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Abstract

In many applications in compressed sensing, the measurement matrix is a Fourier matrix, i.e., it measures the

Fourier transform of the underlying signal at some specified ‘base’ frequencies {ui}Mi=1, whereM is the number

of measurements. However due to system calibration errors, the system may measure the Fourier transform

at frequencies {ui + δi}Mi=1 that are different from the base frequencies and where {δi}Mi=1 are unknown

frequency perturbations. Ignoring such perturbations can lead to major errors in signal recovery. In this

paper, we present a simple but effective alternating minimization algorithm to recover the perturbations in

the frequencies in situ with the signal, which we assume is sparse or compressible in some known basis. In

many cases, the perturbations {δi}Mi=1 can be expressed in terms of a small number of unique parameters

P � M . We demonstrate that in such cases, the method leads to excellent quality results that are several

times better than baseline algorithms (which are based on existing off-grid methods in the recent literature

on direction of arrival (DOA) estimation, modified to suit the computational problem in this paper). Our

results are also robust to noise in the measurement values. We also provide theoretical results for (1) the

conditional convergence of our algorithm, and (2) the uniqueness of the solution for this computational

problem, under some restrictions.

Keywords: Compressed sensing, Fourier measurements, Frequency Perturbation

1. Introduction

Compressed sensing (CS) is today a very widely researched branch of signal and image processing.

Consider a vector of compressive measurements y ∈ CM ,y = Φx for signal x ∈ CN , acquired through a
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sensing matrix Φ ∈ CM×N ,M < N . CS theory offers guarantees on the error of reconstruction of x that

is sparse or compressible in a given orthonormal basis Ψ ∈ CN×N , assuming that the sensing matrix (also5

called measurement matrix) Φ ∈ CM×N (and hence the product matrix ΦΨ) obeys some properties such

as the restricted isometry (RIP) [1]. Moreover, the guarantees apply to efficient algorithms such as basis

pursuit. However the underlying assumption is that the sensing matrix Φ is known accurately. If Φ is

known inaccurately, then signal-dependent noise will be introduced in the system causing substantial loss in

reconstruction accuracy.10

Of particular interest in many imaging applications such as magnetic resonance imaging (MRI), tomog-

raphy or Fourier optics [2, 3, 4, 5], is the case where the measurement matrix is a row-subsampled version

of the Fourier matrix, where the frequencies may or may not lie on a Cartesian grid of frequencies used in

defining the Discrete Fourier Transform (DFT). However, it is well-known that such Fourier measurements

are prone to inaccuracies in the acquisition frequencies. This may be due to an imperfectly calibrated sensor.15

In case of specific applications such as MRI, this is due to perturbations introduced by gradient delays in

the MRI machine [6, 7, 8]. In case of computed tomography (CT), it may be due to errors in specification

of the angles of tomographic acquisition due to geometric calibration errors in a CT machine [5], or in the

problem of tomographic reconstruction under unknown angles [9].

1.1. Relation to Previous Work20

The problem we deal with in this paper is a special case of the problem of ‘blind calibration’ (also

termed ‘self-calibration’) where perturbations in the sensing matrix are estimated in situ along with the

signal. Here, we expressly deal with the case of Fourier sensing matrices with imperfectly known frequencies.

There exists a decent-sized body of earlier literature on the general blind calibration problem (not applied to

Fourier matrices) beginning with theoretical bounds derived in [10]. Further on, [11, 12] analyze a structured25

perturbation model of the form y = (A +B∆)x where x,∆ are the unknown signal and diagonal matrix

of perturbation values respectively, and A,B are the fully known original sensing matrix and perturbation

matrix respectively. The theory is then applied to direction of arrival (DOA) estimation in signal processing.

Further work in [13] uses the notion of group-sparsity to infer the signal x and the perturbations ∆ using a

convex program based on a first order Taylor expansion of the parametric DOA matrix. A total least squares30

framework that also accounts for sparsity of the signal is explored in [14] for a perturbation model of the form

y+ e = (A+E)x where e,E are the additive errors in the measurement vector y and measurement matrix

A respectively. The total least squares framework is further extended to include an `1-regularized Rayleigh

quotient term in [15]. Error bounds for compressed sensing in an `p minimization framework (0 < p < 1) for

sensing matrices with additive perturbations are developed in [16]. In [17], performance bounds are developed35

for the simultaneous orthogonal matching pursuit (SOMP) algorithm, for the case when the signals have

similar supports and are measured with additively perturbed sensing matrices. In [18], [19], [20],[21], the
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following framework is considered: y = ∆Ax, where ∆ is a diagonal matrix containing the unknown sensor

gains which may be complex, x is the unknown sparse signal, and A is the known sensing matrix. Both x

and ∆ are recovered together via linear least squares in [18], via the lifting technique on a biconvex problem40

in [19], via a variety of convex optimization tools in [20], and in [21] via a non-convex method. The problem

we deal with in this paper cannot be framed as a single (per measurement) unknown phase or amplitude

shift/gain unlike these techniques, and hence is considerably different.

Related to (but still very different from) the aforementioned problem of a perturbed sensing matrix, is

the problem of a perturbed or mismatched signal representation matrix Ψ which can also cause significant45

errors in compressive recovery [22]. This has been explored via alternating minimization in [23], via a

perturbed form of orthogonal matching pursuit (OMP) in [24], and via group-sparsity in [13]. The problem

of estimating a small number of complex sinusoids with off-the-grid frequencies from a subset of regularly

spaced samples has been explored in [25]. Note that in [22, 25, 13, 23], the emphasis is on mismatch in the

representation matrix Ψ and not in the sensing matrix Φ - see Section 4 for more details. The problem of50

additive perturbations in both the sensing matrix as well as the representation matrix has been analyzed in

[26], using several assumptions on both perturbations. Note that the perturbations in the Fourier sensing

matrix do not possess such an additive nature.

To the best of our knowledge, there is no previous work on the analysis of perturbations in a Fourier

measurement matrix in a compressive sensing framework. Some attempts have been made to account for55

frequency specification errors in MRI, however, most of these require a separate off-line calibration step where

the perturbations are measured. However in practice, the perturbations in frequencies may be common to

only subsets of measurements (or even vary with each measurement), and need not be static. Hence the

measurement matrix inaccuracies cannot be pre-determined, and must be estimated in situ along with the

signal. In cases where the correction is made alongside the recovery step, a large number of measurements60

may be required [27], as the signal reconstruction does not deal with a compressed sensing framework

involving `q (q ≤ 1) minimization. The problem of perturbations in the Fourier matrix also occurs in

computed tomography (CT). This happens in an indirect way via the Fourier slice theorem, since the 1D

Fourier transform of a parallel beam tomographic projection in some acquisition angle α is known to be

equal to a slice of the Fourier transform of the underlying 2D image at angle α. In CT, the angles for65

tomographic projection may be incorrectly known due to geometric errors [5], and uncertainty in the angle

will manifest as inaccuracy of the Fourier measurements. While there exist approaches to determine even the

completely unknown angles of projection, they require a large number of projections, and also the knowledge

of the distribution of the angles [28, 29]. Our group has presented a method [9] which does not require this

knowledge, but in [9], the angles are estimated only along with the image moments. The image itself is70

estimated after determining the angles. In contrast, in this paper, the errors in frequency are determined
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along with the underlying signal.

A large body of existing work is also lacking in theoretical backing. Some existing approaches to handle

perturbations in Ψ simplify the problem using a Taylor approximation [11, 30]. However, when such an

approach is tailored to the problem of perturbation in Φ, it proves to be adequate only at extremely small75

perturbation levels in our case, rendering the adjustment for the perturbation to be much less effective (See

Section 5).

Contributions: A method for simultaneous recovery of the perturbations and the signal in a perturbed

Fourier compressed sensing structure is proposed in this paper. The algorithm is verified empirically over a

large range of simulated data under noise-free and noisy cases. Further, we analyze the convergence of the80

algorithm, as well as the uniqueness of the solution to our specific computational problem under specific but

realistic assumptions about the measurement perturbations. A preliminary version of this work has earlier

appeared in [31]. In this paper, we provide more extensive experimental comparison, problem motivation as

well as uniqueness results.

1.2. Organization of the Paper85

This paper is organized as follows. Section 2 defines the problem statement. The recovery algorithm

is presented in Section 3, followed by a comparison with related computational problems in Sec. 4, and

extensive numerical results in Section 5. The theoretical treatment is covered in Section 6, followed by a

conclusion in Section 7

2. Problem Definition90

Formally, let F ∈ CM×N be a Fourier matrix using a known (possibly, but not necessarily on-grid)

frequency set u , {ui}Mi=1 ∈ RM , x ∈ RN be a signal that is sparse (with at most s non-zero values) or

compressible, measured using a perturbed Fourier matrix F (δ) ∈ CM×N . That is,

y = F (δ)x+ η, (1)

where, η is a signal-independent noise vector, F (δ) is a Fourier measurement matrix at the set of unknown

frequencies u + δ , {ui + δi}Mi=1, with ∀i, δi ∈ R, |δi| ≤ r, r ≥ 0, δ , {δi}Mi=1. For the ith measurement in

particular, we have:

yi =
∑
l

x(l) exp(−ι2π(ui + δi)l/N) =
∑
l

(x(l) exp(−ι2πδil/N)) exp(−ι2πuil/N), (2)

where ι ,
√
−1. This is the Fourier transform at frequency ui of a phase-modulated version of x. Note that

we assume full knowledge of {ui}Mi=1, i.e., the base frequencies. The problem is to recover both, the sparse

4



signal x, and the unknown perturbations in the frequencies, δ. This is formalized as the following:

min
x̂,δ̂∈[−r,r]M

J(x̂, δ̂) , ‖x̂‖1 + λ‖y − F (δ̂)x̂‖2 (3)

where F (δ̂) is the Fourier measurement matrix at frequencies u+ δ̂, and δ̂ denotes the estimate of δ. Note

that the above problem is a perturbed version of the so-called square-root LASSO (SQ-LASSO), since the

second term involves an `2 norm and not its square. We used the SQ-LASSO due to its advantages over the

LASSO in terms of parameter tuning, as mentioned in [32].

Eqn. 3 presents the most general formulation of the problem. The signal may be sparse in a non-canonical

basis, say the Discrete Wavelet transform (DWT), in which case the objective function in Eqn. 3 can be

changed, leading to the following problem:

min
θ̂,δ̂∈[−r,r]M

J(θ̂, δ̂) , ‖θ̂‖1 + λ‖y − F (δ̂)Ψθ̂‖2, (4)

where θ = ΨTx are the wavelet coefficients of x. We also discuss an important modification. In Eqn. 3, we95

have assumed that all perturbations, i.e. entries in δ, are independent. However, this may not necessarily

be the case in many applications. For example, consider the following three cases (though the applicability

of our technique and analysis is not restricted to just these):

1. Consider parallel beam tomographic reconstruction of a 2D signal f(x, y) with incorrectly specified

angles. The 1D Fourier transform of the tomographic projection of f acquired at some angle α is100

equal to a slice through the 2D Fourier transform of f at angle α and passing through the origin of the

Fourier plane. The frequencies along this slice can be expressed in the form u(1) = ρ cosα, u(2) = ρ sinα

where ρ =
√

(u(1))2 + (u(2))2. If the specified angle has an error ᾱ, the effective Fourier measurements

are at frequencies ū(1) = ρ cos(α + ᾱ), ū(2) = ρ sin(α + ᾱ). In such a case, the perturbations in all

the frequencies along a single slice are governed by a single parameter ᾱ which is unknown. (The105

parameter ρ is known since the base frequencies (u(1), u(2)) are known.) This basic principle also

extends to other projection methods such as cone-beam and to higher dimensions. (See Fig. 11 for

sample reconstructions for this application).

2. The problem of tomography under unknown angles is of interest in cryo-electron microscopy to de-

termine the structure of virus particles [33]. Here the angles of tomographic projection as well as the110

underlying image are both unknown. In some techniques, the angles of projection are estimated first

using techniques from dimensionality reduction [29] or geometric relationships [9, 28]. Any error in the

angle estimates affects the estimate of the underlying image in a manner similar to that described in

the previous point.

3. In MRI, gradient delays can cause errors in the specified set of frequencies at which the Fourier trans-115

form is measured [8]. The gradient delays are essentially the difference between the programmed or
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specified start time and the start time which the machine uses for the measurement. For a single

axis, the gradient G(t) would produce a trajectory of measurements of the form k(t) = K
∫ t
τ=0

G(τ)dτ

at time t where K is a hardware-related proportionality constant and u(t) , (u(1)(t), u(2)(t)) for 2D

measurements. Given a gradient delay of t̄, the actual trajectory would be k′(t) = K
∫ t
τ=0

G(τ − t̄)dτ .120

For small-valued t̄, this leads to a trajectory error proportional to G(t)t̄ [33]. Thus frequency pertur-

bations in MRI measurements for a single axis are governed by a single parameter t̄. In some specific

MRI sampling schemes such as radial, a single global trajectory error is assumed for all frequencies in

one or all radial spokes (see Eqn. 3 of [34], and ‘Methods section’ in [35]). This global error arises

due to gradient delays, which again presents a case of perturbations in multiple measurements being125

expressed in terms of a single parameter.

Handling cases such as these in fact makes the recovery problem more tractable, since the number of un-

knowns is essentially reduced. We now present our recovery algorithm and its modified version for handling

cases where many measurements share a common set of ‘perturbation parameters’, in the following section.

The convergence of the algorithm is analyzed in Section 6.1.130

3. Recovery Algorithm

We present an algorithm to determine x and δ by using an alternation between two sub-problems. Start-

ing with a guess δ̂ for the perturbations δ, we recover x̂, an estimate for x, using the SQ-LASSO mentioned

before, which is essentially an unconstrained l1 norm minimization approach common in compressive sensing.

Next, using this first estimate x̂, we update δ̂ to be the best estimate, assuming x̂ to be the truth, using a135

linear brute force search in the range −r to r. A linear search is possible because each measurement yi is the

dot product of a single row of F (δ) with x, and hence a single (ui, δi) value is involved. Consequently, the

different δi values can be recovered through independent parallel searches (see Section 4 for a comparison

to related computational problems). From here on, we alternate between the two steps - recovery of x̂ and

recovery of δ̂, till convergence is achieved.140

Since the search space is highly non-convex, we also employ a multi-start strategy, where, we perform

multiple runs of the alternating algorithm to recover δ̂ and x̂, each time, initializing the first guess for δ̂

randomly. We ultimately select the solution that minimizes the objective function J(x̂, δ̂). In practice, we

have observed that the number of starts required for a good quality solution is rather small (around 10).

The full algorithm, including the optimization for multi-start is presented in Algorithm 1. Note that145

Fk(δ̂k) denotes the kth row of F (δ̂). We now consider the important and realistic cases where values in

δ̂ can be expressed in terms of a small number of unique parameters β , {βi}Pi=1 where P � M . We

henceforth term these ‘perturbation parameters’. In other words, there are subsets of measurements whose
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Algorithm 1 Alternating Minimization Algorithm

1: procedure AlternativeRecovery

2: converged← False, χ← 0.0001

3: δ̂ ← sample from Uniform[−r,+r]

4: while converged == False do

5: F (δ̂)← Fourier matrix at (u+ δ̂)

6: Estimate x̂ as:

7: min
x̂
‖x̂‖1 + λ‖y − F (δ̂)x̂‖2

8:

9: for k in 1→M do

10: Test each discretized value of δ̂k in range

−r to r and select the value to achieve

11: min
δ̂k

‖yk − Fk(δ̂k)x̂‖2

12: end for

13: if ‖δ̂ − δ̂prev‖2 < χ and

‖x̂− x̂prev‖2 < χ then

14: converged← True
end while

15: return x̂, δ̂

16: procedure Multistart

17: minobjective←∞

18: x̂best ← null

19: δ̂best ← null

20: for start in 1→ numstarts do

21: x̂, δ̂ ← AlternatingRecovery()

22: F (δ̂)← Fourier matrix at (u+ δ̂)

23: objective← ‖x̂‖1 + λ‖y − F (δ̂)x̂‖2
24: if objective < minobjective then

25: x̂best ← x̂

26: δ̂best ← δ̂

27: minobjective← objective
end for

28: return x̂best, δ̂best
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frequency perturbation values are expressed fully in terms of a single perturbation parameter from β (besides

the base frequency itself). We assume that ∀k, 1 ≤ k ≤ P, |βk| ≤ r, where r > 0 is known. Let the kth
150

unique value in β correspond to the perturbation parameter for measurements in a set Lk, indexing into

the measurement vector y. Thus ∀i ∈ Lk, δi = h(βk, ui) where h is a known function of the perturbation

parameter βk and base frequency ui. The exact formula for h is dictated by the specific application.

For example, in the CT application cited at the end of the previous section, let us define set Lk to

contain indices of all frequencies along the kth radial spoke at some angle αk. The perturbation values155

δi for all base frequencies ui in Lk can be expressed in terms of a single parameter - the error βk in

specifying the angle. Here, for frequency ui = (u
(1)
i , u

(2)
i ), we would have δi = h(βk, ui) , (ρi(cos(αk +

βk) − cosαk), ρi(sin(αk + βk) − sinαk)) where ρi =

√
(u

(1)
i )2 + (u

(2)
i )2, u

(1)
i = ρi cosαk, u

(2)
i = ρi sinαk. In

the MRI example, the perturbation values for all base frequencies ui along the kth axis can be expressed

in terms of a single perturbation parameter βk, which stands for the gradient delay for the kth axis. In160

this case, δi = h(βk, ui) , (K ′βkGx(t),K ′βkGy(t)) for hardware-related proportionality constant K ′ and

where Gx(t), Gy(t) are the x, y components of the gradient at time t (at which the Fourier transform at

frequency ui + δi was measured). In the case of radial MRI, the parallel and perpendicular components

of the error at every frequency in the trajectory along the radial spoke at angle α are expressed as δpar =

K(tx cos2 α+ ty sin2 α), δperp = K(−tx cosα sinα+ ty sinα cosα) where tx, ty represent gradient delays [35]165

and K is a hardware-related constant. Here, the perturbation parameters are β1 = tx, β2 = ty, and they are

common to all radial spokes.

To suit these cases of perturbation parameters common to many measurements, we modify Algorithm 1,

for which Step 9 can then be replaced by:

for k in 1→ P do

Test each discretized value of d̂k in range − r to r

βk = argmin
d̂k

‖yLk − FLk(d̂k)x̂‖2

for each i in Lk do

Compute δi from βk using δi = h(βk, ui)

end for

end for

In the above steps, yLk is a subvector of y, containing measurements for frequencies at indices only in

Lk, and FLk(d̂k) denotes a sub-matrix of F containing only those rows with indices in Lk and assuming

perturbation parameter d̂k. Note that the modification to the main algorithm essentially computes only170

each unique value in β separately. Convergence results for Algorithm 1 (or its modification) are analyzed in
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Section 6.1.

4. Comparison with Related Computational Problems

We emphasize that our computational problem is very different from the basis mismatch problem [23,

22, 24]. There, the signal is to be represented as a linear combination of (possibly sinsuoidal) bases whose175

frequencies are assumed to lie on a discrete grid, i.e. x = ΦΨθ = Φ
∑K−1
k=0 Ψkθk, where Ψk ∈ CN is the

basis vector at discrete frequency k, and θ ∈ CN . However in many applications, the signals may be sparse

linear combinations of bases whose frequencies lie off the grid. Hence the representation problem involves

solving for the frequency perturbations δk along with θ given x, where x = Ψδθ =
∑K−1
k=0 Ψδkθk. Here Ψδ

is a perturbed form of Ψ, and δk denotes the difference between the kth off-grid frequency and its nearest180

grid-point. The problem can be extended to a compressive setting, where we have measurements of the form

y = Φ
∑K−1
k=0 Ψδkθk. In this (compressive) basis mismatch problem, the perturbations are in Ψ and not

in Φ, unlike in our paper where the perturbations are in Φ. This leads to the following major points of

difference:

1. In the basis mismatch problem, the number of δ values is equal to the signal dimension N (or in some185

variants, equal to ‖θ‖0), unlike the problem in this paper where it is equal to M (or P if we count

perturbation parameters in β).

2. Moreover, unless ΦΨ is orthonormal (which is not possible in a compressive setting), the different δ

values cannot be solved through independent searches in the basis mismatch problem and require block

coordinate descent for optimization. This is in contrast to the problem in this paper (See Algorithm 1190

and its modification).

3. In the basis mismatch problem, the performance is affected by the minimal separation between the

frequencies of the columns of Ψ [25]. Moreover, using a dictionary Ψ with an increased frequency

resolution makes the problem more under-determined and increases the mutual coherence of the matrix

ΦΨ), adversely affecting the bounds on compressive recovery. There is no such specification for minimal195

frequency separation in our problem.

4. A Taylor approximation approach in the basis mismatch problem would yield a system of equations of

the form

y = (F + F ′∆)x+ ηTaylor, (5)

where x and ∆x are vectors with the same support, F represents the Fourier measurement matrix at

known frequency set {ui}Mi=1, F ′ is the first derivative of the Fourier matrix w.r.t. δ, ∆ , diag(δ) and

ηTaylor represents error due to truncation of the Taylor series. This allows for simultaneous estimation
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of x and ∆x using joint sparsity [11, 12]. For our problem, the Taylor expansion leads to equations of

the form:

y = Ftx ≈ (F + ∆F ′)x+ ηTaylor. (6)

Here, we notice that even if x is sparse, the vector F ′x (and hence ∆F ′x) is not sparse. Hence a

joint-sparsity model cannot be directly used for our problem.

The DOA estimation techniques in [11, 13, 12, 36] and the synthetic aperture radar (SAR) target location

estimation technique in [30] (see Eqns. (3) and (13) of [30]) are also related to the basis mismatch problem,200

and use the aforementioned joint sparsity. The DOA estimation technique follows the model y = A(d+δ)θ

where d is a vector that contains parameters that represent the N different grid-aligned directions. The jth

column of A(d+δ) is given as al(dj , δj) = 1√
n

exp(ιπ(dj + δj)(l − (M + 1)/2)) where l = 0, ...,M − 1 and

j = 0, ..., N − 1 and ι ,
√
−1 (see for example, Section III-F of [11]). Here again, the number of δ values is

equal to N similar to the basis mismatch problem.205

Likewise, consider the problem of Fourier compressive recovery under correctly specified frequencies, but

with unknown motion of the scene x, as considered in [37, 38]. We refer to this as the ‘unknown motion

problem’ henceforth. Approaches such as [39] to solving the unknown motion problem have been proposed in

the literature, but they do not exploit signal sparsity which is a key ingredient of most compressive recovery

techniques, which is what we are specifically interested in. Assume for simplicity that x is in 1D and is

undergoing translational motion δt in the tth frame, where 1 ≤ t ≤ T . Now, the ith Fourier measurement of

the tth frame is given as follows (using the Fourier-shift theorem):

yit =
∑
l

x(l + δt) exp(−ι2πuil/N) = exp(−ι2πuiδt/N)
∑
l

x(l) exp(−ι2πuil/N). (7)

Comparing Eqn. 7 with the earlier Eqn. 2, the difference between the two computational problems is evident.

In the unknown motion problem, the number of unknown perturbation parameters is equal to the number of

frames T and each perturbation parameter δt is common to all Fourier measurements of the tth frame. By the

Fourier shift theorem, each frequency measurement is a phase-shifted version of the Fourier transform of the

scene x in some reference or ‘canonical’ position. These phase-shifts can be interpreted as unknown sensor210

gains. Hence the unknown motion problem is related to the gain calibration problem from [19, 20, 21, 18].

As against this, the measurements in the frequency perturbations problem considered in this paper are the

Fourier transforms of phase-modulated versions of the original signal x, as is evident from Eqn. 2. These

cannot be expressed as a sensor gain calibration problem. Also the number of perturbation parameters in

the problem considered in this paper, is proportional to M , or to the number of groups of measurements (P ).215

Lastly, the unknown motion problem can benefit from additional priors such as smoothness of motion, which

are not relevant for the problem considered here. We summarily emphasize that the frequency perturbations

problem cannot be posed as a problem of compressed sensing with unknown object motion.
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5. Experimental Results

5.1. Recovery of 1-D signals220

We present recovery results on signals in a multitude of cases below, using the modified version of

Algorithm 1 (i.e. with a replacement of step 9 as described in the previous section). In each chart (see

Figures 1,2,3,4), 1D signals of N = 101 elements were used, the sparsity s , ‖x‖0 of the signal was varied

along the x-axis, and the number of measurements M was varied along the y-axis. The cell at the intersection

depicts the relative recovery error (RRMSE), ‖x−x̂‖2‖x‖2 , averaged across 5 different signals, where x̂ denotes the225

estimate of the signal x. For any sparsity level, the signals were generated using randomly chosen supports

with random values at each index in the support. The supports were chosen uniformly at random i.e. we

generated permutations of indices from 1 toN whereN is the number of elements in the signal, and then chose

the first s elements of the permutation for the signal support. Thus, different signals had different supports.

The value at each index in the support was drawn from Unif(0, 1). The base frequencies u for the M Fourier230

compressive measurements for each signal were chosen uniformly randomly from {−N/2,−N/2+1, ..., N/2}.

Each base frequency was subjected to a single perturbation chosen from Uniform[−r,+r], for two separate

cases with r = 1 and r = 0.5 respectively. (See Section 2 for the meaning of r.) Note that the same M base

frequencies u for the Fourier sensing matrix were chosen for each signal, but the specific perturbations δ

were chosen differently for each signal. In Figures 1,2,3,4, black (RGB (0,0,0)) indicates perfect recovery, and235

white (RGB (1,1,1)) indicates recovery error of 100% or higher. Note that all the figures show error values

plotted on the same scale, and hence the shades are comparable within and across figures. In all experiments,

a multi-start strategy with 10 starts was adopted. In principle, we can avoid ambiguity in the estimation of

the δ values only if r is less than half the smallest difference between the selected base frequencies. However

even relaxation of this condition did not have any major adverse effect on the signal reconstruction. Note240

that the regularization parameter λ in Eqn. 3 was chosen by cross-validation on a small ‘training set’ of

signals. The same λ was used in all experiments. For our implementation, we used the CVX package3.

Fig. 1 shows results for two different cases (top and bottom figures, for both r = 1 and r = 0.5), where the

number of unique values in δ is 2 and 10 respectively (this is henceforth denoted as δ(u)), although there are

M measurements. (In this experiment, the perturbation parameters in β are the same as the perturbation245

values in δ.) In both cases, no external noise was added to the measurements. One can see that the average

recovery error decreases with the number of measurements and increases with s, although the relationship

is not strictly monotonic. Fig. 2 shows the same two cases as in Fig. 1, but with an addition of zero mean

i.i.d. Gaussian noise with σ = 5% of the average magnitude of the individual (noiseless) measurements. The

same trend of decrease in error with increased number of measurements and increase in error with increased250

3http://cvxr.com/cvx/
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s is observed here as well. For reference, we also include a typical sample reconstruction in 1D canonical

basis for a signal of length 101, which is 10-sparse, in Fig. 9. Fig. 3 shows similar results as in Fig. 2 but

using signals that are sparse in the Haar wavelet basis instead of the canonical basis.

Note that Algorithm 1 neither uses nor requires any assumptions about the distribution of the values in

δ or β. The uniform distribution for δ was used only to enable generation of some values in δ. We could as255

well have chosen any other distribution without affecting Algorithm 1.

5.2. Baselines for Recovery of 1-D signals

For comparison, we also establish two baselines:

1. A naive reconstruction algorithm (termed ‘Baseline 1’), which ignores the perturbations and recovers

the signal using a straightforward basis pursuit approach, with the unperturbed, on-grid Fourier matrix260

as the measurement matrix, i.e. assuming δ = 0. Results in similar settings as in Fig. 1 are shown in

Fig. 4. The parameter λ for this approach was set using cross-validation on a training set of signals.

2. A Taylor approximation approach (termed ‘Baseline 2’): Here, the signal as well as the perturbations

are recovered using an alternating minimization algorithm based on a first order Taylor approximated265

formulation, from Eqn. 6. Results in similar settings as in Fig. 1 are shown in Fig. 5 for two cases:

one where δ(u) = 2 and another where δ(u) = 10 (recall that δ(u) is the number of unique values in

δ). This baseline is similar in spirit to the truncated Taylor series approach presented in [11, 30] but

modified for our (very different) computational problem. The parameter λ for this approach was again

set using cross-validation on a training set of signals.270

As is clear from the figures, Baseline 1 performs considerably worse, since inaccurate frequencies are

trusted to be accurate. Baseline 2 also performs badly because the first order Taylor error, ηTaylor, can

be overwhelmingly large since it is directly proportional to the unknown ‖x‖2, and consequently, the signal

recovered is also inferior. In fact, a comparison between Figures 4 and 5 reveals that in case of Taylor

approximations to a perturbed Fourier matrix, the results obtained are often as bad as those obtained when275

assuming δ = 0. Baseline 2 is akin to a strategy used in [11, 30] and applied to DOA estimation or in target

detection in radar. However the specific inverse problem to be solved in these papers is similar to a problem

of mismatched representation bases, which fortuitously allows for joint sparsity of x and δ · x (see Eqn.5 in

Section 4), but which cannot be achieved in the problem we attempt to solve in this paper.

5.3. Performance w.r.t. Perturbation Value280

Here, we consider the case of a single perturbation value δ, and perform an empirical study of the

variation of reconstruction quality (RRMSE) for Algorithm 1 w.r.t. change in M as well as |δ|. The results
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(a) (b)

(c) (d)

Figure 1: Relative recovery errors (RRMSE) with Algorithm 1 for a 1D signal with 101 elements, sparse in canonical basis, no

measurement noise added, for: (a) r = 1, δ(u) = 2, (b) r = 0.5, δ(u) = 2, (c) r = 1, δ(u) = 10, (d) r = 0.5, δ(u) = 10, where δ(u)

represents number of unique values in δ and r is the maximum allowed absolute value of δ.

are reported on a signal with 128 elements, expressed as a sparse linear combination of Haar wavelet bases.

The signal sparsity in the wavelet basis was ≈ 0.15× 128, M was varied from 20 to 128, and |δ| was varied

from 0.05 to 2.5. These results are computed for 10 starts with different initial conditions. The recovery285

errors for reconstructed signals corresponding to the least value of the objective function (from the 10 starts)

are shown in Fig. 6 for the case of (i) no measurement noise, and (ii) noise from from N(0, σ2) with σ = 0.05ζ
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(a) (b)

(c) (d)

Figure 2: Relative recovery errors (RRMSE) with Algorithm 1 for a 1D signal with 101 elements, sparse in canonical basis,

noise from N (0, σ2) added to measurements where σ = 0.05 × ζ where ζ , max(average absolute value of real component of

noiseless measurements, average absolute value of complex component of noiseless measurements). (a) r = 1, δ(u) = 2, (b)

r = 0.5, δ(u) = 2, (c) r = 1, δ(u) = 10, (d) r = 0.5, δ(u) = 10, where δ(u) represents number of unique values in δ and allowed

absolute value of δ.

where ζ = maximum of (average absolute value of real part of noiseless measurements, average absolute value

of complex part of noiseless measurements). These results show good quality recovery until δ = 2, beyond

which we see increase in error. Likewise, there is good quality recovery with M ≥ 50, below which there is290

an increase in error.
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(a) (b)

(c) (d)

Figure 3: Relative recovery errors (RRMSE) with Algorithm 1 for a 1D signal with 128 elements, sparse in Haar DWT basis,

noise from N (0, σ2) added to measurements where σ = 0.05 × ζ where ζ , max(average absolute value of real component of

noiseless measurements, average absolute value of complex component of noiseless measurements). (a) r = 1, δ(u) = 2 (b)

r = 0.5, δ(u) = 2 (c) r = 1, δ(u) = 10, (d) r = 0.5, δ(u) = 10, where δ(u) represents number of unique values in δ and r is the

maximum allowed absolute value of δ.

These experiments were repeated for the case when the signal was sparse in the canonical basis, keeping

all other settings exactly the same. The results for this are reported in Fig. 7. Comparing with those in

Fig. 6, we see that the reconstruction for the case of sparsity in the canonical basis is more resilient to larger

values of δ. (Also see Lemma 1 of Sec. 6).295

15



(a) (b)

(c) (d)

Figure 4: Relative recovery errors (RRMSE) with Baseline 1 algorithm (see text) for a 1D signal with 101 elements, sparse in

canonical basis, noise from N (0, σ2) added to measurements where σ = 0.05× ζ where ζ , max(average absolute value of real

component of noiseless measurements, average absolute value of complex component of noiseless measurements). (a) r = 1,

δ(u) = 2, (b) r = 0.5, δ(u) = 2, (c) r = 1, δ(u) = 10, (d) r = 0.5, δ(u) = 10, where δ(u) represents number of unique values in δ,

and r is the maximum allowed absolute value allowed in δ. Compare with Fig. 2.

5.4. The case of M independent perturbations

All the experiments so far were conducted in the setting where the number of unique values in δ was

much less than M . The motivation for this setting has already been described in previous sections. In the

case when each measurement has an independent perturbation, we expect the recovery error to be relatively
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(a) (b)

(c) (d)

Figure 5: Relative recovery errors (RRMSE) with Baseline 2 algorithm (see text) for a 1D signal with 101 elements, sparse in

canonical basis, noise from N (0, σ2) added to measurements where σ = 0.05× ζ where ζ , max(average absolute value of real

component of noiseless measurements, average absolute value of complex component of noiseless measurements). (a) r = 1,

δ(u) = 2, (b) r = 0.5, δ(u) = 2, (c) r = 1, δ(u) = 10, (d) r = 0.5, δ(u) = 10, where δ(u) represents number of unique values in δ.

Compare with Fig. 2.

higher, especially in the presence of measurement noise, as the number of unknowns increases significantly.300

For completeness, we perform similar experiments in the case when δ(u) = M and plot the reconstruction

errors. We observe that even with a large number of unique δ values, the errors are still low when the signal

is very sparse (see Fig 8). However, the error increases when the signal is less sparse, and the error is much
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(a) (b)

Figure 6: Variation in RRMSE w.r.t. (M, δ), reported for a 128× 1 signal represented as a sparse linear combination of Haar

wavelet basis vectors. Sparsity of wavelet coefficients = 0.15 × 128. (a) Case with no measurement noise, (b) Case with noise

drawn from N(0, σ2) with σ = 0.05ζ where ζ = maximum of (average absolute value of real part of noiseless measurements,

average absolute value of complex part of noiseless measurements).

(a) (b)

Figure 7: Variation in RRMSE w.r.t. (M, δ), reported for a 128×1 signal sparse in the canonical basis, with `0 norm = 0.15×128.

(a) Case with no measurement noise, (b) Case with noise drawn from N(0, σ2) with σ = 0.05ζ where ζ = maximum of (average

absolute value of real part of noiseless measurements, average absolute value of complex part of noiseless measurements).
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higher than the case of a small δ(u) as seen in Fig. 8.

(a) (b)

Figure 8: Relative recovery errors (RRMSE) with Proposed Alternating Minimization algorithm for a 1D signal with 128 el-

ements, sparse in Haar DWT basis, noise from N (0, σ2) added to measurements where σ = 0.05 × ζ where ζ , max(average

absolute value of real component of noiseless measurements, average absolute value of complex component of noiseless mea-

surements). Left: r = 0.5, δ(u) = M , where M is the number of measurements, Right: r = 0.5, δ(u) = 10.

5.5. Recovery of 2-D signals305

Application of our algorithms to 2D images is natural and more immediately applicable in imaging

scenarios. We first present results with a similar set of experiments using 2D images (as the signal x). For

this experiment, 30 × 30 images were used. The images were generated using a sparse linear combination

of Haar wavelet bases. We used a radial sampling approach in the Fourier domain (equivalent to taking

a Fourier transform of the Radon projections), taking a fixed number of measurements along each spoke,310

but varying the number of angles used and the sparsity of the image in the Haar basis. The angles for

the spokes were incorrectly specified (which is typical in mis-calibrated tomography) with each angle error

chosen from Uniform[−2◦,+2◦] leading to significant perturbations in the frequencies. The base frequencies

u were spaced uniformly along each spoke. In addition, noise from N (0, σ2) was added to measurements

where σ = 0.05 × ζ where ζ , max(average absolute value of real component of noiseless measurements,315

average absolute value of complex component of noiseless measurements). We used the YALL14 solver for

optimization of x and the NUFFT package5 for computing Fourier transforms at non-integer frequencies.

4http://yall1.blogs.rice.edu/
5https://www-user.tu-chemnitz.de/~potts/nfft/
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Figure 9: Sample recovery for 1D signal sparse canonical basis, N = 100,M = 60, s = 20, noise from N (0, σ2) added to

measurements where σ = 0.05× ζ where ζ , max(average absolute value of real component of noiseless measurements, average

absolute value of complex component of noiseless measurements). Relative reconstruction error by proposed algorithm: 5.5%.

Relative reconstruction error by Baseline 2 (Taylor approximation): 88.7%.

The results are summarized in a chart shown in Fig. 10. As Fig. 10 shows, the recovery error was small, even

for a reasonably small number of measurements, and the method was robust to noise in the measurements.

Errors with the baseline algorithms were significantly larger and are not reported here.320

In the second set of experiments, we show reconstruction results on three images each of size 200× 200.

Fourier measurements were simulated along 140 radial spokes with erroneously specified angles (which is

typical in tomography with angle errors or unknown angles). The angle error for each spoke was chosen

independently from Uniform[−1◦,+1◦] - leading to significant perturbations in the frequencies. Noise from

N (0, σ2) where σ , 0.05× average (noiseless) measurement magnitude, was added to the real and complex325

parts of the measurements. During reconstruction, we exploited image sparsity in a Haar wavelet basis.

Reconstruction results with the modified version of Algorithm 1 are presented in Fig. 11. In comparison

with Baseline 1, we see that our algorithm performs significantly better, both visually and in terms of

RRMSE values, as seen in Fig. 11. Results with a similar experiment for angle errors chosen independently

from Uniform[−2◦,+2◦] and Uniform[−3◦,+3◦] are shown in Fig. 12 and Fig. 13 respectively, showing clear330

performance improvement of our method over Baseline 1. Errors with Baseline 2 were very high and hence
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Figure 10: Relative recovery errors (RRMSE) error for 30 × 30 2D image, sparse in 2D Haar Wavelet basis, with noise from

N (0, σ2) added to measurements where σ = 0.05× ζ where ζ , max(average absolute value of real component of noiseless mea-

surements, average absolute value of complex component of noiseless measurements); and angle errors from Uniform[−2◦,+2◦]

not reported here.

Figure 11: Reconstruction for 200 × 200 images with noise from N (0, σ2) added to measurements where σ = 0.05 × ζ where

ζ , max(average absolute value of real component of noiseless measurements, average absolute value of complex component

of noiseless measurements), 70% compressive measurements, angle error from Uniform[−1◦,+1◦]. In each row, left: original

image, middle: reconstruction using Baseline 1 (RRMSE 25%, 23.36%, 8.82%), right: reconstruction using modified version of

Algorithm 1 (RRMSE 6.76%, 5.27%, 4.5%).
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Figure 12: Reconstruction for 200 × 200 images with noise from N (0, σ2) added to measurements where σ = 0.05 × ζ where

ζ , max(average absolute value of real component of noiseless measurements, average absolute value of complex component

of noiseless measurements), 70% compressive measurements, angle error from Uniform[−2◦,+2◦]. In each row, left: original

image, middle: reconstruction using Baseline 1 (RRMSE 38.7%, 30.98%, 12.63%), right: reconstruction using modified version

of Algorithm 1 (RRMSE 10.65%, 5.22%, 4.87%).

6. Theoretical Results

While the empirical results show Algorithm 1 working well across a large number of simulated scenar-

ios, we also characterize the formulation by providing theoretical analysis for its convergence. Moreover,335

Algorithm 1 is one possible method to obtain the solution for the underlying computational problem. Hence,

there are larger questions such as conditions for the uniqueness of the solution to the main computational

problem, which we analyze in this section under some conditions.

6.1. Convergence of Algorithm 1

Here we analyze the convergence of Algorithm 1 (or its modified version) under a specific condition340

mentioned further. Let F (δ) denote the Fourier transform computed at the frequencies values u+ δ where

δ = h(β,u). Assign z = {x,β}. Recall that our objective is to determine the solution z∗ that minimizes

the objective function J(z) , ‖x‖1 + λ‖y − F (δ)x‖2, namely z∗ = argminzJ(z).

Let zt = {xt,βt} be the present solution of our alternating search algorithm at iteration t. Our alternat-

ing search algorithm ensures that the sequence of function values {J(zt)}t∈N is monotonically decreasing.345

As J is bounded below by 0, the sequence {J(zt)}t∈N converges to a limit value E ∈ R+ by the monotone

convergence theorem.
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Figure 13: Reconstruction for 200 × 200 images with noise from N (0, σ2) added to measurements where σ = 0.05 × ζ where

ζ , max(average absolute value of real component of noiseless measurements, average absolute value of complex component

of noiseless measurements), 70% compressive measurements, angle error from Uniform[−3◦,+3◦]. In each row, left: original

image, middle: reconstruction using Baseline 1 (RRMSE 38.75%, 35.48%, 14.59%), right: reconstruction using modified version

of Algorithm 1 (RRMSE 13.15%, 5.29%, 5.85%).

However, this does not yet establish the convergence of the solution sequence {zt}, which is much more

involved. We refer the reader to the supplemental material for a partial proof of the convergence of the

solution iterates.350

6.2. Uniqueness of Solution

It is quite natural to question whether the recovery of x from compressive measurements of the form

y = F (δ)x is unique, where F (δ) is as defined in Eqn. 1. We answer this question in the affirmative (in

the noiseless case, of course) for real-valued x under the condition that the perturbation parameters β are

bounded and also independent of the base frequencies u, i.e. ∀k, 1 ≤ k ≤ P, δk = h̃(βk) where h̃ is a known355

function of only βk. We comment on the effect of relaxing this condition, at the end of the section.

First consider real-valued x, which is typical in tomography and certain protocols in MR (if the magnetization

is proportional to the contrast-weighted proton density [40]). Consider the case where there is only a single

unknown perturbation parameter value β in all measurements and where x is a 1D signal. Then, we state

and prove the following Lemma.360

Lemma 1. Consider measurements of the form y = F (δ)x, where (i) x ∈ RN is an s-sparse vector, (ii) y

contains at least O(s log2 s logN) measurements, and (iii) F (δ) has a single perturbation parameter β such
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that frequency perturbation δ = h̃(β) for a bijective function h̃. Then x and β can be uniquely recovered

from y,F (δ) with high probability, if δ < N/4. ♦

Proof: The measurement vector can be expressed as y = F (δ)x = F (x ·vβ), where ‘·’ refers to an element-365

wise product, vβ is a vector in CN whose lth entry is equal to exp(−ι2πh̃(β)l/N) where l is a spatial/time

index and ι =
√
−1. To see this, consider the ith measurement as follows:

yi =
1√
M

∑
l

exp(−ι2π(u+ δ)l/N)x(l) (8)

=
1√
M

∑
l

exp(−ι2πul/N)(x(l) exp(−ι2πh̃(β)l/N)).

Let xβ , x · vβ . Using standard compressive sensing results from [1], we can prove unique recovery of xβ

using standard basis pursuit, i.e. by solving the problem min‖x‖1 such that y = Fxβ . This holds for an

RIP-obeying F (which is true with high probability if the M base frequencies were chosen uniformly at370

random, and M ≥ s log2 s logN for s-sparse x [41]).

Since x is real-valued, we now show that x and β can be uniquely recovered if δ < N/4. We do so by

contradiction. Suppose that xβ can be decomposed into two solutions of the form x1(l) exp(−ι2πh̃(β1)l/N) =

x2(l) exp(−ι2πh̃(β2)l/N),∀l, 0 ≤ l < N . Let δ1 , h̃(β1), δ2 , h̃(β2). Then we can write:

∀l, x2(l) = x1(l) exp(−ι2πl(δ1 − δ2)/N). (9)

As both x1(l) and x2(l) are real-valued, this implies that the phase factor on the RHS is 0. This implies the

following, given some integer kl:

2πl(δ1 − δ2)/N = klπ =⇒ l(δ1 − δ2)/N = klN/2. (10)

When l = 0, we clearly have x2(l) = x1(l). For any other l, we have δ1− δ2 = klN/(2l). When |δ1| < N/(4l)

and |δ2| < N/(4l), then |δ1 − δ2| < N/(2l). But from Eqn. 10, we have |δ1 − δ2| = |kl|N/(2l). This in turn

implies that |kl|N/(2l) < N/(2l). As kl is an integer, this means that kl = 0. But we need to establish

that this is true for all l. Note that in particular for l = 1, we see that when |δ1| < N/4 and |δ2| < N/4,375

we have δ1 = δ2. It is easy to see that l = 1 yields the least stringent condition on δ. With δ1 = δ2, i.e.

h̃(β1) = h̃(β2), we see that x2(l) = x1(l) for all l. Thus we have proved the unique recovery of x and δ under

the given condition. If h̃ is a bijective function, we can recover β from δ. This proves the lemma. ♦

Comments about Lemma 1:

1. From Lemma 1, it is clear that a standard basis pursuit algorithm can be used for the recovery of xβ .380

This recovery is robust to measurement noise and compressibility (instead of strict sparsity) of xβ and

the bounds from [1] would follow.
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2. This result extends to x in higher dimensions as well.

3. If x ∈ CN , although xβ can be recovered uniquely, there is an inevitable phase ambiguity in estimating

x. However, the magnitude of each element of x, i.e. |x|, can be recovered uniquely under the afore-385

stated conditions.

4. Now consider the case of P � M unique perturbation parameter values in β, and as before x ∈ RN

where x is s-sparse. Let FLk be the sub-matrix of measurements corresponding to a particular value

βk. Under the conditions stated earlier, unique recovery of x, δ can be guaranteed if for at least one

k ∈ {1, 2, ..., P}, the matrix FLk obeys the RIP of order s. This easily follows from Lemma 1.390

5. The number of measurements to guarantee unique recovery is independent of the specific value of δ as

long as δ < N/4. An indication of this lack of dependence on δ can be seen from the performance of

Algorithm 1 in Fig. 7 in Sec. 5.3. Nevertheless, there are subtle but important differences between

using basis pursuit and Algorithm 1. First, basis pursuit is not susceptible to local minima unlike

Algorithm 1. However, basis pursuit can be used only for the specific case of a single δ value and signal395

sparsity in the canonical basis. On the other hand, Algorithm 1 can achieve recovery for arbitrary δ(u)

and signal sparsity in any orthonormal basis.

These uniqueness results can be further strengthened (i.e. in terms of weaker conditions on the number

of measurements), by observing that in the case of P > 1 unique values in β, we need to recover different

(complex) signals xβ1
,xβ2

, ...,xβP
where ∀i, 1 ≤ i ≤ P,xβi

, x · vβi
and the lth entry of vβi

equals400

exp(−ι2πh̃(βi)l/N). All these signals are s-sparse if x is s-sparse, and they have the same support. This

recovery problem is therefore an example of multiple measurement vectors (MMV) [42]. However, our

computational problem has further refinements to MMV: the sensing sub-matrices corresponding to the

different values in β are necessarily different, which is termed the generalized MMV (GMMV) problem

[43],[44], for which stronger results exist. For example, we modify Theorem 1 of [43] which guarantees405

unique recovery of the sparsity pattern of the signals, to state the following Lemma:

Lemma 2. Consider measurements yLk where ∀k, 1 ≤ k ≤ P,yLk = FLkxβk
where xβk

= x · vβk
and

vβk
(l) = exp(−ι2πh̃(βk)l/N). Assume that x is s-sparse with support set denoted S and has sub-Gaussian

entries6. Assume that the following conditions hold:

∀j /∈ S,
( 1

P

P∑
k=1

‖F †Lk,SFLk,j‖2
)0.5

≤ α1 < 1 (11)

∀j /∈ S,maxk∈{1,...,P}‖F †Lk,SFLk,j‖2 ≤ α2 > 0,

6This includes bounded random variables as a special case.
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where † denotes the pseudo-inverse, FLk,j is the jth column of FLk and FLk,S is a sub-matrix of FLk with410

columns corresponding to entries in S. Then the solution to the following optimization problem (Q1) is able

to recover the exact solution for the signals xβ1 ,xβ2 , ...,xβP
with high probability decreasing in α1, α2 and

increasing in P . The problem (Q1) is defined as follows: min‖x‖1 s. t. ∀k ∈ {1, ..., P} yLk = FLkxβk
. ♦

We refer to [43] and [45] (Theorem 23, Chapter 5) for the proof of Lemma 2.

Comments about Lemma 2:415

1. The two conditions on FLk,S essentially imply that the norm of F †Lk,SFLk,j should be small, on an

average over k. The sufficient conditions under which this holds true are mentioned in Proposition 5.2

of [46]. These sufficient but not necessary conditions are that every FLk should obey RIP of order

s + 1 with a RIC (restricted isometry constant) of less than 0.5. It has been shown that Fourier

sensing matrices with at least O(s log2 s log n) randomly chosen frequencies obey the RIP with a high420

probability of 1− 2−Ω(logN log 2s) and an RIC of less than or equal to 0.5 (see Theorem 4.5 of [41]).

2. The GMMV results require weaker conditions than MMV (see eqn. 12 of [43]). The MMV results

require the one and only measurement matrix F to obey the RIP. However, the GMMV results state

that among the different measurement matrices {FL1 ,FL2 , ...,FLP }, a few can be ‘bad’ (i.e. not obey

RIP), as long as the ensemble of measurement matrices is ‘well-behaved’, i.e. obeys the two conditions425

in Eqn. 12.

3. Note that the specific optimization problem used in [43] for GMMV (termed there as ‘LOPT’) requires

penalization of
∑n−1
i=0

√∑P
k=1 |xβk

(i)|2, i.e. an `2,1 norm. It is proportional to ‖x‖1 in our case, given

the specific definition of xβk
here.

4. With this, we have established recovery of the signals xβ1 ,xβ2 , ...,xβP
(and thereby the recovery of x430

if it is real-valued, or the recovery of |x| for complex-valued x) with high probability.

However, our computational problem in fact has further structure over and above GMMV. This is ex-

plained as follows:

1. Property C1: First, ∀i, 1 ≤ i ≤ N, |xβ1(i)| = |xβ2(i)| = ... = |xβP
(i)|.

2. Property C2: Second, the phase factors of all elements of xβ1
,xβ2

, ...,xβP
are completely determined435

by just the P values in β.

The modified version of Algorithm 1 imposes this structure by design. At this point, we conjecture that

the lower bound on the required number of measurements is actually much lower, if we use Algorithm 1 for

estimation of x,β, as compared to the predictions from the aforementioned Lemmas and their associated

convex (`1) estimators. Moreover, we conjecture that Algorithm 1 is also more robust to measurement noise440
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(i.e. noise in y) by design, as compared to these approaches. Most importantly, standard MMV/GMMV

approaches will not preserve the aforementioned solution structure (properties C1 and C2) if there is noise in

y. Hence these techniques cannot be adopted to our computational problem in the presence of noise. They

are only useful in specifying the conditions on the {FLk}Pk=1 matrices, for which the recovered solution from

noiseless y will be unique.445

Lastly, we consider the case when the values in δ are functions of the base frequencies in addition to the

values in β (i.e. ∀i ∈ {1, 2, ...,M},∃!k ∈ {1, 2, ..., P} s. t. δi = h(βk, ui) where ∃! is the unique existential

quantifier), which is more challenging. This is because our theoretical treatment using MMV/GMMV-based

algorithms now requires the estimation of M (as opposed to P � M) signals, albeit all with common

support and with the aforementioned structure. Moreover, we no more have groups of measurements with450

the same parameter, and each FLk matrix will now contain only a single row. All these factors make the

theoretical treatment in this case much more difficult. Empirically however, we have observed success of

Algorithm 1 even in such a scenario. For example, see Fig. 11, where δi = h(βk, ui) , (ρi(cos(αk + βk) −

cosαk), ρi(sin(αk + βk)− sinαk)), as described in an example in Sec. 3. The primary reason for the success

of the algorithm is that it readily exploits additional structure (due to the specific known function h(βk, ui)),455

which MMV/GMMV estimators ignore.

7. Conclusions and Discussion

We have presented a method to correct for perturbations in a compressive Fourier sensing matrix in situ

during signal reconstruction. Our method is simple to implement, robust to noise and well grounded in

theory. We have discussed several applications of our framework. Moreover, we have analyzed conditional460

convergence of our algorithm to a local optimum, and shown that the basic computational problem has

a unique solution under reasonable conditions. We conjecture that due to the special structure of our

problem, the requirements on the number of measurements is much below what is predicted by the theoretical

development so far. Note that for the main algorithm and its analysis, we have consciously avoided using a

Taylor approximation (Baseline 2) unlike the work in [11, 13], even though the Taylor approximation may465

cursorily appear to simplify the problem considerably. The primary reason for this is to avoid introduction

of modeling error due to the Lagrange remainder term which can be quite significant except at small values

of r. Our experimental results justify this choice.

Possible avenues for future work include attempting to prove analytical bounds for the global optimum

of Algorithm 1, which we believe will be stronger than those provided by results from standard CS [1], MMV470

[42] or GMMV [43, 46]. The uniqueness results could also be extended (1) for the case when the signals are

sparse in an orthonormal basis Ψ apart from the identity basis, or (2) for non-uniform recovery, i.e. recovery

of a specific signal x for every random draw of sensing matrix F and perturbation vector δ. We also aim to

27



explore our algorithm in the context of different sampling strategies in practical MRI acquisition or various

modes of tomographic acquisition. Furthermore, it would be interesting to explore a Bayesian algorithm for475

signal reconstruction which assumes a meaningful and application-specific distribution on x and δ. Lastly,

the problem of mismatch of both, the Fourier sensing matrix and the signal representation matrix, is a useful

avenue for research.
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