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ABSTRACT

Traditionally, direction of arrival (DOA) estimation tech-
niques have been based on spectral estimation methods uti-
lizing signal and noise subspaces [1]. Such techniques per-
form well when sensor measurements are available at mul-
tiple snapshots. Recently, compressed sensing (CS) based
DOA estimation techniques have been introduced, which im-
prove source localization in the single snapshot case by mod-
eling the angle search as a sparse recovery problem. In this
domain, various on-grid and off-grid methods have been pro-
posed in the existing literature [2] [3] [4]. The on-grid meth-
ods rely on a fixed basis and solve traditional CS based sparse
recovery problems while the latter has modifications based
on first-order Taylor approximation of the array manifold ma-
trix. In this paper, we present an off-grid CS based formula-
tion, where we employ an alternating minimization strategy
for fine-grid search of source directions based on coordinate
descent. We show that our technique outperforms the first-
order approximation techniques whose performance is limited
by the signal-norm dependent Taylor error.

Index Terms— Array Signal Processing, Direction of Ar-
rival Estimation, Perturbed Compressed Sensing

1. INTRODUCTION

The direction-of-arrival (DOA) estimation problem seeks to
accurately locate the incoming directions of signal sources
impinging on an array of sensors. This is a classical prob-
lem in array processing and finds applications in radar sens-
ing, mobile communication, seismology, etc. Conventional
non-parametric spectral estimation based methods have lim-
ited angular resolution during DOA estimation. Other DOA
estimation techniques such as Capon beam-forming [5], MU-
SIC [6], ESPRIT [7], etc. have been introduced that work
well when multiple time snapshots of signal measurements
are available. MUSIC and its related algorithms are based on
estimation of the eigenvalues of the signal or noise covariance
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matrix. Therefore, source localization under limited informa-
tion like a single snapshot of the sensor measurements tends
to be highly erroneous.

Recently, various compressed sensing (CS) based DOA
estimation techniques have been proposed [8] [9][10]. These
techniques are used to represent the DOA estimation problem
as a sparse support recovery problem, where the domain is
the discretized set of angles in the given range and the true
sources are known to be located at a small subset of these
locations. Unlike the gridless spectral estimation techniques,
these techniques are mainly grid-based techniques, as the pos-
sible search space is discretized and the array matrix is fixed.
One of the benefits of CS based methods is that, they allow the
sensors to be located at non-uniform locations and the angu-
lar resolution is generally better than other methods typically
with a single snapshot. Without further improvements, the
resolution of this technique is limited by the fineness of the
discretization. Various algorithms, including Bayesian tech-
niques [11] have been proposed for solving this sparse recov-
ery problem, both for the single and multi snapshot case. To
improve the resolution of the angle search, apart from the fine-
ness of discretization, certain off-grid techniques have been
introduced [12][13], which model the search space with cer-
tain fixed points and the true source locations as small per-
turbations from these fixed locations. In [14],[15], an off-grid
technique is introduced which considers non-grid locations as
parametric perturbations in the array sensing matrix, modeled
via a first-order Taylor approximation. This method is prone
to large errors due to higher order terms in the Taylor expan-
sion that are ignored, as the error is directly dependent on
the signal norm and hence unbounded. In our approach, we
model angle search as perturbations in the array manifold ma-
trix which are solved via coordinate descent with brute-force
search on each single parameter keeping the others fixed. For
a fixed grid resolution, we show that our method performs
better than the aforementioned Taylor approximation based
methods, as we directly search for the true angular locations
by coordinate descent and brute-force search. Note that in this
work, we have specifically focused on the important case of
single snapshot DOA estimation, which is required in situa-
tions where physical constraints prevent acquisition of multi-
ple snapshots [16].



In Section 2.1, we introduce the CS based formulation for
DOA estimation and present our off-grid approach based on
perturbed array manifold matrix. In Section 2.2, we present
an alternating minimization algorithm for sparse recovery of
the angles and signal magnitudes. In Section 3, we show an-
gular recovery results compared to other single snapshot CS
based methods. Finally, we conclude in Section 4.

2. PERTURBED COMPRESSED SENSING DOA
ESTIMATION

2.1. Problem Definition

Consider a linear array Y of M identical sensors [Y1, . . . YM ]
which are assumed to be omnidirectional with same gain over
the angular range of interest. We have k sources ui(t) i ∈ 1 :
k located at unknown angles [β1, β2 . . . βk]. We invoke stan-
dard assumptions of far-field and narrow-band sources with
a planar incoming wave front. Also the sources are assumed
to be at rest w.r.t the sensor array. As shown in [1] [17], the
time delay of the signal impinging on different sensors, cor-
responding to a source location at βi, is modeled by steering
vector a(βi) = [1 e−iwcτ2 . . . e−iwcτM ]T with output of M
sensors as ~yi(t) = a(βi)ui(t). Because of linearity of array,
the total sensor output is y(t) =

∑
i ~yi(t). A uniform linear

array (ULA) assumption leads us to steering vectors of form

a(βi) = [1 e−ι2π
d
λ sin(βi) . . . e−ι2π(M−1)

d
λ sin(βi)]T (1)

where ι ,
√
−1, d is the distance between array elements

and λ is wavelength of incoming source signals. The ob-
servation model is given as y(t) = A(β)u(t) + η(t)
where β = [β1 . . . βk], u(t) = [u1(t) . . . uk(t)]

T and
η(t) = [η1 . . . ηk] is the noise vector. The matrix of steer-
ing vectors AM×k(β) = [a(β1) . . . a(βk)] is called the ar-
ray manifold matrix. The range of possible directions is
β̂j ∈ [−π2 ,

π
2 ]. The mapping sin β̂ ← θ̂ is one to one with

θ = [sin β̂1, . . . , sin β̂k] = [θ1, . . . θk] where θi ∈ [−1, 1].
Hence we can equivalently search for θ ∈ [−1, 1]. So we can
write, y(t) = A(θ)u(t) + η(t).

In single snapshot DOA estimation, we take the measure-
ments only at a single time instant t = to. Therefore the
observation model in single snapshot DOA estimation is

y = A(θ)u+ η (2)

where [A]M×k with yM×1 = y(t0), uk×1 = u(t0) and
ηM×1 = η(t0).

As shown in [8], we can utilize the compressed sens-
ing framework to solve the above problem. The sources are
considered to sparsely occupy few locations in the whole
set of possible positions in [−1, 1]. We consider a dis-
cretized set θ = [θ1, θ2, . . . , θN ] as a fixed grid covering
the entire range from [−1, 1] with corresponding coefficients
u = [u1, u2, . . . , uN ]. Only k coefficients of u have non-
zero values corresponding to actual source locations and the

rest of the coefficients are zero. Therefore, u is a k sparse
vector and the sensing matrix AM×N = [a(θ1) . . . a(θN )]
in this model has N columns. This is essentially the on-grid
model, where DOA estimation problem is basically a support
recovery problem, where we want to identify the support of
sparse vector u which would give non-zero source locations.

When sources are located at off-grid locations, the above
model can cause significant errors. The accuracy can only be
increased by making the grid finer but that can increase the
coherence of sensing matrixA violating sparse recovery con-
ditions [18]. Hence, we consider an off-grid model with per-
turbations δ = [δ1, δ2, ..., δN ] on the grid points θ. Then we
have a sensing matrix Aθ(δ), as a function of unknown per-
turbations δ and fixed grid θ which is uniform in [−1, 1]. In
this way, we can achieve higher accuracy for a coarser sam-
pling grid. Note that our model and algorithm is different
from other off-grid DOA estimation approches like [14]. We
propose to jointly estimate δ and u, by solving the following
problem P1:

P1 : min
u,δ∈[−r,r]M

‖u‖1 s. t. ‖y −Aθ(δ)u‖22 ≤ ε, (3)

where r is an upper bound (that we assume is known) on each
δi value, and ε is an upper bound on the noise. Since the
above optimization problem is non-convex, we will use an
alternating minimization algorithm to solve for u, δ.

2.2. Recovery Algorithm

To solve P1, the following two sub-problems are considered.

• Step I: Given the current estimate of δ, solve for the
best u as: argminû ‖û‖1 s.t. ‖y − (Aθ(δ)û)‖22 ≤ ε.

• Step II: Given the current estimate of u, solve for δ as:
δ = argminδ̂ ‖y − (Aθ(δ)u)‖22 s.t. |δi| ≤ r.

where δi is the ith element in δ and it is bounded by r , 1
2N

to prevent overlap between the different θi + δi values. The
problem in Step I is solved via a standard basis pursuit de-
noising (BPDN) algorithm and the parameter ε is dependent
on the noise variance. The problem in Step II is a highly non-
convex problem which is solved by coordinate descent with
a constrained search for each δi in the range [−r,+r]. The
alternating minimization steps are performed iteratively till
convergence. Convergence of the function value is guaran-
teed by the monotone convergence theorem [19] as objective
value decreases in each step and is bounded below by zero.

3. EXPERIMENTAL RESULTS

We perform various simulations to compare our algorithm
(henceforth referred to as ‘BF search’) for DOA recovery with
the Taylor approximation based methods given in [12, 14, 15]
and spectral estimation based methods namely, Root-MUSIC
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Fig. 1: Comparison of DOA estimation for (a) BF, (b) Baseline,
(c) Taylor approx., (d) Root-MUSIC methods for k = 10 sources,
M = 30 sensors, 1% measurement noise, N = 90 grid size. The
sine of the angular locations of sources are plotted as vertical lines.
On y-axis we have the signal strengths from each source.

and ESPRIT, for the single snapshot case. We also compare
our algorithm to a baseline approach where we directly solve
the standard BPDN problem with a fixed array matrix with-
out considering any perturbations (henceforth referred to as
‘Baseline’, as implemented for example in [2, 16]). We show
that the performance of such a method is limited by the fine-
ness of the grid.

Fig. 2: Comparison of angle estimation error for (a) BF, (b)
Baseline, (c) Taylor approx., (d) Root-MUSIC methods for k ∈
{2, 4, 6, 8, 10} sources, M = 30 sensor measurements, 1% mea-
surement noise, N = 90 grid size, averaged over 100 realizations

Sources Signal Reconstruction MAE
k Baseline Taylor App. BF search
2 0.0238 0.3267 0.0219
4 0.044 0.441 0.0228
6 0.0254 0.4857 0.0268
8 0.0477 0.499 0.0316

10 0.0557 0.5638 0.0437

Table 1: Comparison of mean absolute error (MAE) in signal re-
construction for the CS based techniques, Same setup as in Fig.2

Sources Incorrect Source Predictions
k BF Taylor Root-MUSIC ESPRIT Baseline
2 0 0.15 0.26 0.480 0
4 0.010 0.085 0.175 0.330 0
6 0.010 0.125 0.483 0.490 0.001
8 0.013 0.155 0.427 0.421 0.005

10 0.032 0.213 0.404 0.369 0.012

Table 2: Ratio of incorrectly predicted sources to total no of
sources. Baseline has least number of incorrect predictions but this
should be seen with the angle estimation error results of Fig 2.

Fig. 3: Comparison of error in angle estimation for single snapshot
BF search and multi-snapshot Root-MUSIC and ESPRIT for k = 8
sources, M = 30 measurements.



We note that it is possible for CS based algorithms to
predict more than one source close to the original source
location such that the sum of powers of these sources is
equal to the original source. We use an approach where these
predictions are clubbed together as a single prediction. Let
δi1 , δi2 , ..., δip be the angles predicted by the algorithm that
are closest (within a threshold, say t , 0.1 in our exper-
iments, s.t. |δik − δitrue| < t) to a particular true source
location say δitrue. These predictions are clustered together
as a single source estimate δipred . Let the coefficients of
these p predictions be ui1 , ui2 , ..., uip , then we combine them
together as,

δipred =

∑p
j=1 |uij |δij∑p
j=1 |uij |

, uipred =

p∑
j=1

uij .

Similar techniques for performance evaluation have also been
used in [15]. In all our experiments we choose d

λ = 0.5
which satisfies d < λ. In Fig 1, we plot the prediction re-
sults for a sample experiment for the different methods with
k = 10,M = 30, N = 90, where k is number of sources,
M is number of sensor measurements and N is the grid size.
We can observe from the plots that the prediction of source
locations for our method is more accurate when compared to
the other methods.

Fig. 4: Histogram plot of angular error values for all methods with
k = 6 sources, M = 45 measurements, N = 90 grid size

We perform simulations for P = 100 different signals
with varying number of sources k and compare the mean

absolute error (MAE),
∑
P

∑
i |δi−δ̂i|
Pk for our method with

the other methods. For Root-MUSIC and ESPRIT, a single
time instant is used for comparison with our single snap-
shot method. We can observe from Fig 2 that the BF search
method gives the least error. We also note that the algorithms
may miss certain sources in the prediction results or give an
incorrect prediction which is far from any true source loca-
tion. From Table 2, we observe that the ratio of incorrect
predictions is small for our method as compared to Taylor
method and spectral methods. Though the Baseline has least
number of incorrect predictions, these should be seen in com-

Grid Size N Angle estimation MAE
BF search Taylor Approx. Baseline

90 0.0007 0.0036 0.0075
180 0.0004 0.0006 0.0013

Table 3: Comparison of angular estimation error for coarse grid
N = 90 and fine grid N = 180 for CS based methods averaged
over 100 simulations.

bination with the angle estimation error results of Fig 2 where
our method performs better.

From Fig 3, we can observe that it requires around 8 snap-
shots for Root-MUSIC method to give similar results to our
single snapshot technique. We also compare the signal recon-
struction MAE

∑
P

∑
i |si−ŝi|
Pk (see Table 1) for the CS based

methods as spectral methods do not give the signal estimates.
In Table 3, we can see that for a coarse grid of N = 90,

our algorithm works much better than baseline algorithm as
well as the Taylor approximation based method. Only when
we increase the grid fineness toN = 180, do these algorithms
begin to perform reasonably well. But this also increases the
size of the A matrix (especially in extensions to 3D-DOA
estimation) as well as its coherence, which is against the well-
known sufficient conditions for sparse recovery [18].

In Fig 4, we plot histogram of error in estimation of each
angle δipred − δitrue across 100 experiments for different
methods with M = 45, k = 6 and grid size N = 90. We can
clearly see that the error values in our method are clustered
around zero while in other methods they are spread out.

We find that the proposed Brute Force (BF) search based
formulation (3) performs considerably well for DOA estima-
tion as compared to Taylor approximation based method of
[14, 15] without requiring higher resolution of the grid. We
also observe that our algorithm is better than the single snap-
shot performance of Root-MUSIC and ESPRIT, which is use-
ful in many applications where we have limited availability of
sensor measurements.

4. CONCLUSION

In this work, we introduced a perturbed compressed sensing
based DOA estimation method. In the single-snapshot case,
we showed superior performance of our method for vary-
ing number of sensors and sources across many simulations,
as compared to (1) standard CS-based on-grid DOA esti-
mation technique, (2) Taylor approximation based off-grid
techniques (since the Taylor error is quite large and signal-
dependent), and (3) spectral estimation based Root-MUSIC
and ESPRIT under the single snapshot case. As future work,
we intend to extend our approach to the multi-snapshot case
by solving a joint sparsity based Multiple Measurement Vec-
tor (MMV) problem [20] under the alternating minimization
framework.
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