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Abstract. Most existing bounds for signal reconstruction from compressive

measurements make the assumption of additive signal-independent noise. However in

many compressive imaging systems, the noise statistics are more accurately represented

by Poisson or Poisson-Gaussian noise models. In this paper, we derive upper bounds

for signal reconstruction error from compressive measurements which are corrupted by

Poisson or Poisson-Gaussian noise. The features of our bounds are as follows: (1) The

bounds are derived for a computationally tractable convex estimator with statistically

motivated parameter selection. The estimator penalizes signal sparsity subject to a

constraint that imposes a novel statistically motivated upper bound on a term based

on variance stabilization transforms to approximate the Poisson or Poisson-Gaussian

distributions by distributions with (nearly) constant variance. (2) The bounds are

applicable to signals that are sparse as well as compressible in any orthonormal basis,

and are derived for compressive systems obeying realistic constraints such as non-

negativity and flux-preservation. Our bounds are motivated by several properties of the

variance stabilization transforms that we develop and analyze. We present extensive

numerical results for signal reconstruction under varying number of measurements

and varying signal intensity levels. Ours is the first piece of work to derive bounds on

compressive inversion for the Poisson-Gaussian noise model. We also use the properties

of the variance stabilizer to develop a principle for selection of the regularization

parameter in penalized estimators for Poisson and Poisson-Gaussian inverse problems.
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1. Introduction

Compressed sensing (CS) is a flourishing branch of signal processing with many

theoretical and algorithmic advances, along with emerging applications in the form

of actual systems in medicine (especially MRI acquisition), astronomy, photography

and various other fields. The basic philosophy is to efficiently acquire signals by

reducing the number of measurements, and reconstruct the signal from this reduced

set later. Theoretical bounds for performance of compressive reconstruction algorithms

have shown great promise [1]. The theory essentially considers measurements of the form

y = Φx = ΦΨθ = Aθ where y ∈ RN is a measurement vector, A ∈ RN×m , ΦΨ,

Ψ ∈ Rm×m is a signal representation orthonormal basis, and θ ∈ Rm is a vector that is

sparse or compressible such that x = Ψθ. Usually N � m. Under suitable conditions

on the sensing matrix such as the restricted isometry property or RIP (i.e. the sensing

matrix approximately preserves the magnitude of sparse vectors) and sparsity-dependent

lower bounds on N , it is proved that x can be recovered near-accurately given y and

Φ, even if the measurement y is corrupted by signal-independent, additive noise η of

the form y = Φx + η where η ∼ N (0, σ2) or ‖η‖2 ≤ ε (bounded noise). The specific

error bound [1] on θ in the case of ‖η‖2 ≤ ε is given as:

‖θ − θ?‖2 ≤ C1ε+
C2√
s
‖θ − θs‖1 (1)

where θs is a vector created by setting all entries of θ to 0 except for those containing

the s largest absolute values, θ? is the minimum of the following optimization problem

denoted as (G1),

(G1): minimize‖z‖1 such that ‖y −Az‖2 ≤ ε, (2)

and C1 and C2 are constants dependent only on δ2s, the so-called restricted isometry

constant (RIC) of A of order s. These bounds implicity require that N ∼ Ω(s logm),

and Φ (and hence ΦΨ) is said to obey the RIP if δ2s < 1. Note that the RIC of order

s of matrix A is defined as the smallest value δs for which the following is true for all

s-sparse signals θ: (1 − δs)‖θ‖22 ≤ ‖Aθ‖22 ≤ (1 + δs)‖θ‖2. In other words, the matrix

A obeys RIP if it approximates preserves the squared magnitude of all s-sparse signals

θ. An intuition behind this property is as follows: If A were to obey RIP of order 2s,

it implies that no 2s-sparse signal would lie in its null-space. Hence for two different

signals θ(1) and θ(2), we would necessarily have Aθ(1) 6= Aθ(2), implying that unique

recovery of θ from y and A is possible. Ideally, one desires that δ2s be as close to 0 as

possible, within the limits imposed on Φ by the imaging system.

The aforementioned bounds are based on the assumption of additive signal

independent noise. However the noise in many compressive imaging systems can be

more accurately described as Poisson-Gaussian. The Poisson component, which is

signal dependent, is typically known to emerge from photon-counting principles in the

acquisition of signals. The Gaussian component is signal-independent and is due to
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fluctuations in the electronic parts of the imaging system. The Poisson component is

quite dominant particularly at lower signal intensities [2], and is a non-additive form of

noise. Given a non-negative signal x ∈ Rm and a compressive measuring device with a

non-negative sensing matrix Φ ∈ RN×m, N � m, the measurement vector y ∈ RN can

be described as follows:

y ∼ αPoisson(Φx) + η,η ∼ N (g, σ2), (3)

where α represents a gain factor, and g, σ represent the mean and standard deviation

of the Gaussian component respectively. The Gaussian component of the noise cannot

be ignored, and such a mixed Poisson-Gaussian noise model is ubiquitous in imaging

systems in astronomy [3], microscopy [4] and compressive imagers such as the Rice Single

Pixel camera [5, 6], to name a few.

There exists a large amount of literature on denoising of signals or images under

Poisson-Gaussian noise. For instance, recent work in [7] denoises and deblurs images

using an exact Poisson-Gaussian likelihood, which is approximated in a very principled

way during an iterative optimization. Earlier work on image denoising using this model

includes approximations based on variance stabilization transforms [3] or PURElet-

based approaches [8], among others. However, the Poisson-Gaussian noise model has

not been presented heretofore in the context of CS, and in particular with a derivation

of performance bounds. There does exist fairly recent literature on performance bounds

for CS under purely Poisson noise using either the penalized Poisson negative log-

likelihood (hereafter referred to as PNLL) or the LASSO (see Section 6 for a detailed

discussion), or using least squares estimation for Poisson inverse problems with N > m

[9]. Efficient algorithms have also been proposed for Poisson CS [10, 11, 12, 13] or

Poisson deconvolution [14, 15]. A comprehensive survey of algorithms and applications

of Poisson inverse problems has been presented in [16].

In this paper, we derive performance bounds for CS under Poisson noise using

a variance stabilization transform (VST) approach. As has been shown in [17], if

y ∼ Poisson(λ), then
√
y + 3

8
has variance approximately 1

4
and mean

√
λ+ 3

8
when

λ→∞. This motivates the following objective function for compressive inference:

min‖θ‖1 subject to ‖
√
y + c−

√
ΦΨθ + c‖2 ≤ ε,Ψθ � 0 (4)

where Ψ is a m × m orthonormal basis in which the signal x yields a sparse set of

coefficients θ = ΨTx, c is a coefficient that defines the VST (e.g., c = 3
8

for the Anscombe

transform) and the symbol � in a � b means that ai ≥ bi for every index i in vectors

a and b. Here ε is a statistically motivated upper bound on ‖
√
y + c −

√
ΦΨθ + c‖2

that we derive later in this paper. We also extend these bounds to the case of Poisson-

Gaussian noise. Moreover, we use variance stabilizers for a particular aspect of all

Poisson or Poisson-Gaussian inverse problems (i.e. not restricted to just CS but other

problems such as deblurring) - that of choice of the regularization parameter in penalized

estimators. We develop a statistically motivated principle for this purpose, which works

well in practice.
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The contribution of our work is summarized as follows:

(i) To the best of our knowledge, this is the first piece of work to provide performance

bounds for CS under Poisson-Gaussian noise. In fact, we have a unified approach

to handle Poisson as well as Poisson-Gaussian noise, and it can be easily extended

to Poisson-Gaussian-uniform quantization noise.

(ii) Our bounds apply to a computationally tractable and probabilistically motivated

estimator, under realistic CS matrices, and for sparse or compressible signals in any

orthonormal basis. A detailed comparison with earlier work is presented in Section

6.

(iii) Due to the VST, our estimator allows for very principled, statistically motivated

parameter tuning, since the term ‖
√
y + c −

√
ΦΨθ + c‖22 is a metric and since

(as we show later in the paper) the magnitude of the difference term, i.e.

‖
√
y + c −

√
ΦΨθ + c‖2, has a bounded variance which does not depend on the

original signal or the number of measurements. This bounded variance property

of ‖
√
y + c −

√
ΦΨθ + c‖2, which is a major contribution of this work, leads to a

neat concentration inequality. The statistically motivated parameter tuning in our

work is different from the case of the PNLL which is not a metric, which does not

have a signal-independent value, and where choosing the regularization parameter

for signal sparsity is not easy in practice. Again, see Section 5.1 and 6.

(iv) We develop a statistically motivated principle, based on variance stabilization

transforms, to choose the regularization parameter for penalized estimators for any

Poisson or Poisson-Gaussian inverse problem.

A part of this work earlier appeared in our conference paper [18], but this work contains

an extension to the Poisson-Gaussian case, as well as many refinements to the theory

and experiments for the Poisson noise case.

This paper is organized as follows. Some preliminaries are presented in Sec. 2,

the main theoretical results are derived in Sec. 3 and Sec. 4 along with a discussion,

numerical results are presented in Section 5, followed by a summary of the contributions,

a more detailed comparison with existing work and directions for future work in Section

6.

2. Preliminaries

In this section, we go over some preliminary concepts briefly, so as to make the paper

self-contained.

2.1. Construction of Sensing Matrices

We construct a sensing matrix Φ that corresponds to the forward model of a real optical

system, based on the approach in [19]. Clearly Φ has to satisfy certain constraints

natural to a realizable imaging system - non-negativity and flux preservation. The



Variance Stabilization Based Compressive Inversion 5

latter is due to the fact that the total photon-count of the noise-free measurement Φx

can never exceed that of the original signal x, i.e.,
∑N

i=1(Φx)i ≤
∑m

k=1 xk. This in turn

imposes the constraint that every column of Φ must sum up to a value no more than

1, i.e. ∀j,
∑N

i=1 Φij ≤ 1.

One major difference between Poisson CS and conventional CS emerges from

the fact that conventional randomly generated sensing matrices which obey restricted

isometry (RIP) do not follow the aforementioned physical constraints. This is a

drawback as the RIP is a well-known sufficient condition which guarantees bounds on

compressive recovery. We now construct a sensing matrix Φ which has only zero or

(scaled) ones as entries. Let us define p to be the probability that a matrix entry is 0,

then 1−p is the probability that the matrix entry is a scaled 1. Let Z be a N×m matrix

whose entries Zi,j are i.i.d random variables taking only these two different values, i.e.,

Zi,j =


−
√

1− p
p

with probability p, (5a)√
p

1− p
with probability 1− p. (5b)

Let us define Φ̃ ,
Z√
N

. For p = 1/2, the matrix Φ̃ now follows RIP of order 2s with

a very high probability given as 1 − 2e−Nc(1+δ2s) where δ2s is its RIC of order 2s and

function c(h) ,
h2

4
− h3

6
[20]. In other words, for any 2s-sparse signal ρ, the following

holds with high probability

(1− δ2s)‖ρ‖22 ≤ ‖Φ̃ρ‖22 ≤ (1 + δ2s)‖ρ‖22. (6)

Given any orthonormal matrix Ψ, arguments in [20] show that Φ̃Ψ also obeys the RIP

of the same order as Φ̃.

However Φ̃ will clearly contain negative entries with very high probability, which

violates the constraints of a physically realizable system. To deal with this, we construct

the flux-preserving and non-negative sensing matrix Φ from Φ̃ as follows [19]:

Φ =

√
p(1− p)

N
Φ̃ +

(1− p)
N

1N×m, (7)

which ensures that each entry of Φ is either 0 or
1

N
. One can easily check that Φ

satisfies both the non-negativity as well as flux-preservation properties.

We note that the model for sensing matrices presented here, has been used in

a variety of compressed sensing applications. For example, it has been used for

compressive acquisition of astronomical images in [21, 22], for flourescence microscopy in

[23], for depth mapping in [24] and for remote sensing in [25]. The core architecture for

all these applications follows the model of the Rice Single Pixel camera [6] (i.e. the model

for Z here, or equivalently the model for Φ here, with a flux-preserving constraint),

where the point-wise multiplication with binary sensing patterns are modelled by an
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array of mirrors that are turned on (= +1) or off (= 0). The final addition to obtain

the dot product between the rows of Φ and the signal x are implemented by means of

a diode.

2.2. Variance Stabilization Transforms

VSTs are a popular method of converting Poisson data into data that are approximately

Gaussian. In particular, [17] proves that if y ∼ Poisson(λ), then we have the following:

E(
√
y + c) =

√
λ+ c− 1

8
√
λ

+O(λ−1.5) (8)

Var(
√
y + c) =

1

4
+

3− 8c

32λ
+O(λ−2). (9)

Setting c = 3
8

yields the so-called Anscombe Transform (AT) and produces data with

a ‘stable’ noise variance of approximately 1
4

and a mean of approximately
√
λ+ c.

The higher order moments are approximately zero for a reasonably large λ. The

approximation to the mean is further expressed as
√
λ in some papers [16]. All these

approximations improve as λ grows beyond 4, and the noise distribution becomes closer

and closer to N (0, 1
4
) as shown rigorously in [26]. In the case of Poisson-Gaussian noise,

i.e. when y ∼ αPoisson(λ)+η where η ∼ N (g, σ2), the AT is replaced by the Generalized

AT (GAT) which is given as t = 1
α

√
αy + 3

8
α2 + σ2 − αg. As λ grows in value, it can

be shown [3] that t has a mean of
√
λ+ 3

8
α + σ2−αg

α
and variance of approximately 1

4
.

In this paper, we keep α = 1, g = 0 for simplicity, although our framework is general

enough to handle deviations from this assumption.

3. Theory

The main theoretical development is presented in this section. First, for noisy

measurements y ∼ Poisson(Φx), we prove that the quantity R(y,Φx) , ‖
√
y + c −√

Φx+ c‖2 (henceforth called the ‘residual magnitude’) has a mean which is O(
√
N)

and a variance which is constant (independent of the signal x and also suprisingly

independent of the number of measurements N) as long as Φx � β1 where β > 0.125.

This result is extended to the case of Poisson-Gaussian noise. Using these results, we

then state and prove two theorems for upper error bounds for the reconstruction of a

signal from Poisson corrupted CS measurements in a realistic system as per Eqn. 7. For

the case of Poisson-Gaussian CS, we present and prove two more theorems. An extensive

discussion on the theorem statements is presented. The proofs of the theorems on error

bounds follow the broad techniques from [1].

3.1. Theorem for Properties of the Residual Magnitude

The theorem we present in this section was inspired by our simulations with the

quantity R(y,Φx) defined above. We simulated Poisson-corrupted CS measurements
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y ∼ Poisson(Φx) for sensing matrix Φ ∈ RN×m as per Eqn. 7 and for a non-negative

signal x of m = 1000 dimensions. Each element of x was generated independently from

Unif(0, 1), followed by rescaling to ensure that the signal intensity I , ‖x‖1 was 1000

(i.e. we divided x by ‖x‖1 and multiplied the result by I = 1000). The chosen values

of N were from 20 to 6000. For each N , we executed 2000 trials keeping Φ,x fixed.

We empirically observed that E[R(y,Φx)] was O(
√
N), i.e. independent of I. We also

observed that Var[R(y,Φx)] was upper bounded by a small constant value around 0.14

independent of both I and N . We repeated this experiment for a fixed N = 500, a fixed

x/‖x‖1, but varying I from 102 to 109 in powers of 10 (i.e. each time we divided the

signal x by ‖x‖1 and multiplied the result by I). Again, we observed the same properties

of E[R(y,Φx)] and Var[R(y,Φx)]. Moreover, we observed that the empirical CDF of

the values of R(y,Φx) was similar to a Gaussian. These results are shown in Fig. 1.

These results were independent of the specific instances of x,y,Φ.

Theorem 1: Let y ∈ ZN+ be a vector of independent CS measurements such that

yi ∼ Poisson[(Φx)i] where Φ ∈ RN×m is a non-negative flux-preserving matrix as per

Eqn. 7 and x ∈ Rm is a non-negative signal. Define γi , (Φx)i. Then we have:

(i) E[R(y,Φx)] ≤
√
N/2

(ii) Define v , Var[R(y,Φx)]. Then if ∀i, γi > β , 1/2−c and N ≥ 3/8

( β
4(β+c)

− β
8(β+c)2

)2
,

we have

(a) v ≤
∑N

i=1
γi(1+3γi)
4(γi+c)2∑N

i=1
γi

4(γi+c)
− γi

8(γi+c)2

≤ v̄ ,
3/4

( β
4(β+c)

− β
8(β+c)2

)

(b) P
(
R(y,Φx) ≤

√
N( 1√

2
+
√
v̄)
)
≥ 1− 1/N .

(iii) Specifically, if ∀i, γi ≥ 1 and N ≥ 29, then the results in (ii) become:

(a) v ≤ 3N/4
N(2c+1)/(8(1+c)2)

/ 6.48

(b) P
(
R(y,Φx) ≤

√
N( 1√

2
+ 2.545)

)
≥ 1− 1/N . ♦

All statements of this theorem are proved in Section 7.1. We make a few comments

below:

(i) E[R(y,Φx)] has a signal-independent upper bound.

(ii) The upper bound v̄ on the variance is signal independent (also see statement 3(a))

and independent of N . This property is not shared by the PNLL. In Lemma 2

of [28], it is shown that an approximate form of the PNLL (APNLL) expressible

in our context as APNLL(y,Φx) ,
∑N

i=1 yi log(yi/[Φx]i) + [Φx]i − yi obeys the

property that E[APNLL(y,Φx)] ≈ N/2. This is because the expected value

of each term in the summation is approximately 0.5. However, the variance of

APNLL(y,Φx) cannot be bounded by a constant independent of N , unlike the

case with R(y,Φx). This can be seen in the last four sub-figures of Fig. 1. Hence

in our framework, R(y,Φx) enjoys stronger theoretical properties compared to

APNLL(y,Φx). Later in Sec. 4 and 5.3, we develop a similar principle for choosing
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Figure 1: In the left to right, top to bottom order. First two sub-figures: Plot of mean

and variance of the values of R(y,Φx) versus N for a fixed I = 103 for a signal of

dimension m = 1000. Third and fourth sub-figures: Plot of mean and variance of the

values of R(y,Φx) versus log(I) for a fixed N = 500 for a signal of dimension

m = 1000. Fifth sub-figure: Empirical CDF of R(y,Φx) (red curve) for

N = 20, I = 103,m = 1000 compared to a Gaussian CDF (blue curve) with mean and

variance equal to that of the values of R(y,Φx). The curves overlap significantly as

the empirical CDFs are very close. Sixth and seventh sub-figures: Same as first two

sub-figures but with a signal of I = 0.1 and m = 1000. Eight and ninth: Mean and

variance of APNLL(y,Φx) w.r.t. N for I = 103,m = 103. Tenth and eleventh: Mean

and variance of APNLL(y,Φx) w.r.t. I for N = 500,m = 103. Scripts for

reproducing these results are available at [27].

regularization parameters for penalized estimators in Poisson as well as Poisson-

Gaussian inverse problems.

(iii) We would like to emphasize that the difference in the variance of R(y,Φx) and
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APNLL(y,Φx) is not just an artifact due to scaling. That is, even though

APNLL(y,Φx)/
√
N has a constant variance, its usage as a data fidelity term

(via an estimator of the form min‖θ‖1 such that APNLL(y,ΦΨθ)/
√
N ≤ ε) will

lead to unnecessarily loose performance bounds. This is because when deriving the

performance bounds for compressed sensing (Theorem 2), the actual data fidelity

term (related to the RIP) is the APNLL and not APNLL/
√
N . Hence in step

(ii)-a of the Proof of Theorem 2, the term ε on the RHS of Eqn. 36 will get scaled

by
√
N , and so a mere scaling will not help§.

(iv) In practice, we have observed a smaller value of the upper bound on the variance

than what is predicted in statement 2(a) or 3(a). The value is close to 0.14 even

when the condition that ∀i, γi > 1/2 − c is disobeyed. The assumption that

γi > 1/2 − c, is not restrictive in most signal or image processing applications,

except those that work with extremely low intensity levels. But in such cases

the performance of Poisson CS is itself very poor due to the very low SNR [29].

However even for very low intensity signals for which the condition γi > 1/2− c is

disobeyed for every measurement, we have empirically observed that this predicted

upper bound on the variance is not violated. This can be observed from the last

sub-figure of Fig. 1. In other words, we believe the imposed condition on γi is only

sufficient for the variance bound, and not a necessary condition.

(v) The last statement of this theorem can be further tightened to yield a probability

of 1− 2e−N/2 by using the central limit theorem (CLT). Of course, the latter is an

asymptotic result and hence for a finite value of N , it is an approximation. However,

the approximation is empirically observed to be tight even for small N ∼ 20 as

confirmed by a Kolmogorov-Smirnov test even at 1% significance (see [27]). Further

details can be found at the end of the proof in Section 7.1.

(vi) The bounds in this theorem do not assume (or require) that
√
y + c−

√
Φx+ c is

Gaussian distributed. Indeed such an assumption would not be rigorous enough.

This is because as shown in [26], the Gaussianity is obeyed only asymptotically

when the mean of y tends to infinity.

3.2. Key Theorem for Poisson CS

Theorem 2 : Consider a non-negative signal x with total intensity I , ‖x‖1 expressed

using the orthornormal basis Ψ in the form x = Ψθ. Consider Poisson corrupted CS

measurements of the form y ∼ Poisson(Φx) where Φ is constructed as per Eqn. 7.

Define A , ΦΨ so that Φx = Aθ. Let θ? be the result of the following optimization

problem:

P1 : min‖θ‖1 such that ‖
√
y + c−

√
Aθ + c‖2 ≤ ε, (10)

‖Ψθ‖1 = I,Ψθ � 0,

§ Another reason why we do not use APNLL is that it does not obey the triangle inequality and

cannot be used for Poisson-Gaussian noise.
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where ε ,
√
N(
√
v̄ + 1/

√
2) with v̄ ,

3/4

( β
4(β+c)

− β
8(β+c)2

)
as defined in Theorem 1 is a

statistical upper bound (that holds with a high probability 1− 1/N) on the magnitude

of the noise in the measurements after application of the AT. Let θs denote a vector

containing the s largest magnitude elements of θ with the rest being 0. If Φ̃ obeys RIP

of order 2s with RIC δ2s <
√

2− 1, if the condition Φx � β1 holds where β > 1/2− c

and if N ≥ 3/8

( β
4(β+c)

− β
8(β+c)2

)2
, then we have for any κ > 0:

P

(
‖θ − θ?‖2

I
≤ C1

√
Nτ

√
1

I
+
cN

I2
+
C2s

− 1
2‖θ − θs‖1
I

)
≥ 1−κ2/N where τ , (

√
v̄/κ+1/

√
2).♦

(11)

This theorem is proved in Section 7.2. Comments on this theorem follow.

Remarks on the Theorem and its Proof:

(i) If β > 1 and N ≥ 29, then we have v ≤ 6.48 as per statement 3 of Theorem 1.

Further note that the condition Φx � β1 is sufficient, but not necessary (as per

our simulations).

(ii) The tighest upper bounds we have are for the case when c = 0, i.e. the original

square-root VST developed by Bartlett [30], since the term
√
cN/I2 would then

disappear. We still chose c = 3/8 in the experiments as it gives better variance

stabilization [17] and yields a cost function with a Lipschitz continuous derivative.

(iii) Our proof architecture is inspired from [1], but the points of departure are steps

2(a), 2(b), 2(c) as well as step 4(a) which gives a relationship between ‖Ah‖2 and

‖Bh‖2. These steps exploit the non-negativity and flux-preserving property of Φ,

and the constraint ‖Ψθ‖1 = I. See Section 7.2.

(iv) Given that we are dealing with a Poisson inverse problem, it is more intuitive

to analyze the relative reconstruction error (RRE) rather than the (absolute)

reconstruction error. This is because as the mean of the Poisson distribution

increases, so does its variance, causing an increase in the mean squared error but a

decrease in the relative mean squared error.

(v) Notice that our derived RRE bound is inversely proportional to the signal intensity

I, which is typical in Poisson problems.

(vi) For a fixed I, if N is increased, the incident photon flux I is distributed across

the N measurements, causing a decrease in SNR per measurement and possibly

degrading performance. In fact, this affects the bounds in the c 6= 0 case, giving a

scaling of O(N). This phenomenon differs from CS under Gaussian noise, and has

earlier been noted in [19]. For c = 0, however, the flux-preserving nature of the

matrix does not affect the bounds. Rather the
√
N term is due to the fact that the

variance of the noise after VST is a constant independent of N although there are N

measurements. This is similar to Equation (17) of [31], where pure Gaussian noise
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is considered. We conjecture that this behaviour is common to estimators such

as (P1) with a constrained formulation, and is also exhibited by the quadratically

constrained basis pursuit estimator from [31], [1]. Our method meticulously adapts

the bounds from [1] for Poisson noise. Indeed, if the error bounds in [1] are applied

for the case of N (0, σ2) noise, they can be proved to scale as O(σ
√
N), i.e. they

increase w.r.t. N . Similar arguments have been put forth in Sec. 5.2 of [32] while

comparing the quadratically constrained formulation with other estimators. There

is currently no consensus in the literature as to whether this O(
√
N) behaviour is a

fundamental limit on the error bounds of such constrained estimators, or whether

it is a consequence of the specific proof technique. Nevertheless, it should be borne

in mind that like most literature in CS, these are worst-case bounds and consider

worst-case combinations of signal, sensing matrix and noise values. In practice, the

results are much better in comparison to the predicted bounds. Moreover, like most

of the literature in CS, the decrease in RIC δ2s (and hence the decrease of C1 and

C2) w.r.t. N has been ignored. A precise relationship for the variation of δ2s w.r.t.

N has not been derived in the literature and is an open problem, to the best of our

knowledge.

(vii) As s increases, the restricted isometry constant (RIC) δ2s of the sensing matrix will

increase. Hence the factors C1 and C2, which are monotonically increasing functions

of δ2s for the domain [0, 1], are also monotonically increasing in s. A precise

mathematical formula for δ2s (and hence for C1, C2) w.r.t. s is not straightforward

and is an open problem in compressed sensing, to the best of our knowledge. Our

bound is a function of C1, C2, N and s. Moreover the number of measurements N

must satisfy N ≥ O(s logm) for RIP to hold. So, as s increases, the minimum

number of measurements N required for the theoretical guarantees to hold, also

increases. Therefore, it does not appear to be a straightforward task to theoretically

establish the precise formula for our bound w.r.t. s. Furthermore, we would like

to underscore that we are building upon the fundamental work in [1]. This issue

regarding the variation of δ2s, C1, C2 with respect to s is not exclusive to our work

alone, and is also observed in [1]. As part of our future work, we would like to further

understand this behavior and attempt to theoretically establish the same. However,

we have experimentally observed that the reconstruction error does increase w.r.t.

s.

(viii) Our experimental results in the next section show that the constraint ‖x‖1 = I is

not necessary, although we required it only for our theoretical analysis.

(ix) The RRE bounds are also applicable to the Freeman-Tukey transform [33] given as
√
y +
√
y + 1 with minor changes to the constant C1.

(x) As has been mentioned earlier, the VST approximation is not so accurate for

measurements with low mean, however at such low intensity levels Poisson CS

is considered to be undesirable in itself [29].

(xi) It is tempting to treat
√
y + c −

√
Φx+ c as a Gaussian random variable, and



Variance Stabilization Based Compressive Inversion 12

hence R(y,Φx) as a chi random variable. This would ignore the fact that the

Gaussianity of the former has been established only asymptotically if all the values

in Φx tend to ∞ [26]. However we have in practice seen that even for moderate

values of Φx, its distribution can be approximated very closely by a Gaussian as

affirmed by Kolmogorov Smirnov hypothesis tests [27], even though we are unable

to prove this theoretically. In fact, we have found no literature that establishes

even the sub-Gaussianity or sub-exponentiality of R(y,Φx). Nonetheless, treating

this approximation as exact allows us to improve the probability in the second part

of the theorem from 1− 1/N (for κ = 1) to 1− 2e−Nτ for an appropriately defined

constant τ . If we treat ε as equal to the magnitude of a vector with elements drawn

from N (0, 1
4
), then ε2 follows a chi distribution with N degrees of freedom. Hence,

we can use tail bounds on the chi-square random variable [34] (Lemma 1) to arrive

at the following bound:

P
(‖θ − θ?‖2

I
≤ C1

√
Nτ̃

√
1

I
+
cN

I2
+
C2s

− 1
2‖θ − θs‖1
I

)
≥ 1− exp(−Nτ)

for some τ > 0 where τ̃ , (1 + 2τ +
√

2τ).

(xii) Advantage of our estimator P1 over G1 : The major advantage of P1 over G1 is that

G1, the tail bound on ‖y − Φx‖2 is signal-dependent because Var(yi) = E(yi) =

(Φx)i. This unlike in our case where we have signal-independent tail bounds. One

could however consider the normalized term NL2(y,Φx) , ‖(y − Φx)./
√

Φx‖2
where ‘./’ stands for pointwise division. We have observed in our experiments

that tail-bounds based on NL2(y,Φx) are signal-independent. In fact, it can be

easily shown that ∀i, E[(yi − (Φx)i)
2/(Φx)i] = 1 and Var[(yi − (Φx)i)

2/(Φx)i] =

2 + 1/(Φx)i. However, from the proof of Theorem 1 in Section 7, we see that

∀i, E(
√
yi + c −

√
(Φx)i + c) ≤ 0.5,Var(

√
yi + c −

√
(Φx)i + c) ≤ 0.75. Hence

we believe that the error bounds with P1 will be tighter than those with such a

normalized `2-constrained estimator.

3.3. Theorem for Residual Magnitude in the Poisson-Gaussian case

Here, we state a theorem for the case of Poisson-Gaussian noise in the compressed

measurements (with a known standard deviation for the Gaussian part of the noise),

equivalent to Theorem 1 for Poisson noise. The proof can be found in Section

7.3. This theorem is inspired by experimentally observed behaviour of Rd(y,Φx) ,
‖
√
y + d −

√
Φx+ d‖2 where d , c + σ2, which was quite similar to the Poisson case.

That, is the mean of Rd(y,Φx) appeared to be O(
√
N) and the variance appeared to

be a constant independent of N, I, σ. This can be seen in Fig. 2.

Theorem 3 : Let y be a vector of N independent CS measurements such that

yi ∼ Poisson[(Φx)i] + ηi where Φ ∈ RN×m is a non-negative flux-preserving matrix as

per Eqn. 7, x ∈ Rm is a non-negative signal and ηi ∼ N (0, σ2). Define γi , (Φx)i,

d , c+ σ2 and Rd(y,Φx) , ‖
√
y + d−

√
Φx+ d‖2. Then we have:
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Figure 2: In the left to right, top to bottom order. First two sub-figures: Plot of mean

and variance of the values of Rd(y,Φx) versus N for a fixed I = 103, σ = 200 for a

signal of dimension m = 1000. (For the left subfigure in the first row, the blue line

represents the plot of
√
N . The green line represents

√
N/2 which coincides with the

red plot for Rd(y,Φx).) Third and fourth sub-figures: Plot of mean and variance of

the values of Rd(y,Φx) versus log10(I) for a fixed N = 500, σ = 200 for a signal of

dimension m = 1000. Fifth and sixth sub-figures: Plot of mean and variance of the

values of Rd(y,Φx) versus σ for a fixed I = 103, N = 50 for a signal of dimension

m = 1000. Last sub-figure: Empirical CDF of Rd(y,Φx) (red curve) for

N = 20, I = 103,m = 1000 compared to a Gaussian CDF (blue curve) with mean and

variance equal to that of the values of Rd(y,Φx). The curves overlap significantly as

the empirical CDFs are very close. Scripts for reproducing these results are available

at [27].

(i) E[Rd(y,Φx)] ≤
√
N/2

(ii) Define v , Var[Rd(y,Φx)] and w , 8(1+d)2

2(d+1)(σ2+1)−1 . Then if ∀i, γi > βd , 0.5 − d

and N ≥ 3/8(
βd+σ2

4(βd+d)
− βd

8(βd+d)2

)2 , we have

(a) v ≤
∑N

i=1
γi+3(γi+σ

2)2

4(γi+d)2∑N
i=1

γi+σ2

4(γi+d)
− γi

8(γi+d)2

≤ v̄d ,
3/4

βd+σ2

4(βd+d)
− βd

8(βd+d)2

.

(b) P
(
Rd(y,Φx) ≤

√
N( 1√

2
+
√
v̄d)
)
≥ 1− 1/N .
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(iii) Specifically, if ∀i, γi ≥ 1 and N > 0.375w2, then statement (ii) becomes:

(a) v ≤ 0.75w.

(b) P
(
Rd(y,Φx) ≤

√
N( 1√

2
+
√

0.75w)
)
≥ 1− 1/N . ♦

We make a few comments below:

(i) Yet again, E[Rd(y,Φx)] has an upper bound which is signal-independent. This

property is not shared by the negative log-likelihood of the Poisson-Gaussian

distribution. Also when Φx � βd1, we see that Var[Rd(y,Φx)] is upper bounded

by a constant that is effectively independent of σ (since the factors involving σ

nearly cancel out from the numerator and denominator of w or v̄d), N as well as

the signal values. This is further confirmed by Fig. 2.

(ii) Setting σ = 0 produces the statement of Theorem 1.

(iii) The bounds in this theorem can be easily modified for the case of uniform

quantization noise from Unif[−δ,+δ], or Gaussian noise coupled with uniform

quantization noise.

(iv) Similar to the case of Poisson noise in Theorem 1, the lower bound on γi is not

strictly required in practice and is only a sufficient condition for the variance bound.

3.4. Key Theorem for Poisson-Gaussian CS

For the Poisson-Gaussian case, a theorem similar to Theorem 2 follows.

Theorem 4 : Consider a non-negative signal x with total intensity I , ‖x‖1 expressed

using the orthornormal basis Ψ in the form x = Ψθ. Consider Poisson-Gaussian

corrupted CS measurements of the form y ∼ Poisson(Φx) + η where η ∼ N (0, σ2)

is signal-independent noise, and Φ is constructed as per Eqn. 7. Let θ? be the result of

the following optimization problem:

PG2 : min‖θ‖1 such that ‖
√
y + d−

√
Aθ + d‖2 ≤ ε, (12)

‖Ψθ‖1 = I,Ψθ � 0,

where d , c+σ2, A , ΦΨ so that Φx = Aθ and ε ,
√
N(
√
v̄d+ 1√

2
) is an upper bound

on the magnitude of the noise in the measurements after application of the GAT, with

v̄d as defined in Theorem 3. Let θs denote a vector containing the s largest magnitude

elements of θ with the rest being 0. If Φ̃ obeys RIP of order 2s with RIC δ2s <
√

2− 1,

if Φx � βd1 and if N ≥ 3/8(
βd+σ2

4(βd+d)
− βd

8(βd+d)2

)2 , where βd > 1/2 − d, then we have for

any κ > 0:

P

(
‖θ − θ?‖2

I
≤ C1

√
Nτd

√
1

I
+
dN

I2
+
C2s

− 1
2‖θ − θs‖1
I

)
≥ 1− κ2/N where τd , (

√
v̄d/κ+

1√
2

).

We note several comments on this theorem here below.

Remarks on Theorem and its Proof:
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(i) If βd > 1 and N ≥ 0.375w2, then we have v ≤ 0.75w as per statement 3 of Theorem

3. Further note that the condition Φx � βd1 is sufficient, but not necessary (as

per our simulations).

(ii) The proof of this theorem follows Theorem 2 very closely with a replacement of c

by d. Hence we omit its proof.

(iii) Theorem 2 and Theorem 4 show that using the VST, a unified treatment of Poisson

CS as well as Poisson-Gaussian CS is possible. Methods based on purely the PNLL

do not have this feature. Theorem 4 can be easily extended to include uniform

quantization noise (with or without Gaussian noise).

(iv) For the same probability, the upper bounds increase with σ due to the d term in

the square root. Also setting σ = 0 gives us Theorem 2.

(v) Similar to the case of Theorem 2, the probability with which the bound holds can

be approximated to 1− e−O(N) using the CLT for large N .

3.5. Properties of R(y,Φx) and Rd(y,Φx)

First, we note R2(y,Φx) is convex in x, which can be seen by a simple algebraic

expansion and due to the concavity of
√
x. Also, it is convex in θ due to the affine

mapping property of convex functions (see Section 3.2.2. of [35]). Second, for finite

y and c 6= 0, R2(y,Φx) is Lipschitz continuous as it has a bounded first derivative.

Both these properties are also true for R2
d(y,Φx). These properties allow for efficient

optimization and have been pointed out earlier in [14].

4. VSTs for Regularization Parameter Selection in Poisson Inverse

Problems

In this section, we explore a special property of our data-fidelity term Rd(y,Φx) for

Poisson-Gaussian (and thereby also of the term R(y,Φx) for Poisson noise). Consider

penalized estimators (similar to P5 or PG5 for CS) which seek to minimize

J(θ) = zf (y,Aθ) + ρzr(θ), (13)

where zf is a data-fidelity term and zr is a regularizer term. Such estimators are very

popular in the literature on Poisson-Gaussian (or Poisson) inverse problems such as de-

blurring. However in most of the literature, a principled way to choose the regularization

parameter ρ > 0 has not been specified. We note while choice of ρ is well-principled in

case of Gaussian problems, the case with Poisson-Gaussian noise is much more involved

due to noise heteroscedasticity. In the following, let θρ be the minimizer of J(θ) for a

chosen value of the regularization parameter ρ. We now refer to two lemmas obtained

from Lemma 3.4 of [36], which enable efficient and principled choice of ρ. We have

included a proof of both lemmas in the supplemental material.

Lemma 3: J(θρ) is a strictly increasing function of ρ. ♦
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Lemma 4: zf (y,Aθρ) is a non-decreasing function of ρ. ♦

Now, consider the case when zf (y,Aθ) = R2
d(y,Aθ) as considered in Theorem 3.

From Theorem 3, we see that E[Rd(y,Aθ)] is upper-bounded by
√
N/2, and that it has

a constant variance. In practical simulations, we have seen that E[Rd(y,Aθ)] ≈
√
N/2,

as seen in Fig. 2 (top-left subfigure where the plots coincide). This behaviour

can be explained as follows: E[Rd(y,Aθ)] =
√∑N

i=1E[(
√
yi + d−

√
[Aθ]i + d)2] ≈√∑N

i=1 Var[
√
yi + d] ≈

√
N/2. The first approximation is because E(

√
yi + d) ≈√

[Aθ]i + d as per [17] (eqn. 2.10) and [12] (Appendix A.1). Hence E[(
√
yi + d −√

[Aθ]i + d)2] is only an approximation to Var[
√
yi + d]. The second approximation

is because the variance of each such term is shown to be roughly 1/4 in [17] (eqn.

2.11) and [12] (Appendix A.1). We emphasize that E[Rd(y,Aθ)] ≈
√
N/2 is only

an approximation and this derivation is not subjected to the rigorous treatment as in

Theorem 3 (or Theorem 1). Note that the upper bounds of
√
N/2 predicted by these

theorems are still valid. We only use this approximation as a guide to choose ρ by means

of a statistical selection principle. As per this, we recommend a choice of ρ such that

√
N/2− δρ ≤ Rd(y,Aθρ) ≤

√
N/2 + δρ. (14)

Here δρ > 0 is a tolerance parameter which we set to 3
√

Var[Rd(y,Aθρ)]. A non-zero

δρ is required due to noise stochasticity. In fact, exact equality of Rd(y,Aθρ) to a

particular value cannot be guaranteed even with a large number of measurements. Note

that given a value of ρ, the minimum θρ in Eqn. 13 is unique if zf is strictly convex.

Computation Time: A linear search for ρ in an interval [ρl, ρh] is time consuming,

as the optimization has to be carried out for O(ρh−ρl) values of ρ. However, due to the

monotonicity of zf w.r.t. ρ, we can choose ρ more efficiently than just a linear search.

We can instead use a recursive procedure similar to the bisection method in root-finding

to determine a ρ which satisfies the condition in Eqn. 14. This can reduce the number

of optimizations to O(log((ρh− ρl)/δρ)) - see Sec. 5.5.1 of [37]. The secant method can

also be used for faster convergence, but it requires second order differentiability of zf
unlike the bisection method which requires only continuity.

Existence of Solution: In practice, we simply chose a ρ such that
√
N/2− δρ ≤

Rd(y,Aθρ) ≤
√
N/2. As Rd(y,Aθρ) is a non-increasing function, such a rule for

choosing ρ produces the smallest value of ρ that satisfies the constraint. This is desirable

and optimal as J(θρ) is an increasing function of ρ from Lemma 3.

Relation to Prior Work on Parameter Selection: There exists literature for

statistical choice of ρ in Gaussian problems, for example [36]. However in a large body

of the literature on Poisson-Gaussian inverse problems [7, 14], the parameter ρ is chosen

either by cross-validation or else omnisciently (i.e. choosing the value of ρ that yielded

the result closest to the ground truth). Here, we have instead provided a statistical

principle for the choice of ρ in Poisson-Gaussian inverse problems. The earlier work

in [28, 38] provides a selection principle for Poisson problems via the term APNLL as
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defined in the comments after Theorem 1 in Sec. 3.1. However it applies only for purely

Poisson and not for Poisson-Gaussian problems. Moreover the variance of that term is

proportional to N unlike our case where it is a constant.

Experimental results for the choice of ρ are presented in Sec. 5.3.

5. Results

In this section, we show signal reconstruction results from CS measurements with

Poisson and Poisson-Gaussian noise. Box-plots for the results of all these experiments

are presented in the supplemental material accompanying this paper. Our scripts for

reproducing the results in this section are available at [27].

5.1. Experiments on Poisson CS

Signal and Measurement Generation: We ran experiments for the reconstruction of

Q = 100 non-negative signals in 1D with 100 elements each, from their Poisson

corrupted CS measurements. The sensing matrix Φ followed Eqn. 7. The signals

were synthetically constructed using sparse linear combinations of DCT basis vectors.

The non-zero indices of the coefficient vector θ for the Q different signals were chosen

randomly (i.e. allowing different supports for each signal), and the values of those entries

were drawn randomly from Unif[0, 1]. The signals x = Ψθ thus generated were forced

to be non-negative by adjusting the DC component, followed by a scaling to ensure that

they had a desired value of I (see description of experiments later in this section).

Methods Compared: For the Poisson noise case, we ran our simulations on the following

problem which is a variant of P1 without the constraint ‖Ψθ‖1 = I as its exclusion had

a negligible impact on the results (see later in this section):

P3 : min‖θ‖1 such that ‖
√
y + c−

√
Aθ + c‖2 ≤ ε,Ψθ � 0.

Here we set c = 3/8, and the bound ε was set to 2
√
N based on the tail bound from

Theorem 1 (note that 2
√
N =

√
N/
√

2 +
√
N(
√

6.48/2.5), and that this bound holds

with probability 1 − (2.5)2/N , i.e. κ = 2.5). Note that the same value of ε was

used in all experiments, and that this is a very conservative upper bound. Problem

P3, being convex, was implemented using the well-known CVX package [39] with the

SDPT3 solver. We compared the performance of P3 to the following problem based

on the negative log-likelihood of the Poisson distribution (again without the constraint

‖Ψθ‖1 = I for the same reason as for P3):

P4 : min ρ‖θ‖1 +
N∑
i=1

((Aθ)i − yi log(Aθ)i),Ψθ � 0.

For P4, the regularization parameter ρ was chosen omnisciently from the set S ,
{10−10, 10−9, ..., 0.1, 1, 10}, i.e. choosing the particular value of ρ ∈ S that yielded the

least squared difference between the true θ (assuming it were known) and its estimate.
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P4 was implemented using the well-known SPIRAL-TAP algorithm [10] with a penalty

for the `1 norm of DCT coefficients, for a maximum of 500 iterations (in many cases,

the algorithm converged and exited in just 300-400 iterations). For the default choice

of a maximum of 100 iterations set in the SPIRAL-TAP code, the performance was

significantly worse. We used default choices for all other parameters except ρ. Recent

work in [40] analyzed the following estimator based on the negative likelihood, instead

of P4:

P6 : min‖θ‖1≤Iθ,Ψθ�0

N∑
i=1

(Aθ)i − yi log(Aθ)i, (15)

where Iθ is an upper bound on ‖θ‖1. This method, i.e. P6, requires prior knowledge

of Iθ for the analysis as well as the implementation even for matrices that obey RIP.

P6 was implemented using CVX with the value of ‖θ‖1 supplied to it omnisciently.

Recently, LASSO-based techniques for Poisson compressed sensing have emerged, as in

[41]. Hence we also compared with a LASSO estimator of the following form:

LASSO: min ρ‖θ‖1 + ‖Aθ − y‖2,Ψθ � 0.

We implemented LASSO using CVX, and we set the ρ parameter either omnisciently

(referred to henceforth as just LASSO), or we set it to 2
√

8 logm/I as per Theorem

2 of [41] (referred to henceforth as LASSO-fixed). Additionally, we also compared the

results to a version of P3 which we had used in [18], given by the following:

P5 : min ρ‖θ‖1 + ‖
√
y + c−

√
Aθ + c‖22,Ψθ � 0,

where ρ was chosen omnisciently from S. P5, being convex, was again implemented

using CVX and SDPT3. An estimator similar to P5 has been used earlier in [14] and

[42], however only for Poisson denoising and deblurring (without performance bounds),

and not for Poisson CS.

Study of variation of signal/measurement parameters: We show comparisons

between P3, P4 with SPIRAL-TAP, P6, LASSO, and P5 for three types of experiments

for the following RRMSE (relative root mean-squared error) metric: RRMSE =

‖x − x?‖2/‖x‖2, where x and x? denote the true/original and reconstructed signal

respectively. In the first experiment, we studied the effect of change in signal intensity I

on the reconstruction results. For this, we generated Poisson corrupted measurements

of the Q different signals in R100, each with a fixed number of measurements N = 50.

The sparsity of each signal in the DCT basis was fixed to s = 10 (but with different

supports), and the signal intensity was varied from I = 10 to I = 108 in powers of

10. For each value of I, the median RRMSE value over the Q signals was computed.

This is shown in the top sub-figure in Fig. 3. The performance of all methods improves

with increase in I as expected. In the second experiment, for the Q different signals, the

number of Poisson corrupted CS measurements was fixed to N = 50, the signal intensity

was fixed to I = 108, and the signal sparsity was varied from s = 5 to s = 50 in steps

of 5. For each value of s, median RRMSE values were recorded over the Q signals,
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Figure 3: Median RRMSE comparisons between P3 using CVX with ε = 2
√
N

(termed ‘Constrained Anscombe’), P4 using SPIRAL-TAP (termed ‘NLL

SPIRAL-TAP) with omniscient ρ, P4 with cross-validation for ρ (termed ‘NLL-CV’),

P5 using CVX (termed ‘Unconstrained Anscombe’), LASSO using omniscient ρ,

LASSO using ρ = O(1/I) (termed ‘LASSO-fixed’ - see main text), and P6 - a

norm-constrained version of P4 - with omniscient choice of ‖θ‖1. Top row: fixed

N = 50 and s = 10 but varying I, middle row: fixed I = 108 and s = 10 but varying

N , bottom row: fixed I = 108 and N = 50 but varying s. See supplemental material

for box-plots and [27] for code. Note that in many cases, the curve for P5 overlaps

with that of other methods.
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as shown in the middle sub-figure in Fig. 3. The performance of all methods worsens

with increase in s as expected. In the third experiment, for the Q different signals, the

sparsity of the signals was fixed to s = 10, and their intensity was fixed to I = 108. The

number of measurements was varied from N = 20 to N = 100 in steps of 10. For each

value of N , median RRMSE values were recorded over the Q signals, as shown in the

bottom sub-figure in Fig. 3. We do see an improvement in the reconstruction results

with increase in N , but this is not guaranteed in the worst case similar to [19].

Observations and Comments: Observing Fig. 3, we see that the reconstruction

results with P5, LASSO and P4 are comparable in most cases. P5 and P4 showed better

results than P3 due to the omnisicent selection of ρ, as against the fixed, statistically

motivated ε in P3. The performance of P3 would improve and become equivalent to

that of P5 with omniscient selection of ε. However, note that omniscient choices are

difficult to implement in practice, and have significant computational costs. Improper

choice of ρ led to arbitrary increase in reconstruction error. We have found that the

optimal ρ depended on the unknown signal (see also [43] and Table 1). While model-

selection approaches for Poisson problems exist [44], no performance bounds with such

methods have been proven. For the sake of comparison, we collected results on P4 via

cross-validation. For this, we omnisciently chose ρ which yielded the best RRMSE for

I = 104 and used the same ρ for all other intensity levels in the first experiment. For the

second experiment, ρ was chosen omnisciently for s = 30 and used for all other values of

s. For the third experiment, ρ was chosen omnisciently for N = 20 and used for all other

N . The results for this variant of P4 (termed ‘P4 with cross-validation’) are shown in

Fig. 3. Similarly, we see that the results of LASSO-fixed (defined earlier in this section)

suffer when compared to LASSO with omniscient ρ. The estimator P6 in Eqn. 15 from

[40] requires prior knowledge of I for the analysis as well as the implementation even

for matrices that obey RIP. In our case, as also in [29, 19, 41], the constraint ‖x‖1 = I

is required in the theoretical analysis for the specific type of matrices from Eqn. 7.

The constraint would not be required for RIP-obeying matrices, and was not deemed

necessary even in the numerical experiments for matrices from Eqn. 7. For example,

RRMSE of a typical signal of 100 dimensions with s = 10, I = 108 with N = 50 CS

measurements using P3 was greater than that using P1 by only O(10−4). Also, we

observed that P5 with omniscient choice of ρ outperformed P6 with omniscient choice

of I.

Execution Times: We also saw that P4 for a single fixed ρ (that is, not counting

execution times for different ρ ∈ S) was 3-4 times more computationally expensive than

P3 with a fixed ε. On a 2GHz CPU with 8 GB RAM, typical execution times were 58

seconds and 18.6 seconds for P4 and P3 respectively, for N = 50,m = 100, s = 10.

Image Reconstruction: Lastly, we ran an experiment to simulate image-patch and

image reconstruction from Poisson-corrupted CS measurements, for a camera following

the architecture of [45],[46]. The architecture of these cameras is similar to the Rice SPC

[6], but the measurements are acquired patch-wise. That is, for each patch xi ∈ Rm
+

extracted from an image, the measurement vector is given by yi ∼ Poisson(Φixi) where
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Figure 4: First row left to right: Image reconstruction results for non-overlapping

8× 8 patches from 32 CS measurements per patch, using P3 for I = 106 (left, RRMSE

= 0.743), I = 108 (RRMSE = 0.16), I = 1010 (right, RRMSE = 0.068). Fourth, fifth

and sixth: Same as ealrier two but with overlapping patches and averaging in sliding

window fashion: for I = 106 (RRMSE = 0.7408), I = 108 (RRMSE = 0.148) and

I = 1010 (second row leftmost, RRMSE = 0.054). Second row (right): original image

for reference.

yi ∈ ZN+ ,Φi ∈ RN×m
+ , N � m and i is a spatial location index. The model for each Φi

follows Eqn. 7. In our experiments, we set m = 64 (from 8 × 8 patches) and N = 32.

Each (non-overlapping) patch xi was independently reconstructed by solving P3 using

Ψ as the 2D-DCT basis and ε = 2
√
N , as per the tail bound on R(y,Φx). Since

there are inevitable patch-seam artifacts, we also ran these experiments for overlapping

patches followed by sliding-window averaging. Though in [45],[46], CS measurements

are not acquired on overlapping blocks, this simulates the use of a deblocking algorithm

to get rid of patch-seam artifacts. The reconstruction results for this experiment are

presented in Fig. 4 on the popular ‘house’ image (size 256 × 256) for values of total

image-intensity I ∈ {106, 108, 1010}. The results show clear improvement with increase

in I and are evidence that our method works for compressible signals as well, since

image patches are compressible (not sparse) in 2D-DCT bases.

5.2. Experiments on Poisson-Gaussian CS

The signal generation model for experiments on Poisson-Gaussian CS was the same as

that used for Poisson CS. Throughout, we assumed known values of σ. Experiments

were performed for the problem PG3 defined below, which is identical to PG2 except

that we did not impose the ‖x‖1 = I constraint as its exclusion had negligible impact

on the results:

PG3 : min‖θ‖1 s.t. ‖
√
y + d−

√
Aθ + d‖2 ≤ ε,Ψθ � 0. (16)

Here as defined before d , c + σ2, c = 3/8. For all experiments using PG3, the

bound ε was set to 2
√
N based on Theorem 3 (see also Fig. 2). Note that this is
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still a very conservative upper bound. We removed all measurements yi for which

yi + d < 0. This happened very rarely (see supplemental material), and is akin to the

so-called ‘saturation rejection’ for CS with saturation and quantization [47]. PG3 was

implemented using CVX and the SDPT3 solver. We compared the results for PG3 with

those produced by problem P4. P4 was implemented using SPIRAL-TAP for a maximum

of 500 iterations (ensuring convergence in each case) under default parameters except ρ

which was chosen omnisciently from S. For P4, all negative measurements were removed.

We also compared the results with problem PG5 defined below:

PG5 : min ρ‖θ‖1 + ‖
√
y + d−

√
Aθ + d‖22,Ψθ � 0.

PG5 was implemented using CVX-SDPT3, using an omniscient choice of ρ ∈ S and

with removal of measurements for which yi + d < 0. We did not compare with the

Poisson-Gaussian technique in [7] because it is a deconvolution algorithm with a total

variation prior, whereas we are dealing with CS and sparsity of transform coefficients.

We also observed that empirical results with AT (i.e. P3) were similar to those with

GAT (i.e. PG3) for small to moderate values of σ. For larger σ, GAT outperformed AT,

besides being statistically more principled. Moreover for AT, measurements for which

yi + c < 0 need to be removed. This occurs more often than yi + d < 0 since d , c+ σ2.

Study of variation of signal/measurement parameters: We ran three sets of

experiments here. In the first experiment, we fixed N = 50, s = 10, σ = 200 and

varied only I from 103 to 108 in multiples of 10. In the second experiment, we

fixed I = 108, σ = 200, s = 10 and varied only N from 10 to 100 in steps of

10. In the third experiment, we fixed I = 108, N = 50, s = 10 and varied σ in

{10, 50, 100, 250, 500, 1000, 2000, 104}. Comparative median RRMSE plots (across Q

signals) are presented in Fig. 5.

Observations and Comments: The performance of our methods improved with

increase in I and N , and worsened gradually with increase in σ (gradually because of

the term dN/I2 in the bounds for Theorem 4 which increases very slowly with σ for

large values of I, such as I = 108 as chosen in Fig. 5). The presented results establish

the usefulness of our proposed method for Poisson-Gaussian CS. We observed that P4

and PG5 with omnisicent ρ outperformed PG3 with fixed ε. The performance of PG3

would no doubt improve with omniscient choice of ε and would be quite similar to that

of PG5. Quite surprisingly, P4 with omniscient ρ performed very well, even though it

is not designed for Poisson-Gaussian noise. However we emphasize that no theoretical

performance bounds for P4 have been established for this noise model. Moreover, with

improperly chosen ρ, the performance of PG5 and P4 was worse than PG3, and even

for a single fixed ρ, P4 was computationally more expensive than PG3. In Fig. 5, we

also show results for P4 with cross-validation. In the first experiment, the value ρ was

omnisciently chosen for I = 104 and used for other intensities. In the second experiment,

the value ρ was chosen omnisciently for N = 30 and used for other values of N . For

the third experiment, we chose the best ρ omnisciently for σ = 20 and used it for other
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Figure 5: Median RRMSE comparisons between PG3 using CVX with ε = 2
√
N

(termed ‘Constrained GAT’), P4 using SPIRAL-TAP (termed ‘NLL SPIRAL-TAP’),

P4 with cross-validation for ρ, and PG5 using CVX (termed ‘Unconstrained GAT’).

Top row (left): fixed N = 50, σ = 200 and s = 10 but varying I, top row (right): fixed

I = 108, s = 10 and N = 50 but varying σ, bottom row: fixed I = 108, σ = 200 and

s = 10 but varying N . See supplemental material for box-plots and [27] for code.

values of σ. Surprisingly, the best ρ did not depend on σ for a wide range.

Image Reconstruction: Lastly, we ran an image-patch and image reconstruction

experiment similar to the one described for Poisson noise. We simulated N = 32

measurements of the form yi ∼ Poisson(Φixi) + ηi, for patch xi of m = 64 pixels. The

σ for ηi was 200. The reconstruction was done independently patch-wise by solving PG3

using Ψ as the 2D-DCT basis and ε = 2
√
N . Results are presented on the 256 × 256

house image, for image-intensity I ∈ {106, 108, 1010} in Fig. 6. Due to the high σ relative

to the measurement values, the reconstruction failed at I = 106 and is not reported here,

but improved for higher intensities. Compared to Fig. 4, the results in Fig. 6 show

higher RRMSE on non-overlapping blocks due to the presence of Gaussian noise. (The

errors in both cases reduce upon sliding window averaging.) These experiments are

evidence that our method works for compressible signals.



Variance Stabilization Based Compressive Inversion 24

Figure 6: First row from left to right: Image reconstruction results for non-overlapping

8× 8 patches from 32 Poisson-Gaussian CS measurements per patch with σ = 200,

using PG3 for I = 108 (left, RRMSE = 0.5) and I = 1010 (right, RRMSE = 0.07).

Third and fourth images: Same as earlier two, but with overlapping patches and

averaging in sliding window fashion: for I = 108 (left, RRMSE = 0.116), I = 1010

(right, RRMSE = 0.0326). Rightmost: original image for reference.

5.3. Experiments with Regularization Parameter Selection in Deblurring

We now report results on choice of ρ for image deblurring under Poisson-Gaussian noise

based on minimization of the following objective function:

J(x) = R2
d(y, h ∗ x) + ρTV(x) = ‖

√
y + 3/8 + σ2 −

√
h ∗ x+ 3/8 + σ2‖2 + ρTV(x),

(17)

where h is a known blur kernel, ‘*’ is the convolution operator, x is the underlying image

of size n1×n2, TV(x) ,
∑n1−1

i=0

∑n2−1
j=0

√
(x(i+ 1, j)− x(i, j))2 + (x(i, j + 1)− x(i, j))2

is the total variation of x, and the forward model for the noisy image y is y =

Poisson[h ∗ x] + η where each element of η is drawn iid from N (0, σ2) with known

σ. We chose the TV regularizer due to its popularity in the deblurring literature as

it tends to enhance image edges, though we could have chosen any other regularizer.

Anscombe-based deblurring methods have been earlier proposed in [14], but there ρ was

chosen based on cross-validation which has its limitations and is also expensive.

We performed experiments on two different images, for a 25 × 25 Gaussian blur

kernel with standard deviation 1.5 and Gaussian noise of variance 9. The average

intensity of the two images was 69 and 4.5 respectively. The optimization was

implemented by a primal-dual method based on the code released by the authors of

[7]. We ran the algorithm for different values of ρ and recorded the value which satisfied

the criterion in Eqn. 14. In Fig. 7, we plot the value of |Rd(y, h∗x)−√n1n2/2| (referred

to henceforth as the fidelity offset FO) against log10 ρ. We also plot the mean absolute

error (MAE) between x and the minimizer of J(x) for a given value of ρ (denoted xρ)

on the same graph. From the plots, we see that there is a good agreement between the

value of ρ as predicted by our selection principle and the one that yields least MAE.

For the first image, the least MAE was 0.74 for ρ = 0.1 and FO of 0.63. For an FO

of 0.02, the MAE was 0.84 (slightly higher) with ρ = 0.05. For the second image, the

least MAE was 0.46 for ρ = 0.15 and FO of 1.32. For an FO of 0.07, the MAE was 0.59

(slightly higher) with ρ = 0.06. From this, we empirically demonstrate the efficacy of

using this principle for parameter selection in deblurring problems.
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Comments:

(i) Though our principle to choose ρ is based on the Anscombe transform, it can

be used for selection of ρ even if the zf term is different from Rf (y,Aθ), i.e. for

example a term based on PNLL. However the monotonicity of zf (y, h∗xρ) suggests

that the same zf (i.e., in our case Rd) be used for parameter selection for the sake

of efficient selection via the bisection method.

(ii) Our principle (which is based on Theorems 1 and 3) could have been used to guide

parameter selection for various estimators such as P4, P5, LASSO, PG5 for CS

reconstruction in Secs. 5.1 and 5.2. However we did not do so, as the performance

was comparable to that obtained with omniscient choice of ρ. Moreover, the aim

there was to show the dependence of these estimators (based on unconstrained

formulations) on an external mechanism of parameter selection, which is expensive

in practice and for which rigorous theoretical bounds do not exist. In contrast,

our estimators P3 and PG3 have no such dependencies, and we have established

analytical bounds for them.

6. Conclusion, Comparisons to Prior Art and Future Work

Contributions: We have presented a convex implementable estimator for

sparse/compressible signal reconstruction from CS measurements acquired by realis-

tic sensing models, but corrupted by Poisson or Poisson-Gaussian noise. The estimator

allows for statistically motivated and principled parameter tuning. To the best of our

knowledge, there is no earlier work on analyzing Poisson CS using VSTs since the VSTs

convert a problem with linear measurements to non-linear measurements [10]. We have

demonstrated here, both theoretically as well as experimentally, that the non-linearity

is actually not a problem, and that it does in fact have some advantages over the PNLL

- namely more intuitive parameter tuning, besides Lipschitz continuity of the objective

function and its derivative for c 6= 0. This is our first major contribution. Our second

major contribution is the unification of analysis of Poisson CS and Poisson-Gaussian

CS that our VST-based framework so readily allows for. Also ours is the first work to

develop bounds for Poisson-Gaussian CS to the best of our knowledge. The extension

of our method to Poisson-Gaussian noise also retains all the advantages of the method

for Poisson noise. We emphasize that square-root transformations can be used stabi-

lize variance whenever the variance of the random variable is proportional to the mean

(chapter 14.6 of [48]), of which Poisson is just a special case. Thus, our approach is also

applicable to other such noise models, including average of Poisson random variables,

which appears in color image demosaicing [49]. Our third contribution is the develop-

ment of a principle based on Theorems 1 and 3, to select the regularization parameter

in penalized estimators in Poisson or Poisson-Gaussian inverse problems.

Note: In Table 1, we show succinct comparisons of our work in this paper to six

recent techniques for Poisson compressed sensing. Here below, we present an elaborate
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Figure 7: Plots of |Rd(y, h ∗ x)−√n1n2/2| and MAE between x and xρ versus ρ, for

two images. See images displayed in Fig. 8. We see a good agreement between the

value of ρ that produces least MAE and that predicted by our selection principle.

discussion.

Comparisons with Negative Log Likelihood Approaches: There exists some previous

work on Poisson CS in [19, 29] using the penalized PNLL that applies to physically

realizable sensing matrices, but the theory there is developed only for computationally

intractable estimators with `0 regularizers. Moreover the latter work applies only to

sparse (and not compressible) signals. The work in [40] applies to computationally

tractable estimators using the PNLL, but does not explicitly address the important case

of flux-preserving matrices and uses the estimator P6 defined in Section 5. However P6

cannot be implemented without knowledge of a signal-dependent parameter I. The

consistency of an `1 regularized maximum likelihood (ML) estimator for compressive

inversion is examined in [43] under the model λ = exp(−atθ) where a is a known

vector, θ is an unknown vector of sparse coefficients and λ is the mean of the Poisson
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Table 1: Comparison of various methods analyzing performance bounds in Poisson and

Poisson-Gaussian CS (Y = Yes, N = No) based on various criteria: TE =tractability of

estimator; FP = whether the method handles flux-preserving sensing matrices

explicitly; Comp = whether the method’s bounds are applicable to only purely sparse

or also to compressible signals; PE = whether the estimator has free or

signal-dependent parameters; ML = whether the estimator uses a log-likelihood based

data fidelity term; LCF,LCD = whether the objective function and its derivative are

Lispschitz continuous; LB = whether the method presents lower bounds; PG =

whether the method’s analysis extends to Poisson-Gaussian noise apart from pure

Poisson noise; NLCS = whether the estimator solves a non-linear inversion problem for

CS; AvP = whether the method extends to handle noise modelled as average of

Poisson random variables

Feature Our

Method

[19] [29] [40] [50] [41] [51]

TE Y N N Y Y Y Y

FP Y Y Y N N Y Y

Comp Y Y Sparse

only

Sparse

only

Y Y Y

PE None (or

statis-

tically

moti-

vated ε

)

Y (regu-

larization

parame-

ter)

Y (signal

`0 norm)

Y (signal

`1 norm)

None

(statis-

tically

moti-

vated

regular-

ization

parame-

ter)

Y (signal

inten-

sity)

None (or

statis-

tically

moti-

vated

ε)

LCF,LCD Y,Y (for

c 6= 0)

N,N N,N N,N Y,Y Y,Y N,N

ML N Y Y Y N N N

LB N N Y Y N Y N

PG Y N N N N N N

NLCS Y (due to

VST)

N N N N N N

AvP Y N N N N N N
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Figure 8: In each group from left to right, top to bottom: ground truth; blurry and

noisy image; results for ρ ∈ {0.001, 0.005, 0.01, 0.05, 0.06, 0.07, 0.1, 0.5, 1, 2}. For the

first image, the least MAE was 0.74 for ρ = 0.1 and fidelity offset (FO) of 0.63. For an

FO of 0.02, the MAE was 0.84 (slightly higher) with ρ = 0.05. For the second image,

the least MAE was 0.46 for ρ = 0.15 and FO of 1.32. For an FO of 0.07, the MAE was

0.59 (slightly higher) with ρ = 0.06. Refer Fig. 7.

distribution. This work in fact shows that the regularization parameter to guarantee

consistency is dependent on the signal sparsity, which is unknown in practice. Again,

none of these approaches have been extended to handle Poisson-Gaussian noise, which

has a complicated likelihood function with infinite summation.

Comparison with LASSO-based Approaches: Recent work from [41] uses the LASSO,

which is a computationally tractable estimator, and applies to physical constraints

and for sparse/compressible signals. However their estimator requires the choice of a

regularization parameter, which is dependent on the signal intensity I for statistical

consistency (see Theorem 2 of [41]), or else a cross-validation type approach is

needed. This is unlike our technique which has an easier choice of parameter during

implementation. (In particular, the constraint ‖x‖1 = I was required only for the

theoretical analysis and was not deemed necessary in the actual results.) There exist

other papers which provide performance guarantees for some variant of the LASSO for

Poisson-related problems. For example, [52] and [53] provide bounds using the RIP

and maximum eigenvalue condition respectively. Necessary and sufficient conditions

are derived for the sign consistency of the LASSO with the Poisson noise model in

[54]. These techniques however do not explicitly deal with flux-preserving matrices.
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Weighted/adaptive LASSO and group LASSO schemes with provable guarantees based

on Poisson concentration inequalities have been proposed in [55, 50], and the technique

in [50] can be extended for flux-preserving matrices. However again, none of these

techniques handle the case of Poisson-Gaussian noise.

Comparison of Error Bounds: The work in [41] presents minimax estimators for

compressible signals, whereas that in [29] presents minimax estimators for purely sparse

signals. The bounds in [29, 40] are in fact applicable exclusively for purely sparse signals

and extensions to approximately sparse signals are not presented. We now present a

comparison between the error bounds derived in our paper with those in [41, 50] for the

case of only Poisson noise (because they do not present analysis for Poisson-Gaussian

noise unlike our work). As per Theorem 2 of [41], their relative error has a bound of the

form O(
√
R1(logm/I)0.25) for the `1 sparsity ball, where Rq ,

∑m
i=2 |θi/I|q, 0 < q ≤ 1

and hence R1 ,
∑m

i=2 |θi/I|‖. Their bound is valid with a probability of 1 − O(1/p)

whereas our bounds are valid with a probability of 1−O(1/N) which can increased to

1− exp(−N) via a central limit theorem argument as explained in the comments after

Theorem 1. Compared to their bounds, we have a O(
√
N) term in the numerator of the

first term of our upper bounds for c = 0 (see Theorem 2 of our paper). This is because

P3 is based on the formulation from [1] which puts a constraint on the noise residual.

For such an estimator, the worst case error even in Gaussian compressed sensing scales

as O(
√
N). This is unlike the LASSO-based formulation for which the error scales

as O(
√
s logm) for s-sparse signals. Of course, if we set N = O(s logm) (which are

the minimum number of measurements for compressed sensing bounds to hold), we

get similar bounds as [41], but if N grows further, our bounds become looser. This

issue has been discussed in [56] (problem 9.11), but we have observed that the apparent

worst case behaviour of the constrained formulation rarely (if ever) shows up in practice.

Our extensive simulations have shown no difference between the constrained estimator

and the LASSO for Gaussian noise (or for Poisson noise). Moreover, implementation

of the estimator in [41] requires the user to know a signal-dependent parameter I for

computation of the regularization parameter in the LASSO formulation, which is not

required in our case.

The work in [50] presents a purely data driven estimator for Poisson noise. However

as mentioned in [41], their bounds are best suited for purely sparse signals. For

approximately sparse signals, their bounds scale in the form O(
√
Rq(logm/I)1−q/2) +

O(Rq(logm/I)(1−q)/2). For the `1 ball, we see that their error has the form

O(
√
R1(logm/I)0.5) + O(R1). Keeping other parameters fixed but varying only

intensity, our bounds show a faster decay, and the bias term in our bounds s−0.5‖θ −
θs‖1/I is smaller than R1.

In general, we note that the proof techniques in both these papers use concentration

‖ Theorem 2 of [41] presents a squared error, and so we have taken the square root of their bound to

match our bound on ‖θ− θ?‖2. We also set q = 1 in their bounds for the `1 ball. We also use different

notation for signal dimension (m in our work, and p in theirs) and signal intensity (I in our work and

T in theirs).
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properties of linear combinations of Poisson random variables. It is not trivial to extend

these for the Poisson-Gaussian case. Moreover, the negative log likelihood for the

Poisson-Gaussian case requires computation of an infinite sum, which poses practical

difficulties in implementation as well as theoretical analysis. Our estimator PG3 does

not have these problems.

Comparisons with Other Approaches: Besides our conference paper [18], our group

has performed some other earlier work on Poisson CS for realistic matrices using a

tractable estimator based on the Jensen-Shannon divergence (JSD) between y and Φx

[51]. The work essentially makes use of the fact that the square-root of the JSD (SQJSD)

is a metric, and that the SQJSD has values that scale as o(
√
N) but independent of I.

The LASSO has been extended to deal with non-linear problems in [57, 58], of which

our technique in this paper is a special case (albeit with an additional non-negativity

constraint). The technique in [58] derives error bounds on any stationary point of the

objective function ‖y−f(Φx)‖2+ρ‖x‖1 for any differentiable monotonic function f with

bounded derivatives. At this point, we have not succeeded in adapting the technique

from [58] to Poisson CS via the VST, because such an adaptation requires imposition of

the additional necessary constraint x � 0 and hence the associated Karush Kuhn Tucker

(KKT) conditions, while obtaining the stationary point of the objective function.

Future Work: There are many directions for future work: (1) a derivation of lower

bounds, (2) analysis of support recovery and prediction bounds ‖Φx − Φx?‖2, (3)

analysis of the effect of clipping on Poisson-Gaussian CS measurements due to the

limited dynamic range of sensors, (4) analysis using the original Poisson-Gaussian

likelihood, (5) removal of the sufficient but not necessary conditions on γi for our

theoretical results to hold, and (6) seeking an explanation for the good reconstruction

results obtained even after ignoring the ‖x‖1 = I constraint.

7. Proofs

7.1. Proof of Theorem 1

To prove theorem 1, we first begin by considering the case of a scalar y ∼ Poisson(γ)

and generalize later to the case of measurement vectors. Define f(y) , (
√
y + c −

√
γ + c)2. Hence f (1)(y) = 1 −

√
γ + c

y + c
, f (2)(y) =

√
γ + c(y + c)−1.5

2
, and f (3)(y) =

−3
√
γ + c(y + c)−2.5

4
where f (k)(y) denotes the kth derivative of f(y) at y. Now,

observe that f(γ) = 0, f (1)(γ) = 0. Now f(y) = f(γ) +
∫ y
γ
f (1)(t)dt =

∫ y
γ
f (1)(t)dt ≤

(y − γ)f (1)(y) since f (1)(y) is an increasing function of y. Similarly, we have f (1)(y) =

f (1)(γ)+
∫ y
γ
f (2)(t)dt =

∫ y
γ
f (2)(t)dt ≤ (y−γ)f (2)(γ) since f (2)(y) is a decreasing function.

Combining this, we have

f(y) ≤ (y − γ)f (2)(γ) =
(y − γ)2

2(γ + c)
. (18)
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Recall that f(y) is a random variable. Taking expectation on both sides, we obtain

E[f(y)] ≤ E[(y − γ)2]

2(γ + c)
≤ 0.5 as E[(y − γ)2] = γ. (19)

To obtain an upper bound on the variance of f(y), we need a lower bound on E[f(y)]

since Var(f(y)) = E[(f(y))2]− (E[f(y)])2. For this, consider the following second order

Taylor series expansion of f(y) around γ with a third-order Lagrange remainder term:

f(y) = f(γ) + (y − γ)f (1)(γ) +
(y − γ)2

2!
f (2)(γ) +

(y − γ)2

3!
f (3)(z(y)), (20)

where z(y) ∈ (γ, y) or z(y) ∈ (y, γ). Using previous results for the derivatives, we have:

f(y) =
(y − γ)2

4(γ + c)
−
√
γ + c(y − γ)3

8(z(y) + c)2.5
. (21)

Taking expectation on both sides, we have

E[f(y)] =
γ

4(γ + c)
−
√
γ + c

8

∞∑
y=0

(y − γ)3(z(y) + c)−2.5e−γγy/y!. (22)

Considering χ to be the largest integer less than or equal to γ, we can split the infinite

summation in the equation above into two parts: one is a summation K1 from y = 0 to

y = χ, and the other is a summation K2 from y = χ+ 1 to y =∞. In other words, we

have

K1 = −
√
γ + c

8

χ∑
y=0

(y − γ)3(z(y) + c)−2.5e−γγy/y! (23)

K2 = −
√
γ + c

8

∞∑
y=χ+1

(y − γ)3(z(y) + c)−2.5e−γγy/y!.

For the lower bound on E[f(y)], we seek a value of z(y) which will minimize K1 and a

value of z(y) which will maximize K2. This is because K1 is non-negative since y ≤ γ

for terms in K1, and K2 is negative since y > γ for terms in K2. As (z(y) + c)−2.5 is a

decreasing function, we get z(y) = γ in both cases. This yields

E[f(y)] ≥ γ

4(γ + c)
−
√
γ + c

8
(γ + c)−2.5E[(y − γ)3] =

γ

4(γ + c)
− γ

8(γ + c)2
. (24)

Here we have made use of the fact that E[(y − γ)3] = γ for a Poisson random variable

y with mean γ. As f(y) is non-negative, we can write instead

E[f(y)] ≥ max(0,
γ

4(γ + c)
− γ

8(γ + c)2
). (25)

Note that if γ > 1/2 − c, we have E[f(y)] > 0. Also E[f(y)] can be shown to be an

increasing function of γ. Squaring both sides of Eqn. 18 and taking expectation, we

have

E[(f(y))2] ≤ E[(y − γ)4]

4(γ + c)2
=
γ(1 + 3γ)

4(γ + c)2
, (26)
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since E[(y− γ)4] = γ(1 + 3γ) for a Poisson random variable y with mean γ. So we have

Var[f(y)] = E[(f(y))2]− (E[f(y)])2 (27)

≤ γ(1 + 3γ)

4(γ + c)2
−max(0,

γ

4(γ + c)
− γ

8(γ + c)2
)2 ≤ γ(1 + 3γ)

4(γ + c)2
≤ 3/4. (28)

The last inequality follows using L’Hospital’s rule and using the fact that
γ(1 + 3γ)

4(γ + c)2
is a

strictly increasing function of γ. We have so far derived upper bounds on the mean and

variance of f(y). Now we move to the case of a vector, i.e. to the case where y is a vector

of N measurements, where the ith measurement is given as yi ∼ Poisson(γi) where γi =

(Φx)i. We also define fi(yi) , (
√
yi + c−

√
γi + c)2, f(y) ,

∑N
i=1 fi(yi), g(y) ,

√
f(y).

Hence we have E[g(y)] = E[
√
f(y)] ≤

√
E[f(y)] ≤

√
N/2 using Eqn. 19. This proves

the first statement of Theorem 1.

To derive a bound for the variance of g(y), we proceed as follows. Define f̃(y) =

f(y)/E[f(y)]. Using the non-negativity of f̃(y), we have√
f̃(y) ≥ 1 + (f̃(y)− 1)/2− (f̃(y)− 1)2/2. (29)

To see why, consider that l(h) , 3h − h3 ≤ 2 for all h ≥ 0 since l(1) = 2 and l(h)

is monotonically increasing in [0, 1] and monotonically decreasing in [1,∞). Putting

h =

√
f̃ yields 3

√
f̃ − f̃ 1.5 ≤ 2 → 3f̃ − f̃ 2 ≤ 2

√
f̃ which after simple algebra yields

Eqn. 29. Taking expectation on both sides of Eqn. 29, we have

E[

√
f̃(y)] ≥ 1− Var(f̃(y))/2. (30)

Substituting the definition of f̃(y), we have

E[g(y)] = E[
√
f(y)] ≥

√
E[f(y)]

(
1− Var[f(y)]

2(E[f(y)])2

)
. (31)

We now wish to find an upper bound on Var(g(y). Since Var(g(y)) = E[f(y)] −
(E[g(y)])2, we have

Var(g(y)) ≤ E[f(y)]− E[f(y)]
(

1− Var[f(y)]

2E2[y]

)2
(32)

=
Var[f(y)]

E[f(y)]
− (Var[f(y)])2

4(E[f(y)])3

≤ Var[f(y)]

E[f(y)]
=

∑N
i=1 Var[fi(yi)]∑N
i=1E[fi(yi)]

.

Note that the first inequality (and hence all the other inequalities in the chain) are true

if and only if E[g(y)]2 ≥ E[f(y)]

(
1− Var[f(y)]

2(E[f(y)])2

)2

. As E[f(y)] is non-negative, this in

turn requires that

(
1− Var[f(y)]

2(E[f(y)])2

)
≥ 0. Define β , min{γi}Ni=1. Substituting the lower
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bound on E[fi(yi)] from Eqn. 25 and the upper bound on Var[fi(yi)] from Eqn 28, we

see that this condition is satisfied when β > 1/2 − c and N ≥ 3/8

( β
4(β+c)

− β
8(β+c)2

)2
. In

particular, if β ≥ 1, then N ≥ 29. Again using the upper bound on Var[fi(yi)] and the

lower bound on E[fi(yi)] and substituting in Eqn. 33, we have the following bound on

the variance:

Var(g(y)) ≤
∑N

i=1
3
4

γ2i
(γi+c)2

+ γi
4(γi+c)2∑N

i=1
γi

4(γi+c)
− γi

8(γi+c)2

. (33)

This proves the statement 2(a) of Theorem 1. We see that each term in the summation

in the numerator is upper bounded by 3
4
¶ as shown in Eqn. 28, leading to a numerator

upper bound of 3N/4. Moreover one can show that the term in the denominator is

monotonically increasing as well as positive for ∀i, γi > β , 1/2 − c. This leads to

the upper bound Var(g(y)) ≤ v̄ ,
3/4

( β
4(β+c)

− β
8(β+c)2

)
as mentioned in the latter half of

statement 2(a). To prove statement 3(a), we see that this term is lower bounded by
2β(β+c)−β
8(c+β)2

≈ 0.1157 for β = 1 and using c = 3
8
. This proves statement 3(a), and the

approximate value of 6.48 can be obtained again by using c = 3
8
.

In order to obtain a tail bound on R(y,Φx) under the condition that Φx � β1, we

can use Chebyshev’s inequality to prove that P (R(y,Φx) ≤
√
N/2 +

√
v̄
√
N) ≥ 1− 1

N
,

since the variance of R(y,Φx) is upper bounded by v̄ when Φx � β1. This proves

statement 2(b) of the theorem. In particular again note that when β = 1, we have

v̄ ≈ 2.545 which proves statement 3(b).

However, we show here that for large values of N , R(y,Φx) is approximately Gaus-

sian distributed which leads to tighter bounds and with an even higher probability:

P (R(y,Φx) ≤
√
N/2 +

√
v̄
√
N) ≥ 1 − 2e−N/2 using upper bounds on the mean and

variance of R(y,Φx).

By the CLT, we know that P (f(y)−Nµ
σ
√
N
≤ α) → Φg(α) as N → ∞, where Φg is the

CDF for N (0, 1), and µ, σ are respectively the expected value and standard deviation

of fi. All the fi values have variances upper bounded by v̄ if Φx � β1. Due to the

continuity of Φg
+, we have P (f(y)−Nµ

σ
√
N
≤ α + α2σ2

4µσ
√
N

) → Φg(α) as N → ∞. Hence

we have P (f(y) ≤ (
√
Nµ + ασ

2
√
µ
)2) → Φg(α) as N → ∞, and taking square roots

we get P (
√
f(y) ≤ (

√
Nµ + ασ

2
√
µ
)) → Φg(α) as N → ∞. By rearrangement, we

obtain P (

√
f(y)−

√
Nµ

σ/(2
√
µ)

≤ α) → Φg(α) as N → ∞. With this development and since

µ ≤ 1/2, σ2 ≤ v̄ from Eqns. 19 and 28, we can now invoke a Gaussian tail bound to

establish that P (R(y,Φx) ≤
√
N/2 +

√
v̄
√
N) ≥ 1 − 2e−N/2. Note that the Gaussian

¶ Strictly speaking, this upper bound is for c = 3/8. It turns out that if c = 0, then the constant

changes to 1.125. However this does not change the fundamental nature of our proof and hence we do

not dwell on this point further.
+ inspired from https://stats.stackexchange.com/questions/241504/

central-limit-theorem-for-square-roots-of-\sums-of-i-i-d-random-variables

https://stats.stackexchange.com/questions/241504/central-limit-theorem-for-square-roots-of-\sums-of-i-i-d-random-variables
https://stats.stackexchange.com/questions/241504/central-limit-theorem-for-square-roots-of-\sums-of-i-i-d-random-variables
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nature of R(y,Φx) emerges from the CLT and is only an asymptotic result. However

we consistently observe it to be approximately true even for small values of N ∼ 20 as

confirmed by a Kolmogorov-Smirnov test (see [27]). ♦

7.2. Proof of Theorem 2

We provide a sketch of the proof below, inspired from [1], but modified to suit our

problem.

(i) Define a vector h , θ − θ?. Denote vector hT to be equal to h only for index set

T and zero for other indices. Let T0 be the set containing s largest absolute value

indices of h, T1 be the set containing s largest absolute value indices of hT c0 and so

on, where T c is the complement of the set T . Thus, vector h can be decomposed

as the sum of hT0,hT1 ,hT2 ,...

(ii) Define A , ΦΨ. We have

‖Ah‖22 = ‖A(θ − θ?)‖22 (34)

=
N∑
i=1

(√
(Aθ)i + c−

√
(Aθ?)i + c

)2(√
(Aθ)i + c+

√
(Aθ?)i + c

)2

.(35)

(a) Consider an upper bound of ε on ‖
√
y + c −

√
Φx+ c‖2. Later on, we shall

assign a statistical meaning to ε based on Theorem 1. By triangle inequality

and the nature of the constraint in P1, we have

‖
√
Aθ + c−

√
Aθ? + c‖2 ≤ ‖

√
y + c−

√
Aθ + c‖2 + ‖

√
y + c−

√
Aθ? + c‖2 ≤ 2ε.

(36)

(b) For scalars v1 ≥ 0, v2 ≥ 0, we have (
√
v1 +
√
v2)

2 ≤ 4max(v1, v2). We also have

(Aθ)i = (Φx)i = ΣjΦijxj ≤
‖x‖1
N

=
I

N
. Likewise (Aθ?)i ≤

I

N
as well, since

‖x?‖1 = I. Hence (
√

(Aθ)i + c+
√

(Aθ?)i + c)2 ≤ 4(
I

N
+ c).

(c) Combining the earlier two results with Eqn. 36, we have ‖Ah‖2 ≤ 4ε

√
I

N
+ c.

(iii) To prove the bound on ‖h(T0∪T1)c‖2, we follow steps similar to [1] to obtain

‖h(T0∪T1)c‖2 ≤ ‖h(T0)‖2 + 2s−1/2‖θ − θs‖1. (37)

(iv) To prove error bounds on ‖h(T0∪T1)‖2, we adopt the following steps.

(a) Given the construction for Φ in Eqn. 7, we have

ΦΨ(θ − θ?) =
1

2
√
N

Φ̃Ψ(θ − θ?) + (‖Ψθ‖1 − ‖Ψθ?‖1) =
1

2
√
N

Φ̃Ψ(θ − θ?)

(38)

since we know that ‖Ψθ‖1 = ‖Ψθ?‖1 = I. Defining B , Φ̃Ψ, we get

‖Bh‖2 = 2
√
N‖Ah‖2 ≤ 8ε

√
I + cN. (39)
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(b) Following steps in [1] using the RIP and the Cauchy-Schwarz inequality, we

can prove that

‖hT0∪T1‖2 ≤ C ′ε
√
I + cN + C ′′s−1/2‖θ − θ?‖1 (40)

where C ′ , 2
√
1+δ2s

1−δ2s(
√
2+1)

and C ′′ , 2
√
2δ2s

1−δ2s(
√
2+1)

.

(v) Combining the bounds on ‖hT0∪T1‖2 and ‖hT0∪T1c‖2, we have

‖h‖2 ≤ C1ε
√
I + cN + C2

√
2‖θ − θs‖1 (41)

where C1 , 2C ′ and C2 , 2 + 2C ′′.

Finally, we divide by I to obtain upper RRE bounds:

‖θ − θ?‖2
I

≤ C1ε

√
1

I
+
cN

I2
+
C2s

− 1
2‖θ − θs‖1
I

. (42)

Using Theorem 1, we see that ε ≤
√
N(
√
v̄/κ + 1/

√
2) with a probability of 1 − κ2/N

for any κ > 0 under certain lower bounds on N and (Φx)i. This proves Theorem 2.

Note that this bound uses the fact that y is Poisson distributed. ♦

7.3. Proof of Theorem 3

The proof of this theorem is very similar to that of Theorem 1, so we mention only

the points of difference. First, right through the proof, the constant c is replaced by

d , c+σ2. Moreover for Poisson-Gaussian noise where the Gaussian component is signal-

independent, we have E[(y−γ)2] = γ+σ2, E[(y−γ)3] = γ,E[(y−γ)4] = γ+3(γ+σ2)2.

Despite these changes, the upper bound for E[f(y)] from Eqn. 19 remains unchanged

(and so does the lower bound for E[f(y)]). The upper bound for the variance of f(y)

from Eqn. 28 becomes Var[f(y)] ≤ γ + 3(γ + σ2)2

4(γ + d)2
≤ 3/4. Following similar steps, the

final upper bound for the variance of g(y) is given by:

Var(g(y)) ≤
∑N

i=1
γi+3(γi+σ

2)2

4(γi+d)2∑N
i=1

γi+σ2

4(γi+d)
− γi

8(γi+d)2

. (43)

This bound holds if ∀i, γi > βd , 0.5 − d and N ≥ 3/8

( βd+σ2

4(βd+d)
− βd

8(βd+d)2
)2

. This can be

further shown to be upper bounded by v̄d ,
3/4

βd+σ2

4(βd+d)
− βd

8(βd+d)2

as defined in the theorem

statement. In particular, if βd = 1, we get N ≥ 0.375w2 where w = 8(1+d)2

2(d+1)(σ2+1)−1 and

v ≤ 0.75w. The statement 2(b) of the theorem can also be easily derived using similar

arguments as in Theorem 1, and these bounds can be approximately refined via the

CLT to yield P (Rd(y,Φx) ≤
√
N( 1√

2
+
√
v̄d)) ≥ 1− 2e−N/2. ♦
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