnitude are nullified. The updatesifgiare given as follows:

Zia =Y  MiaP,V,S,, (5)
Uy = Z1a(Z% Z14) 2 (6)
Us = C1a WY L) (T YT T (M09 T,)) 77 = T, T (7)

where the SVD o/, will give us 7;, = Fla\I/TlTa with 'y, and Y, being orthonormal matrices
and ¥ being a diagonal matrix. The basEs are updated in a similar manner. The membership
values are relaxed so thaf;, € [0,1] leading to a deterministic annealing framework [7]. The
membership values are now obtained by:

e~ BlIPi—UaSia Vi |I?

e = K _B[P—UpSp V2"
YK e Bl Pi—UpSip V" |l

(8)

wheref is an annealing parameter. The matri¢és,, U,, V,} and M are then updated sequen-
tially following one another in a deterministic annealing framework (increagsiagross iterations)
until M;, turns out to be (nearly) binary. For more details, refer to [6].

For lossy compression of an unseen image (not part of the training setix\a mean re-
construction errop. A patch(@ from this image is now projected onto the particular basis pair
(U}, V) (from the set{U,, V,}) which produces theparsestprojection matrixS; that yields
an error% < 4. Note that different test patches will lead to projection matrices of
different Ly norms, depending upon their inherent ‘complexity’.

2.2 Extension to color images

We now consider a set of color images represented as 3D matrices, fesigh &f; x Ms x 3.
We divide the images into totalliV non-overlapping patchesP; } of sizem; x mg x 3,m; <
My, my < Ms. We treat each patch as a separate tensor and seek to represemmatiches
by sparse projections onto triples of sofie<. N exemplar orthonormal bas§sU,, V,,, W, )}
learned from the very same training set. For color image patches, the mafiigésactually rep-
resent color spaces learned from the training data and adapted to tifeeggches that ‘belong’
to a particular ‘cluster’ (see Equation 15). This is unlike contemporaryr éolage compression
algorithms that uséxedcolor spaces such as RGB or YCbCr.

Let P ¢ R™*m2%3 pe an image patch. Using HOSVD [3], we can repredemts a com-
bination of orthonormal basdg € O(m;), V € O(my) andW € O(3) in the form P =
S x1 U %oV x3 W, whereS € R™*™2%3 is termed the core-tensor. The operatarsrefer
to tensor-matrix multiplication over different axes. The core-tensor hesamproperties such as
all-orthogonality and ordering. See [3] for more details. Ndwcan also be represented as a
combination ofanyset of orthonormal basés, VV andWV, different from those obtained from the
HOSVD of P. In this case, we havE = S x; U x5 V x3 W whereS is not guaranteed to be an
all-orthogonal tensor, nor is it guaranteed to obey the ordering pxoper

Again, we ask the following question: WhsparsetensorQ) € R™ *™2*3 will reconstruct
P from a triple of orthonormal basgg/, vV, W) with the least errof| P — Q x1 U x5 V x3
W||?? Sparsity is again quantified by an upper bodnan ||Q|o. The optimal Q with this
sparsity constraint is obtained by nullifying the least (in absolute va@ug)n, — T elements of

1we refer to the group of orthogonal matrices of size n asO(n).
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the estimated projection tens8r= P x; UT x5 VT x3 W7 (due to the orthonormality d, V/
andW).

The overall objective function to leaf(U,, V,,, W, )} for lossy compression is given as fol-
lows:

E({Uaa Vas Wa, Sicw Mia}) =

N K
ZzMiaHPi_Sia x1 Uy X2V X3 Wa||2 (9)
i=1a=1

subject to the following constraints:

VaUIU, =VIV, =WIW,=1 (10)
V(i,a) [[Siallo <T (11)
Vi > Miq =1and¥(i,a) M;, € {0,1}. (12)

Here M;, is a binary matrix of sizéV x K which indicates whether th#" patch belongs to the
space defined byU,, V,, W,). We first initialize {U,}, {V,} and{W,} to random orthonormal
matricesva, andM,, = &, V(i,a). Using the fact tha{U,}, {V,} and{W,} are orthonormal,
the projection matrixS;, is computed by the rule:

Sio = P, x1 UL xo VI x3 W V(i a). (13)
We have an update rule fof,:

ZUa = Z MiaPi(l)(Va ® Wa)Sij(;(l);

Us = Zua(Z8,Z04) "% = T1a YT (14)

Herel';, and T, are orthonormal matrices obtained from the SVDZf,, and P, is the first
unfolding of tensorP; [3]. V, andW, are updated similarly by second and third unfolding of the
tensors respectively. Using the deterministic annealing framework deddnbSection 2.1, the
membership values are relaxed from being binary to lie in the intédya). They are updated as

follows:
e*ﬁHPZ’*SiaX1Ua><2va><3Wa||2

fa = Elf(:l e—BlIPi=Sipx1Up X2V x3Wp 12 (15)
The tensorg.S;, }, the base$U,, V,,, W, } and the membership¥;, are then updated sequentially
by deterministic annealing until/;, is (nearly) binary.

The lossy compression of an unseen image, under allowed &fatlows a procedure very

similar to that described in Section 2.1.

3 Suggested | mprovements

3.1 Matrix representation for color image patches

In Section 2.2, a 3D matriX € R™1*™2x™3 ywas expressed inthe fori = S x1 U xo V x3W
whereU € O(my),V € O(mg), W € O(ms), S € R™*™2*™3_ This is equivalently expressed
as follows:

Xuy=U-Sa-(Vew)" (16)
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Table 1: Dictionary storage for different patch represeons, for X' bases/basis-pairs/basis-triples.
Color image patches are of sizg x ms x 3.
Patch Representation Dictionary Storage
Vector @myms x 1) K x 9m3im3

2D (my x 3my) K x (m? +9m3)
3D (my x my x 3) | K x (m?+m3+ 3%

where Xy is the first unfolding ofX' with X ;) € R™*™2™3 and® stands for the matrix Kro-
necker product [3].

Now consider that we represent the color image patch not as a 3D matizeaf s x ma x 3,
but as a 2D matrix of sizen; x 3ms. Therefore, we will switch to learning orthonormal basis
pairs, with bases of sizé € O(m;) andV € O(3my), as opposed to learning triples of the form
Ue€ O(my), V e O(mz) andW € O(3) as in Section 2.2. Learning orthonormal bases from
the space&)(3my2) provides greater representational power as compared to learnirgthasare
constrained to the specific forin @ W (as in Equation 16 and equivalently in Section 2.2) where
V e O(mg) andW € O(3) (since we havd& @ W € O(my) x O(3)). For this reason, we employ
this 2D representation of a color image patch. Note that in such a représesitae learning of the
column space of the patch matrices as well as the color space occurs tagetbeupled manner.

In the extreme case, Equation 16 can be expressed as

X = UV eW) sy 17)

where the superscript ‘vec’ stands for the representation of ap@irsizem x my x 3 as a vector

of size3myms x 1. This simple vectorial representation of the patch affords good reqedsmal
capability, as the orthonormal bases will turn out to have 3izems x 3mimse. The matrix based
representation of the image patch followed in our work certainly gives rigetartificial row-
column segregation, unlike a vectorial patch representation. Howesetorial representations
lead to a computationally expensive algorithm and lead to larger dictionaagstoiVe believe,
therefore, that the:; x 3mg representation yields the best tradeoff between representational capa
bility and algorithm efficiency (optimization speed and dictionary size). We h#so observed that
patches of this size yield the best compression performance (see expatiresults). From color
image patches of sizer; x ms x 3 and assuminds bases/basis-pairs/basis-triples are learned,
the dictionary storage sizes for the following three patch representatiestewn in Table 1: (1)
vectors of siz8mims x 1, (2) 2D arrays of sizen; x 3meo, (3) 3D arrays of sizen; x mg x 3.

3.2 Improvingtherepresentational power of the dictionary

In our previous techniques (see equations 1 and 9), we restricteelvmgdo learning< basis-
pairs or basis-triples. However, this force-fits a coupling betweetvthedV bases in Equation 1,
or between thé&/, V andW bases in Equation 9. Instead, we can leirbase§U,},1 <a < K
and{V;}, 1 < b < K just as before, but now allow alt? pairings. Similarly for the 3D case, we
could learnK bases{U,}, {V;} and{W.} wherel < a,b,c < K and allow allK3 triples. This
allows for a greater variety of basis-pairs to be represented withowasitrg the storage required
for the dictionary. We shall refer to this variant as the ‘2D method with enodiges’ and the one
from the previous section as the ‘2D method without cross-indices’.



3.3 Objectivefunction

We now present the objective function for learning bases by combiningléas from the two
previous sections. Consider the training (color, RGB) images divided Nhtwon-overlapping
patches{ P;} of sizen x n x 3. We shall represent each patéh as a matrix of sizex x 3n

and learnK orthonormal matrix pairs of the forf(U,, V;)} wherel < a,b < K = VK and

U, € O(n), V, € O(3n). The objective function is given as follows:

K K
E({Ua, Vs, Siabs Miab}) =Y > > Miap||Pi = UaSias Vi |I? (18)
i=1a=1b=1
subject to the following constraints:
V(a,b) UfUs = Vi Vy =11 (19)
V(i, a, b) ”Sm[,”o § T (20)
Vi > ) Mg, = 1andV(i,a,b) M, € {0,1} (21)

a b

wheresS;,; is the projection of the!” patch onto théa, b)th basis pair, and/;,;, indicates a fuzzy
membership of the!” patch onto théa, b)!" basis pair. Starting with random orthonormal bases
forall {U,},{V,} and My, = % Y(i,a,b), the matrixS;,; is computed using;., = Ul P;V; and

its 3mi1ms — T elements with smallest magnitude are nullified. The update¥ fare given as
follows:

Z1a =Y MiaPVy Sty (22)
i,b
Uo = Z1a(ZT. Z10) 2 (23)
Us = (C1a®YT) (T YT (109 ],)) 7 = T, 1T, (24)

where the SVD of7, will give us 7, = Pla\IleTa with I'y, and Y, being orthonormal matrices
and V¥ being a diagonal matrix. The basEgare updated in a similar manner. The membership

values are obtained by:
e~ BlIPi=UaSiap V|12

iab — — T ] T2 (25)
K S Bl P UeSicaV ]|
The matrices{Siq, Ua, V3 } and M;,;, are then updated sequentially following one another in a

deterministic annealing framework uniif;,; turns out to be (nearly) binary.

4 Experimental Results

We now present our experimental results for compression of color imagesfirst experiment
was performed on a subset of 54 images from the CMU-PIE dathb@se CMU-PIE database
contains images of several people against cluttered backgrounds witheaviriation in pose,
illumination, facial expression and occlusions created by spectacles.eAihtiges are available in
an uncompressed (.ppm) format, and their sifiBisx 467 pixels. We chose 54 images belonging
to one and the same person (labelled in the database as ‘04055.jpg sexhplaiches from exactly

2http://vasc.ri.cmu.edu/idb/html/face/index.html
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Figure 1: RPP-PSNR curves for several competing methodIhethod, (2) 2D method without
cross-indices, (3) 2D method with cross-indices, (4) JPBIJPEG-2000.

one image for training. The remaining 53 images were used for testing. Dra@ingng, we used a
sparsity factor of; = 10 and used patches of siz2x 12 x 3 for all three variants of our dictionary
learning method: (1) the 3D method from Section 2.2, (2) the 2D method framio8e3.1, and
(3) the 3D method from Section 3.2 with cross-indices. For the 3D method, W& se 100,
whereas for the 2D methods, we g€t = 20, which produced dictionaries of nearly the same
size. (Note that the dictionary size for the 3D case Was x (122 + 122 + 32) = 29700 and

20 x (122 + 36%) = 28800 for the 2D case. Also see Table 1.) The RPP-PSNR curves for all these
methods are shown in Figure 1. The performance of the 2D method withosg crdices was
superior to the 3D method for PSNR values of 34 to 38. The 2D method with ¢iss erdices,
however, produced results that were clearly superior to the other tWoitpes. These results
were pitted against JPEG and the Jasper implementation for JPEG200@&fdedh RPP values
from 0.5 to 4.5, the PSNR values of the 2D method with cross-indices wereatligtiperior to
those produced by JPEG as well as Jasper.

The second experiment was conducted on a more general databasisticg of 150 images
taken from the Uncompressed Colour Image Database (UCID), Ver3ioih2 database contains
images of sceneries and man-made objects, all of size afiiznd 384. We chosen around 20-25
pictures each of seven different categories, using exactly one imagategory for training and
the remaining for testing. One sample training and test image each for fiveediffeategories
are shown in Figure 2. For training, we used a sparsity pararfigter 20 and patches of size
12 x 12 x 3. We performed two experiments: one on images of the original resolutidriharother
on their downsampled versions (of siz& x 192). The RPP-PSNR curves are shown in Figure 3.
We should sample reconstructions of one of the images under four differer values in Figure 4.
For this experiment, our method produced curves clearly superior to befiBd RPP of around
3.8 (on a scale from 0 to 24), though Jasper was the clear winner. Weaanéshphasize here that
Jasper (JPEG2000) employs a highly advanced quantization schenepaevpintly by several
people over a period of many years. In [6], we have demonstrated #valet based compression
with a simple quantization scheme is unable to produce such good resultsrdedraing-based
method is superior to such an implementation. Some images from the UCID databelseas

3http://www-staff.Iboro.ac.uk/ ~ cogs/datasets/UCID/ucid.html



Figure 2: Images from five different categories of the UCIDathase
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Figure 3: RPP-PSNR curves for several competing methods o d&tabase: For downsampled
images, (1) 2D method without cross-indices, (2) 2D methad eross-indices, (3) 3D method, (4)
JPEG and (5) JASPER. For images of the original resolutigrg@amethod without cross-indices, (7)
2D method with cross-indices, (8) JPEG and (9) JASPER.



Figure 4: Left to right, top to bottom: original image, restmuctions under errors of 0.0002, 0.0003,
0.0006, 0.001, 0.003. Zoom into the pdf file for a better vidmg. RPP values for first image: 10.46,
8.81, 6.35, 4.83, 2.38 respectively. Avg. RPP values forsg@amage: 6.34, 5.069, 3.28, 2.28, 0.88
respectively.
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Figure 5: RPP-PSNR curves for several competing methods alftenging images from the UCID
database (for images of the original resolution): (1) 2Dhudtwithout cross-indices, (2) 2D method
with cross-indices, (3) JPEG and (4) JASPER.



the last six images from Figure 2 (zoom into the figure in the pdf file for a beitt@r), contain a
huge amount of textured regions and are challenging for any compneagiarithm. We present
PSNR/RPP curves on a subset of 25 such images in Figure 5.

5 Conclusions

In this paper, we have presented two variants of our machine learnied bachniques for color
image compression. The new variants use a matrix based representatiercofathimage patch.
We show that this representation produces superior results to the od@nalethod. We also
clearly demonstrate the benefits of using cross-indices for the learrsed las it allows for a
greater variety of coupling between the row-row and column-column hastee patches, without
increasing dictionary size. Our algorithms are tested on two large datadradese pitted against
JPEG and Jasper with promising results. Future work will involve a deeplealdhe quantization
scheme employed in our algorithms for improving the RPP/PSNR curves fuatihdemethod for
taking care of the block artifacts that occur due to independent conipmexfseach patch.

We wish to highlight two subtle aspects of our methods. Firstly, our methodsecamployed
very effectively for compression of image databases, by training omeatitom subsets of the
images, or randomly selected patches from all the images. For applicaticmsasuhese, the
training parameters can even be selected on a trial and error basis, sattinghose specific
values that produced the best RPP-PSNR curves. These valuesodpetiused for generating
the compressed database along with the dictionaries. Secondly, our maktk tegresentation
allows for significantly faster training than methods such as [2], [4] whishk a vector-based
representation, since our bases are of smaller size.
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