
SIGNAL RECOVERY IN PERTURBED FOURIER COMPRESSED SENSING

Himanshu Pandotra1, Eeshan Malhotra2, Ajit Rajwade2 and Karthik S. Gurumoorthy3

1Department of Electrical Engineering, Indian Institute of Technology Bombay
2Department of Computer Science and Engineering, Indian Institute of Technology Bombay

3 International Center for Theoretical Sciences, Bengaluru

ABSTRACT

In many applications in compressed sensing, the measure-
ment matrix is a Fourier matrix, i.e., it measures the Fourier
transform of the underlying signal at some specified ‘base’
frequencies {ui}Mi=1, where M is the number of measure-
ments. However due to system calibration errors, the sys-
tem may measure the Fourier transform at frequencies {ui +
δi}Mi=1 that are different from the base frequencies and where
{δi}Mi=1 are unknown. Ignoring perturbations of this nature
can lead to major errors in signal recovery. In this paper, we
present a simple but effective alternating minimization algo-
rithm to recover the perturbations in the frequencies in situ
with the signal, which we assume is sparse or compressible
in some known basis. In many practical cases, the perturba-
tions {δi}Mi=1 can be expressed in terms of a small number
of unique parameters P � M . We demonstrate that in such
cases, the method leads to excellent quality results that are
several times better than baseline algorithms.

Index Terms— Compressed sensing, Fourier measure-
ments, Frequency Perturbations

1. INTRODUCTION

Compressed sensing (CS) is today a widely researched branch
of signal processing. Consider a vector of compressive mea-
surements y ∈ CM ,y = Φx for signal x ∈ CN , acquired
through a sensing matrix Φ ∈ CM×N ,M < N . CS the-
ory offers guarantees on the error of reconstruction of x that
is sparse or compressible in a given orthonormal basis Ψ ∈
CN×N , assuming that the sensing matrix (also called mea-
surement matrix) Φ ∈ CM×N (and hence the product matrix
ΦΨ) obeys some properties such as the restricted isometry
(RIP) [1]. Moreover, the guarantees apply to efficient algo-
rithms such as basis pursuit. However the underlying assump-
tion is that the sensing matrix Φ is known accurately. If Φ is
known inaccurately, then signal-dependent noise will be in-
troduced causing substantial loss in reconstruction accuracy.
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Of particular interest in many imaging applications such
as magnetic resonance imaging (MRI), tomography or Fourier
optics [2, 3, 4, 5], is the case where the measurement matrix
is a row-subsampled version of the Fourier matrix, where the
frequencies may or may not lie on a Cartesian grid of frequen-
cies used in defining the Discrete Fourier Transform (DFT).
However, it is well-known that such Fourier measurements
are prone to inaccuracies in the acquisition frequencies. This
may be due to an imperfectly calibrated sensor. In case of
specific applications such as MRI, this is due to perturbations
introduced by gradient delays in the MRI machine [6, 7, 8].
In case of computed tomography (CT), it may be due to er-
rors in specification of the projection angles due to geometric
calibration errors in a CT machine [5], or in the problem of
tomography under unknown angles [9]. The problem we deal
within this paper is a special case of the problem of ‘blind
calibration’ (also termed ‘self-calibration’) where perturba-
tions in the sensing matrix are estimated in situ along with
the signal. Here, we expressly deal with the case of Fourier
sensing matrices with imperfectly known frequencies. There
exists a decent-sized body of earlier literature on the general
blind calibration problem (not applied to Fourier matrices)
beginning with theoretical bounds derived in [10]. Further
on, [11] analyze a structured perturbation model of the form
y = (A + B∆)x where x,∆ are the unknown signal and
diagonal matrix of perturbation values respectively, andA,B
are the fully known original sensing matrix and perturbation
matrix respectively. The theory is then applied to ‘direction of
arrival’ (DOA) estimation in signal processing. Further work
in [12] uses the notion of group-sparsity to infer the signal x
and the perturbations ∆ using a convex program based on a
first order Taylor expansion of the parametric DOA matrix. A
total least squares framework that also accounts for sparsity
of the signal is explored in [13] for a perturbation model of
the form y+e = (A+E)xwhere e,E are the additive errors
in the measurement vector y and measurement matrix A re-
spectively. In [14], [15], [16],[17], the following framework
is considered: y = ∆Ax, where ∆ is a diagonal matrix
containing the unknown sensor gains which may be complex,
x is the unknown sparse signal, and A is the known sensing
matrix. Both x and ∆ are recovered together via linear least
squares in [14], via the lifting technique on a biconvex prob-



lem in [15], using a variety of convex optimization tools in
[16], and in [17] using a non-convex method. The problem
we deal within this paper cannot be framed as a single (per
measurement) unknown phase or amplitude shift/gain unlike
these techniques, and hence is considerably different. Related
to (but still very different from) the aforementioned problem
of a perturbed sensing matrix, is the problem of a perturbed
or mismatched signal representation matrix Ψ which can also
cause significant errors in compressive recovery [18]. Note
that in [18, 19, 12, 20], the emphasis is on mismatch in the
representation matrix Ψ and not in the sensing matrix Φ.

To the best of our knowledge, there is no previous work
on the analysis of perturbations in a Fourier measurement ma-
trix in a compressive sensing framework. Some attempts have
been made to account for frequency specification errors in
MRI, however, most of these require a separate off-line cali-
bration step where the perturbations are measured. However
in practice, the perturbations in frequencies may be common
to only subsets of measurements (or even vary with each mea-
surement), and need not be static. In cases where the cor-
rection is made alongside the recovery step, a large number
of measurements may be required [21], as the signal recon-
struction does not deal with a compressed sensing framework
involving `q (q ≤ 1) minimization.

In Section 2 we define the problem and present a recovery
algorithm with convergence analysis. Numerical results are
presented in Section 3 followed by a conclusion in Section 4.
A more detailed version of this work can be accessed at [22].

2. PERTURBED FOURIER COMPRESSED SENSING

2.1. Problem Definition

Formally, let F ∈ CM×N be a Fourier matrix using a
known (possibly, but not necessarily on-grid) frequency set
u , {ui}Mi=1 ∈ RM , x ∈ RN be a signal that is sparse (with
at the most s non-zero values) or compressible, measured us-
ing a perturbed Fourier matrix F (δ) ∈ CM×N . Here, δM×1

represents a perturbation vector such that the matrix F (δ)
has frequencies u+ δ. In many realistic application scenar-
ios, values in δ can be expressed in terms of a small number
of unique parameters β , {βk}Pk=1 where P � M . We
henceforth term these ‘perturbation parameters’ (PPs). We
divide the measurements into subsets, where the frequency
perturbations for each subset can be expressed fully in terms
of a single perturbation parameter from β (besides the base
frequency itself). We assume that ∀k, 1 ≤ k ≤ P, |βk| ≤ r,
where r > 0 is known. Let the kth unique value in β corre-
spond to the PP for measurements in subset Lk, indexing into
the measurement vector y. Thus ∀i ∈ Lk, δi = h(βk, ui)
where h is a known function of the perturbation parameter βk
and base frequency ui. The exact form of h is dictated by the
specific application.

For example, in CT, tomographic projections are ac-

quired at different angles. The 1D Fourier Transform of
each such projection is equal to the 2D Fourier Transform
along a radial spoke at the same angle (as per the ‘Fourier
Slice Theorem’). Let us define set Lk to contain indices
of all frequencies along the kth radial spoke at some an-
gle αk. The perturbation values δi for all base frequencies
ui in Lk can be expressed in terms of a single parame-
ter - the error βk in specifying the angle. Here, for fre-
quency ui = (u

(1)
i , u

(2)
i ), we would have δi = h(βk, ui) ,

(ρi(cos(αk+βk)−cosβk), ρi(sin(αk+βk)−sinαk)) where

ρi =

√
(u

(1)
i )2 + (u

(2)
i )2, u

(1)
i = ρi cosαk, u

(2)
i = ρi sinαk.

There also exist similar applications for the case of gradient
delays in MRI (see Sections II and III of [22]).

We now consider the following measurement model: y =
F (β)Ψθ + η, where η is a signal-independent noise vector,
F (β) is a Fourier measurement matrix at the set of unknown
frequencies u + δ , {ui + δi}Mi=1, with δi = h(βk, ui) de-
fined in terms of the PP βk, an element of β. We assume full
knowledge of the base frequencies {ui}Mi=1. The problem is
to recover both, the sparse signal coefficients θ, and the un-
known PPs β. This is formalized as follows:

P1 : min
θ̂,β̂∈[−r,r]P

J(θ̂, β̂) , ‖θ̂‖1 + λ‖y − F̂ (β̂)Ψθ̂‖2, (1)

where θ = ΨTx are the sparse/compressible coefficients of
signal x in basis Ψ. We emphasize that the problem P1 is
very different from the problem of joint CS under motion
(i.e., recovery of signal along with motion parameters) with
Fourier measurement matrices. To see this, consider the case
when the function h(.) is identity, i.e. ∀i ∈ {1, ...,M}, δi =
βi. In such a case, the forward model for the measurements
can be written as y = FDΨθ whereD is a N ×N diagonal
matrix such that Dkk = exp(−ι2πδkl/N) where l, k are the
spatial and measurement index respectively. For the CS un-
der motion problem, the forward model would instead have
the form: y = D̃FΨθ where D̃ is a M ×M diagonal ma-
trix such that D̃kk = exp(−ι2πuk δ̃k), k ∈ {1, ...,M} and δ̃k
is the translation of the signal in the kth frame.

2.2. Recovery Algorithm

To solve P1, the following two sub-problems are considered.

• Step I: Given the current estimate of β, solve for the
best θ as: argminθ̂ ‖θ̂‖1 s.t. ‖y − (F (β)Ψθ̂)‖22 ≤ ε.

• Step II: Given the current estimate of θ, solve for
β as: β = argminβ̂ ‖y − F (β)Ψθ)‖22 s.t. ∀k ∈
{1, ..., P}, |βk| ≤ r.

The problem in Step I is solved via a standard basis pur-
suit denoising (BPDN) algorithm and the parameter ε is de-
pendent on the noise variance. The problem in Step II is a
highly non-convex problem. But it can be efficiently solved
by independent brute-force search for each PP βk in the form



argminβ̂k,|β̂k|≤r
∑
i∈Lk

‖yik −Fi(β̂k)Ψθ‖22. The alternating
minimization steps are performed iteratively till convergence.

2.3. Convergence

We prove convergence of Alg. 2.2 under a specific condi-
tion mentioned further. Let Fδ denote the Fourier transform
computed at the frequency values u+ δ where δ = h(β,u).
Assign z = {x,β}. Recall that our objective is to determine
the solution z∗ = argminzJ(z) in Eqn. 1. Let zt = {xt,βt}
be the present solution of our alternating search algorithm at
iteration t. Our alternating search algorithm ensures that
the sequence of function values {J(zt)}t∈N is monotoni-
cally decreasing. As J is bounded below by 0, the sequence
{J(zt)}t∈N converges to a limit value E ∈ R+ by the mono-
tone convergence theorem. To prove the convergence of the
solution sequence {zt}, let x(β) denote the minimizer for
the convex objective function on x with β held fixed, namely
x(β) = argminxJβ(x), where Jβ(x) = J(z) with β held
constant. In the context of our alternating search algorithm,
we have xt+1 = x(βt). Letting zt+ 1

2
= {xt+1,βt} we

find that ‖xt+1‖2 ≤ ‖xt+1‖1 ≤ J
(
zt+ 1

2

)
= Jβt (xt+1) ≤

Jβt(0) = λ‖y‖2, giving an upper bound on the norm of
xt. The last but one inequality follows from that fact that
xt+1 minimizes Jβt

(x). Further, as −r ≤ βi ≤ r for each
i, we see that the sequence {zt}t∈N lie within a compact
space. Hence as per Theorem 4.9 in [23], this sequence has at
least one accumulation point. Another statement in the same
theorem states that if a certain condition is satisfied, then
limt→∞‖zt+1 − zt‖ = 0, which establishes convergence of
the solution. The condition is that for each such accumulation
point, the minimization of J(z) gives (i) a unique solution for
x if β is fixed, and (ii) a unique solution for β if x is fixed.
Condition (i) is easy to satisfy as the problem is convex in
x if β is fixed. We do not have a theoretical proof for Con-
dition (ii), but we have observed uniqueness experimentally,
especially since the values in β are bounded between −r to
+r. As an example, in Fig. 1, we show a plot of the function
‖y −Fδx‖2 keeping x and all but one value in δ fixed. Note
that here x denotes the estimated signal value upon (empir-
ically observed) convergence of Alg. 2.2. We would like to
emphasize that Theorem 4.9 in [23] only requires continuity
of the function J and no other conditions like biconvexity.
Given the non-convexity of J , global guarantees are very
difficult to establish.

3. EXPERIMENTAL RESULTS

Recovery of 1-D signals: We present recovery results on 1D
signals using Alg. 2.2 in Fig. 2. 1D signals of N = 101 ele-
ments were used. In Fig. 2, the signal sparsity s , ‖x‖0 was
varied along the x-axis, and the number of measurements M
was varied along the y-axis. The cell at the intersection de-

Fig. 1: Uniqueness of the solution for a single perturbation
value δ keeping the estimated signal x (at empirically ob-
served convergence of Alg. 2.2) fixed. Left to right, top bot-
tom, for: (a) M = 30, s = 10, (b) M = 50, s = 30, (c)
M = 60, s = 30, (d) M = 20, s = 10 where s is true signal
sparsity

picts the relative recovery error (RRMSE), ‖x−x̂‖2‖x‖2 , averaged
across 5 different signals. For any sparsity level, the signals
were generated using randomly chosen supports with random
values at each index in the support. The base frequencies u
for the M Fourier compressive measurements for each sig-
nal were chosen uniformly randomly from {−N/2,−N/2 +
1, ..., N/2}. Each base frequency was subjected to perturba-
tions chosen from Uniform[−r,+r], with r = 0.5. For this
experiment, we chose P = 2 unique values for the perturba-
tions, i.e. ∀i ∈ {1, ...,M},∃!k ∈ {1, 2} s. t. δi = βk. To the
Fourier measurements thus simulated, noise from N (0, σ2)
was added, where σ , 0.05× average noiseless measure-
ment magnitude. We compared our recovery algorithm to a
baseline approach which ignores the perturbations and recov-
ers the signal using a straightforward basis pursuit approach,
with the unperturbed, on-grid Fourier matrix as the measure-
ment matrix, i.e. assuming δ = 0. We term this approach the
‘Baseline’. In Fig. 2, black (RGB (0,0,0)) indicates perfect
recovery, and white (RGB (1,1,1)) indicates recovery error of
100% or higher. In all experiments, a multi-start strategy with
10 starts was adopted to combat the non-convexity of J(θ,β),
and the solution which yielded the least value of this objective
function was selected. Note that the regularization parameter
λ in Eqn. 1 was chosen by cross-validation on a small ‘train-
ing set’ of signals. The same λ was used in all experiments.
From Fig 2, we observe that our results are easily superior to
the Baseline.

Recovery of 2-D signals: Application of Alg. 2.2 to 2D
images more closely reflects practical imaging scenarios. We
first present results with a similar set of toy experiments us-
ing 2D images (as the signal x). For this experiment, 30× 30
images were used. The images were generated using a sparse
linear combination of Haar wavelet bases. We used a radial



(a) (b)

Fig. 2: Recovery with Proposed Alternating Minimization al-
gorithm for a 1D signal with 101 elements, sparse in canon-
ical basis, 5% zero mean Gaussian noise added to measure-
ments. (a) Baseline (b) Our Approach, with r = 0.5, P = 2
where P represents #unique perturbation parameter values.

sampling approach in the Fourier domain (equivalent to tak-
ing a Fourier transform of the Radon projections), taking a
fixed number of measurements along each spoke, but varying
the number of angles used and the sparsity of the image in the
HWT basis. The angles for the spokes were incorrectly speci-
fied (which is typical in mis-calibrated tomography) with each
angle error chosen from Uniform[−2◦,+2◦] - leading to sig-
nificant perturbations in the frequencies. The base frequen-
cies u were spaced uniformly along each spoke. In addition,
5% zero mean i.i.d. Gaussian noise was added to the mea-
surements (both real and complex parts, independently). We
used the YALL11 solver for optimization of x and the NUFFT
package2 for computing Fourier transforms at non-integer fre-
quencies. The results are summarized in a chart shown in Fig.
3. As Fig. 3 shows, the recovery error was small, even for a

Fig. 3: Recovery error for 30 × 30 2D image, sparse in 2D
Haar Wavelet basis, with 5% zero mean Gaussian measure-
ment noise and angle errors from Uniform[−2◦,+2◦]

reasonably small number of measurements, and the method
was robust to noise in the measurements. In the second set of
experiments, we show reconstruction results on three images
each of size 200 × 200. Fourier measurements were simu-
lated along 140 radial spokes with erroneously specified an-

1http://yall1.blogs.rice.edu/
2https://www-user.tu-chemnitz.de/ potts/nfft/

Fig. 4: Results for 200 × 200 images with 5% zero mean
Gaussian measurement noise, 70% compressive measure-
ments, angle error from Uniform[−3◦,+3◦]. In each row,
left: original image, middle: result using Baseline (RRMSE
38.75%, 35.48%, 14.59%), right: result using Alg. 2.2
(RRMSE 13.15%, 5.29%, 5.85%). Zoom in pdf for details.

gles (which is typical in tomography with angle errors or un-
known angles). The angle error for each spoke was chosen
independently from Uniform[−3◦,+3◦] - leading to signifi-
cant perturbations in the frequencies. Noise from N (0, σ2)
where σ , 0.05× average (noiseless) measurement magni-
tude, was added to the real and complex parts of the measure-
ments. During reconstruction, we exploited image sparsity in
a Haar wavelet basis. Reconstruction results with Alg. 2.2
are presented in Fig. 4. In comparison with the Baseline, we
see that our algorithm performs significantly better in terms
of RRMSE values as well as visually.

4. CONCLUSION

We have presented a simple, noise-robust, theoretically well-
grounded method to correct for perturbations in a compres-
sive Fourier sensing matrix in situ during signal reconstruc-
tion. We have discussed several applications of our frame-
work, and have proved conditional convergence of Alg. 2.2.
In Alg. 2.2 and its analysis, we have consciously avoided us-
ing a first order Taylor approximation, unlike the approaches
for basis mismatch in [11, 12]. Even though Taylor approxi-
mation may appear to simplify (linearize) the problem, it in-
troduces significant truncation errors. Our experimental re-
sults justify our choice to avoid this method (see section IV
of [22]). Future work will involve proving analytical bounds
for the global optimum of Alg. 2.2, which we believe will be
stronger than those provided by results from standard CS [1],
MMV [24] or GMMV [25] applied to this problem. We also
aim to explore our algorithm in practical MRI/CT acquisition.
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