
Using an Information Theoretic Metric for Compressive Recovery under
Poisson Noise

Sukanya Patila, Karthik S. Gurumoorthyb, Ajit Rajwadec,∗

aDepartment of Electrical Engineering, IIT Bombay
bInternational Center for Theoretical Sciences, TIFR (ICTS-TIFR), Bangalore

cDepartment of Computer Science and Engineering, IIT Bombay

Abstract

Recovery error bounds in compressed sensing under Gaussian or uniform bounded noise do not translate

easily to the case of Poisson noise. Reasons for this include the signal dependent nature of Poisson noise, and

also the fact that the negative log likelihood in case of a Poisson distribution (which is directly related to the

generalized Kullback-Leibler divergence) is not a metric and does not obey the triangle inequality. There

exist prior theoretical results in the form of provable error bounds for computationally tractable estimators

for compressed sensing problems under Poisson noise. However, these results do not apply to realistic

compressive systems, which must obey some crucial constraints such as non-negativity and flux preservation.

On the other hand, there exist provable error bounds for such realistic systems in the published literature,

but they are for estimators that are computationally intractable. In this paper, we develop error bounds

for a computationally tractable estimator which also applies to realistic compressive systems obeying the

required constraints. The focus of our technique is on the replacement of the generalized Kullback-Leibler

divergence, with an information theoretic metric - namely the square root of the Jensen-Shannon divergence,

which is related to an approximate, symmetrized version of the Poisson log likelihood function. We show

that our method allows for very simple proofs of the error bounds. We also propose and prove several

interesting statistical properties of the square root of Jensen-Shannon divergence, a well-known information-

theoretic metric, and exploit other known ones. Numerical experiments are performed showing the practical

use of the technique in signal and image reconstruction from compressed measurements under Poisson noise.

Our technique has the following features: (i) It is applicable to signals that are sparse or compressible in

any orthonormal basis. (ii) It works with high probability for any randomly generated sensing matrix that

obeys the non-negativity and flux preservation constraints, and is derived from a ‘base matrix’ that obeys
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the restricted isometry property. (iii) Most importantly, our proposed estimator uses parameters that are

purely statistically motivated and signal independent, as opposed to techniques (such as those based on

the Poisson negative log-likelihood or `2 data-fidelity) that require the choice of a regularization or signal

sparsity parameter which are unknown in practice.

Keywords: Compressed sensing, Poisson noise, reconstruction error bounds, information theoretic metric,

Jensen-Shannon divergence, triangle inequality

1. Introduction

Compressed sensing is today a very mature field of research in signal processing, with several advances

on the theoretical, algorithmic as well as application fronts. The theory essentially considers measurements

of the form y = Φx = ΦΨθ = Aθ where y ∈ RN is a measurement vector, A ∈ RN×m , ΦΨ, Ψ ∈ Rm×m

is a signal representation orthonormal basis, and θ ∈ Rm is a vector that is sparse or compressible such

that x = Ψθ. Usually N � m. Under suitable conditions on the sensing matrix such as the restricted

isometry property (RIP) and sparsity-dependent lower bounds on N , it is proved that x can be recovered

near-accurately given y and Φ, even if the measurement y is corrupted by signal-independent, additive noise

η of the form y = Φx+η where η ∼ N (0, σ2) or ‖η‖2 ≤ ε (bounded noise). The specific error bound [1] on

θ in the case of ‖η‖2 ≤ ε is given as:

‖θ − θ?‖2 ≤ C1ε+
C2√
s
‖θ − θs‖1 (1)

where θs is a vector created by setting all entries of θ to 0 except for those containing the s largest absolute

values, θ? is the minimum of the following optimization problem denoted as (P1),

(P1): minimize‖z‖1 such that ‖y −Az‖2 ≤ ε, (2)

and C1 and C2 are increasing functions of δ2s, the so-called restricted isometry constant (RIC) of A. These

bounds implicity require that N ∼ Ω(s logm), and Φ (and hence ΦΨ) is said to obey the RIP if δ2s < 1.

Recently, such bounds have been extended to high SNR systems as in [2]. Other innovations, such as recovery

with partially known support [3], or with a recent two-level weighted optimization have also been proposed5

[4], with promising results.

The noise affecting several different types of imaging systems is, however, known to follow the Poisson

distribution. Examples include photon-limited imaging systems deployed in night-time photography [5],

astronomy [6], low-dosage CT or X-ray imaging [7] or fluorescence microscopy [8, 9]. The Poisson noise

model is given as follows:

y ∼ Poisson(Φx) (3)
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where x ∈ Rm≥0 is the non-negative signal or image of interest. The likelihood of observing a given measure-

ment vector y is given as

p(y|Φx) =

N∏
i=1

[(Φx)i]
yie−(Φx)i

yi!
(4)

where yi and (Φx)i are the ith component of the vectors y and Φx respectively.

Unfortunately, the mathematical guarantees for compressive reconstruction from bounded or Gaussian

noise [10, 1, 11] are no longer directly applicable to the case where the measurement noise follows a Poisson

distribution, which is the case considered in this paper. One important reason for this is a feature of the10

Poisson distribution - that the mean and the variance are equal to the underlying intensity, thus deviating

from the signal independent or bounded nature of other noise models.

Furthermore, the aforementioned practical imaging systems essentially act as photon-counting systems.

Not only does this require non-negative signals of interest, but it also imposes crucial constraints on the

nature of the sensing matrix Φ:15

1. Non-negativity: ∀i,∀j,Φij ≥ 0

2. Flux-preservation: The total photon-count of the observed signal Φx can never exceed the photon

count of the original signal x, i.e.,
∑N
i=1(Φx)i ≤

∑m
i=1 xi. This in turn imposes the constraint that

every column of Φ must sum up to a value no more than 1, i.e. ∀j,
∑N
i=1 Φij ≤ 1.

A randomly generated non-negative and flux-preserving Φ matrix does not (in general) obey the RIP. This20

situation is in contrast to randomly generated Gaussian or Bernoulli (±1) random matrices which obey the

RIP with high probability [12], and poses several challenges. However following prior work, we construct a

related matrix Φ̃ from Φ which obeys the RIP (see Section 2.1).

1.1. Main Contributions

The derivation of the theoretical performance bounds in Eqn. 1 based on the optimization problem in25

Eqn. 2 cannot be used in the Poisson noise model case, as it is well known that the use of the `2 norm between

y and Φx leads to oversmoothing in the lower intensity regions and undersmoothing in the higher intensity

regions. To estimate an unknown parameter set x given a set of Poisson-corrupted measurements y, one

proceeds by the maximum likelihood method. Dropping terms involving only y, this reduces to maximization

of the quantity
∑N
i=1 yi log

yi
(Φx)i

−
∑N
i=1 yi +

∑N
i=1(Φx)i which is called the generalized Kullback-Leibler30

divergence [13] between y and Φx - denoted as G(y,Φx). This divergence measure, however, does not obey

the triangle inequality, quite unlike the `2 norm term in Eqn. 2 which is a metric. This ‘metric-ness’ of the

`2 norm constraint is an important requirement for the error bounds in Eqn. 1 proved in [1]. For instance,

the triangle inequality of the `2 norm is used to prove that ‖A(θ− θ?)‖2 ≤ 2ε where θ? is the minimizer of
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Problem (P1) in Eqn. 2. This is done in the following manner:35

‖A(θ − θ?)‖2 ≤ ‖y −Aθ‖2 + ‖y −Aθ?‖2 ≤ 2ε. (5)

This upper bound on ‖A(θ− θ?)‖2 is a crucial step in [1], for deriving the error bounds of the form in Eqn.

1.

The `2 norm is however not appropriate for the Poisson noise model for the aforementioned reasons.

The first major contribution of this paper is to replace the `2 norm error term by a term which is more

appropriate for the Poisson noise model and which, at the same time, is a metric. The specific error term40

that we choose here is the square root of the Jensen-Shannon divergence (defined in Section 2.2), which is

a well-known information theoretic metric [14]. Hereafter we abbreviate the Jensen-Shannon divergence as

JSD, its square-root as SQJSD, and denote them as J and
√
J respectively within equations. Let θ? be the

minimizer of the following optimization problem which we denote as (P2):

(P2): minimize‖z‖1 such that
√
J(y,Az) ≤ ε,Ψz � 0, ‖Ψz‖1 = I, (6)

where I ,
∑m
i=1 xi is the total intensity of the signal of interest and ε is an upper bound on

√
J(y,Az)

that we set to
√
N( 1

2 +
√

11
8 + 21

16c ) where c is a constant (for reasons that will be clear in Section 2 and 7).

We then prove that with high probability

‖θ − θ?‖2
I

≤ C1O
(
N√
I

)
+

C2

I
√
s
‖θ − θs‖1 (7)

where C1 and C2 are increasing functions of the RIC δ2s of the sensing matrix Φ̃ derived from Φ. This45

result is proved in Section 2, followed by an extensive discussion. Note that for orthonormal Ψ, we also

have ‖x − x?‖2 = ‖θ − θ?‖2 where x? = Ψθ?. In particular, we explain the reason behind the apparently

counter-intuitive first term which is increasing in N : namely, that a Poisson imaging system distributes

the total incident photon flux across the N measurements, reducing the SNR per measurement and hence

affecting the performance. This phenomenon has been earlier observed in [15]. Our performance bounds50

derived independently and via a completely different method confirm the same phenomenon.

While there exists a body of earlier work on reconstruction error bounds for Poisson regression, the

approach taken in this paper is different, and has the following features:

1. Statistically motivated parameters: Our proposed estimator does not require tweaking of a regular-

ization or signal sparsity parameter, but uses a constrained optimization procedure with a signal-55

independent parameter dictated by the statistical properties of the SQJSD as shown in Section 2.2.

This is in contrast with estimators based on the Poisson NLL or the `2 error between y and Aθ, which

require regularization or constraint parameters which are dependent on the unknown signal. Hence,

our estimator has significant advantages in terms of practical implementation.
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2. Confluence of computational tractability and realizability: Existing techniques such as [15] work with60

intractable estimators for Poisson compressed sensing although they are designed to deal with physically

realizable compressive systems. On the other hand, there are several techniques such as [16, 17, 18, 19]

which are applicable to computationally efficient estimators (convex programs) for sparse Poisson

regression and produce provable guarantees, but they do not impose important constraints required for

physical implementability. Our approach, however, works with a computationally tractable estimator65

involving regularization with the `1 norm of the sparse coefficients representing the signal, while at the

same time being applicable to physically realizable compressive systems. See Section 4 for a detailed

comparison.

3. Novel estimator: Our technique demonstrates successfully (for the first time, to the best of our knowl-

edge) the use of the JSD and the SQJSD for Poisson compressed sensing problems, at a theoretical as70

well as experimental level. Our work exploits several interesting properties of the JSD, some of which

we derive in this paper.

4. Simplicity: Our technique affords (arguably) much simpler proofs than existing methods.

1.2. Organization of the Paper

The main theoretical result is derived in detail in Section 2, especially Section 2.2. Numerical simulations75

are presented in Section 3. Relation to prior work on Poisson compressed sensing is examined in detail in

Section 4, followed by a discussion in Section 6. The proofs of some key theorems are presented in Section 7.

The relation between the JSD and a symmetrized version of the Poisson likelihood is examined in Section 5.

2. Main Result

2.1. Construction of Sensing Matrices80

We construct a sensing matrix Φ ensuring that it corresponds to the forward model of a real optical

system, based on the approach in [15]. Therefore it has to satisfy certain properties imposed by constraints

of a physically realizable optical system - namely non-negativity and flux preservation. One major difference

between Poisson compressed sensing and conventional compressed sensing emerges from the fact that con-

ventional randomly generated sensing matrices which obey RIP do not follow the aforementioned physical

constraints (although sensing matrices can be designed to obey the RIP, non-negativity and flux preservation

simultaneously as in [20], and we comment upon this aspect in the remarks following the proof of our key

theorem, later on in this section). In the following, we construct a sensing matrix Φ which has only zeroes

or (scaled) ones as entries. Let Z be a N ×m matrix whose entries Zi,j are i.i.d random variables defined
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as follows,

Zi,j =


−
√

1− p
p

with probability p, (8a)√
p

1− p
with probability 1− p. (8b)

Let us define Φ̃ ,
Z√
N

. For p = 1/2, the matrix Φ̃ now follows RIP of order 2s with a very high probability

given by 1− 2e−Nc(1+δ2s) where δ2s is its RIC of order 2s and function c(h) ,
h2

4
− h3

6
[12]. In other words,

for any 2s-sparse signal ρ, the following holds with high probability

(1− δ2s)‖ρ‖22 ≤ ‖Φ̃ρ‖22 ≤ (1 + δ2s)‖ρ‖22.

Given any orthonormal matrix Ψ, arguments in [12] show that Φ̃Ψ also obeys the RIP of the same order as

Φ̃.

However Φ̃ will clearly contain negative entries with very high probability, which violates the constraints

of a physically realizable system. To deal with this, we construct the flux-preserving and positivity preserving

sensing matrix Φ from Φ̃ as follows:

Φ ,

√
p(1− p)
N

Φ̃ +
(1− p)
N

1N×m, (9)

which ensures that each entry of Φ is either 0 or
1

N
. In addition, one can easily check that Φ satisfies both

the non-negativity as well as flux-preservation properties. We refer to Φ̃ as the ‘base matrix’ for Φ.

2.2. The Jensen-Shannon Divergence and its Square Root85

The well-known Kullback-Leibler Divergence between vectors p ∈ R≥0N×1 and q ∈ R≥0N×1 denoted by

D(p, q) is defined as3

D(p, q) ,
N∑
i=1

pi log
pi
qi
. (10)

Whenever pi = 0 or pi = qi = 0, the ith term is considered 0, since limh→0+ h log h = 0 as per Section 2.3 of

[21]. The Jensen-Shannon Divergence between p and q denoted by J(p, q) is defined as

J(p, q) ,
D(p,m) +D(q,m)

2
=

1

2

N∑
i=1

(pi log pi + qi log qi)−
N∑
i=1

mi logmi (11)

=
1

2

N∑
i=1;pi 6=0

pi log pi +
1

2

N∑
i=1;qi 6=0

qi log qi −
N∑

i=1;mi 6=0

mi logmi,

3Note that the Kullback-Leibler and other divergences are usually defined for probability mass functions, but they have also

been used in the context of general non-negative vectors in the same manner as we do in this paper.
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where m ,
1

2
(p + q),mi , (pi + qi)/2. We note that each term in the summation has the form h log h for

some real-valued non-negative h.

The performance bounds derived in this paper for reconstruction from Poisson-corrupted measurements90

deal with the estimate obtained by solving the constrained optimization problem (P2) in Eqn. 6, where we

consider a statistically motivated upper bound of ε on the quantity
√
J(y,Φx). Now, while Φx is real-valued

and non-negative, y consists of non-negative integers, possibly including zeros. The quantity h log h is not

defined for h = 0 although limh→0+ h log h = 0. In our formulation, we set h log h = 0 in the definition of J ,

to maintain continuity of J and mathematical cogency. This is completely in tune with the afore-mentioned95

definition of the Kullback-Leibler divergence as per Section 2.3 of [21].

The motivation for using the JSD will be evident from the following features of the JSD considered in

this section: (1) the metric nature of (including the triangle inequality observed by) its square-root, (2) its

relation with the total variation distance V (p, q) ,
∑
i |pi − qi|, and (3) interesting statistical properties of√

J(y,Φx).

We now enumerate the properties of the JSD, the last of which is discovered and proved in this paper.

These properties are very useful in deriving the performance bounds in the following sub-section.

[Lemma 1 [Theorem 1 of [14]]: The square root of the Jensen-Shannon Divergence is a metric.

[Lemma 2 [Theorem 2 of [22]]: Let us define

V (p, q) ,
N∑
i=1

|pi − qi|,∆(p, q) ,
N∑
i=1

|pi − qi|2

pi + qi
.

If p, q � 0 and ‖p‖1 ≤ 1, ‖q‖1 ≤ 1. Then,

1

2
V (p, q)2 ≤ ∆(p, q) ≤ 4J(p, q). (12)

Additionally, we have experimentally observed some interesting properties of the distribution of the SQJSD

values, across different Poisson realizations of compressive measurements of a signal x with values generated

from Unif[0, 1] (with appropriate scaling). We considered a fixed and realistic sensing matrix Φ as described

in Section 2.1 (but with p = 0.5) . In other words, if y ∼ Poisson(Φx), then we consider the distribution100

of
√
J(y,Φx) across different realizations of y. Our observations, shown in Fig. 1 are as follows. We make

these observations rigorous via Theorem 1.

1. Beyond a threshold τ on the intensity I, the expected value of
√
J(y,Φx) is nearly constant (say some

κ), and independent of I, given a fixed number of measurementsN . For I ≤ τ , we have
√
J(y,Φx) ≤ κ.

2. The variance of
√
J(y,Φx) is small, irrespective of the value of I and N .105

3. For any I, the mean (and any chosen percentile, such as the 99 percentile) of
√
J(y,Φx) scales at a

rate lower than O(N0.5) w.r.t. N .
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4. Irrespective of I, N or m, the distribution of
√
J(y,Φx) is Gaussian with mean and standard deviation

equal to the empirical mean and empirical standard deviation of the values of
√
J(y,Φx). This is

confirmed by a Kolmogorov-Smirnov (KS) test even at 1% significance (see [23]).110

We emphasize that as per our extensive simulations, these properties are independent of specific realizations

of Φ,x or the dimensionality or sparsity of x. Our scripts to reproduce these results are included at [23].

Our attempt to formalize these observations lead to the following theorem which we prove in Section 7.

Theorem 1: Let y ∈ ZN+ be a vector of compressive measurements such that yi ∼ Poisson[(Φx)i] where115

Φ ∈ RN×m is a non-negative flux-preserving matrix as per Eqn. 9 and x ∈ Rm is a non-negative signal.

Define γi , (Φx)i. Then we have:

1. E[
√
J(y,Φx)] ≤

√
N/4

2. If N ≥ (10.5+11c)(1+2c)
4c2 and ∀i, γi ≥ 0.5 + c where c > 0,

(a) Var[
√
J(y,Φx)] ≤

11N + 5
∑N
i=1 1/γi∑N

i=1 max(0, 4(2− 1/γi))
≤ 11

8
+

21

16c
120

(b) P
(√

J(y,Φx) ≤
√
N( 1

2 +
√

11
8 + 21

16c )
)
≥ 1 − 1/N . This probability can be refined to approxi-

mately 1− 2e−N/2 when N →∞, using the Central limit theorem.

We make a few comments below:

1. E[
√
J(y,Φx)] does not increase with I. This property is not shared by the negative log-likelihood of

the Poisson distribution. This forms one major reason for using SQJSD as opposed to the latter, for125

deriving the bounds in this paper.

2. If each γi is sufficiently large in value (i.e. � 0.5), the upper bound 11
8 + 21

16c (which is independent

of N as well as the measurement or signal values) moves closer towards 11
8 . See also the simulation

in Fig. 1. In practice, we have observed this constant upper bound on Var[
√
J(y,Φx)] even when

the condition γi � 0.5 is violated for all measurements. Therefore, we consider this condition to be130

sufficient but not necessary in practice.

3. If c = 0.5 in the above Theorem, then the lower bound on N is N ≥ 32.

4. The assumption that γi � 0.5 is not restrictive in most signal or image processing applications, except

those that work with extremely low intensity levels. In the latter case, it should be noted that the

performance of Poisson compressed sensing is itself very poor due to the very low SNR [24].135

5. The refinement to the probability in the last statement of this theorem is based on the central limit

theorem, and hence for a finite value of N , it is an approximation. However, the approximation is

empirically observed to be tight even for small N ∼ 10 as confirmed by a Kolmogorov-Smirnov test

even at 1% significance (see [23]).
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2.3. Theorem on Reconstruction Error Bounds140

Theorem 2: Consider a non-negative signal of interest x = Ψθ for orthonormal basis Ψ with sparse

vector θ. Define A , ΦΨ for sensing matrix Φ defined in Eqn. 9. Suppose y ∼ Poisson(ΦΨθ), i.e.

y ∼ Poisson(Aθ), represents a vector of N � m independent Poisson-corrupted compressive measurements

of x, i.e., ∀i, 1 ≤ i ≤ N, yi ∼ Poisson((Aθ)i). Let θ? be the solution to the problem (P2) defined earlier,

with the upper bound ε in (P2) set to
√
N
(

1
2 +

√
11
8 + 21

16c

)
. If Φ̃ constructed from Φ obeys the RIP of

order 2s with RIC δ2s <
√

2− 1, if N ≥ (10.5+11c)(1+2c)
4c2 with c > 0, and if Φx � (1/2 + c)1, then we have

Pr
(‖θ − θ?‖2

I
≤ C̃ N√

I
+
C ′′s−1/2‖θ − θs‖1

I

)
≥ 1− 1/N, (13)

where C̃ , C ′(1/2 + σ), C ′ ,
4
√

8(1 + δ2s)√
p(1− p)(1− (1 +

√
2)δ2s)

, C ′′ , (
2− 2δ2s + 2

√
2δ2s

1− (1 +
√

2)δ2s
), θs is a vector

containing the s largest absolute value elements from θ, and σ is the standard deviation of
√
J(yi, (Φx)i),

which is upper bounded by
√

11
8 + 21

16c .

Theorem 2 is proved in Section 7.2. We make several comments on these bounds below.

1. Behaviour of C̃ and C ′′: Both C̃ and C ′′ are increasing functions of δ2s over the domain [0, 1].145

2. Value of ε: Practical implementation of the estimator (P2) would require supplying a value for ε,

which is the upper bound on
√
J(y,Φx). This can be provided based on the theoretical analysis of√

J(y,Φx) from Theorem 1, which motivates the choice ε =
√
N
(

1
2 +
√

11
8 + 21

16c

)
. In our experiments,

we provided a 99 percentile value (see Section 3) which also turns out to be O(
√
N) and is independent

of x.150

3. Dependence on I: We have derived upper bounds on the relative reconstruction error, i.e. on
‖θ − θ?‖2

I
and not on ‖θ − θ?‖2. This is because as the mean of the Poisson distribution increases,

so does its variance, which would cause an increase in the root mean squared error. But this error

would be small in comparison to the average signal intensity. Hence the relative reconstruction error

is the correct metric to choose in this context. Indeed,
‖θ − θ?‖2

I
is upper bounded by a term that is155

inversely proportional to I, reflecting the common knowledge that recontruction under Poisson noise is

more challenging if the original signal intensity is lower. This is a common feature of Poisson bounds

including those in [18]. The second term (due to the compressibility and not full sparsity of the signal)

is independent of I. There is no such term in [18] because they have not considered compressible

signals.160

4. The usage of SQJSD plays a critical role in this proof. First, the term J is related to the Poisson

likelihood as will be discussed in Section 5. Second,
√
J is a metric and hence obeys the triangle

inequality. Furthermore, J also upper-bounds the total variation norm, as shown in Lemma 2. Both

these properties are essential for the derivation of the critical Step 1 of the proof of Theorem 2 (see

Sec. 7.2).165
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5. Dependence on N : It may seem counter-intuitive that the first error term increases with N . There

are two reasons for this. First, if the original signal intensity remains fixed at I, an increase in N

simply distributes the photon flux across multiple measurements thereby decreasing the SNR at each

measurement and degrading the performance. Similar arguments have been made previously in [15],

where the error bounds also increase w.r.t. N . This behaviour is a feature of Poisson imaging systems170

with flux-preserving sensing matrices. The second reason is that the problem P2 has a constrained

formulation, quite similar to the the quadratically constrained formulation in [1] (a very fundamental

paper in the field of compressed sensing), though modified for Poisson noise. If the error bounds in [1]

are applied for the case of N (0, σ2) noise, they can be proved to scale as O(σ
√
N), i.e. they increase

w.r.t. N . Similar arguments have been put forth in Sec. 5.2 of [25] while comparing the quadratically175

constrained formulation with other estimators. There is currently no consensus in the literature as

to whether this O(σ
√
N) behaviour is a fundamental limit on the error bounds of such constrained

problems, or whether it is a consequence of the specific proof technique. Nevertheless, it should be

borne in mind that like most literature in CS, these are worst-case bounds and consider worst-case

combinations of signal, sensing matrix and noise values. In practice, the results are much better in180

comparison to the predicted bounds. Moreover, like most of the literature in CS, the decrease in RIC

δ2s (and hence the decrease of C̃ and C”) w.r.t. N has been ignored. A precise relationship for the

variation of δ2s w.r.t. N has not been derived in the literature and is an open problem, to the best of

our knowledge.

6. Dependence on s: It may appear that the second term in the error bound decreases with increase in185

s. However, this is not true, because δ2s and hence both C̃ and C” will increase with s, and hence the

upper bound also decreases. This is exactly in tune with earlier work such as [1]. The exact dependence

of δ2s on s has not been mathematically established in the literature, to the best of our knowledge.

7. The above bound holds for a signal sparse/compressible in some orthonormal basis Ψ. However, for

reconstruction bounds for a non-negative signal sparse/compressible in the canonical basis, i.e. Ψ = I

and hence x = θ, one can solve the following optimization problem which penalizes the `q (0 < q < 1)

norm instead of the `1 norm:

minθ‖θ‖q subject to
√
J(y,Aθ) ≤ ε, ‖θ‖1 = I,θ � 0

Performance guarantees for this case can be developed along the lines of the work in [26]. Other

sparsity-promoting terms such as those based on a logarithmic penalty function (which approximates190

the original `0 norm penalty more closely than the `1 norm) may also be employed [27, 28].

8. While imposition of the constraint that ‖z‖1 = I with I being known may appear as a strong assump-

tion, it must be noted that in some compressive camera architectures, it is easy to obtain an estimate
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of I during acquisition. One example is the Rice Single Pixel Camera [29], where I can be obtained

by turning on all the micro-mirrors, thereby allowing the photo-diode to measure the sum total of all195

values in the signal. The imposition of this constraint has been considered in earlier works on Poisson

compressed sensing. Furthermore, we note that in our experiments in Section 3, we have obtained

excellent reconstructions even without using this constraint.

9. Measurement matrices in compressed sensing can be specifically designed to have very low coherence,

as opposed to the choice of random matrices. Such approaches have been proposed for a Poisson setting200

in [20]. Since the coherence value can be used to put an upper bound on the RIC, one can conclude that

such matrices will obey RIP even while obeying non-negativity and flux preservation. In case of such

matrices which already obey the RIP, the upper bound on the reconstruction error would potentially

tighten by a factor of at least
√
N . However, such matrices are obtained as the output of non-convex

optimization problems, and there is no guarantee on how low their coherence, and hence their RIC,205

will be. Indeed, they may not respect the sufficient condition in our proof that δ2s <
√

2− 1. Matrices

can also be designed based on an MSE optimization criterion [30, 31] for excellent performance. If

the noise is Gaussian and the signal is assumed to be a sample from the Gaussian mixture model, the

estimate of the signal from the compressive measurements can be obtained via a modified Wiener filter

in closed form (which is also the MAP or MMSE estimate). Moreover the expected MSE between the210

estimate and the true signal also has a closed form expression. One can perform a descent on this

expression in order to design better sensing matrices for compressed sensing, as has been accomplished

in [30, 31]. This closed form is no longer applicable if the noise is Poisson and hence extending this

work to the Poisson setting is challenging.

2.4. Advantages of SQJSD over Poisson NLL or `2 difference215

Here, we summarize the essential advantage of the SQJSD over the Poisson NLL derived from Eqn. 4 or

the `2 difference, i.e. ‖y −Aθ‖2. Estimators based on the Poisson NLL require regularization parameters

[32] or constraint parameters [18] that are signal dependent and hence very difficult to tune in practice as

the underlying signal is unknown. In contrast, our SQJSD-based estimator (P2) uses a value of ε based on

the signal-independent tail bounds of
√
J(y,Aθ). A more detailed comparison with previous methods based220

on NLL is presented in Section 4.

It is also natural to question how (P2) would compare to an estimator of the following form, which we

name P2-L2: min‖θ‖1 s. t. ‖y − Aθ‖2 ≤ ε̃, ‖Ψθ‖1 = I,Ψθ � 0. In problem (P2-L2), the tail bound ε̃

would be clearly signal-dependent as Var(yi) = E(yi) = (Φx)i = (Aθ)i, unlike in problem (P2). This is a

major disadvantage of (P2-L2) as compared to (P2). One could counter-argue in the following manner: (a)225

For the forward model used in this paper, we have (Aθ)i ≤ I/N , which imposes an upper bound on the

measurement variance. This can be used to put a tail bound on ε̃ either using a Gaussian approximation
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for the elements of y −Aθ, or else via Chebyshev’s inequality. (b) Moreover, both (P2) as well as (P2-L2)

impose the constraint ‖Ψθ‖1 = I which is necessary for the theoretical proofs.

This counter-argument however misses two important points. (1) First, in practice while implementing (P2),230

this constraint is not required as stated before and in Section 3. (2) Second, the tail bound for ε̃ used in this

manner in a practical implementation of P2-L2 will be loose since the values of (Aθ)i (which are of course,

unknown) could be significantly less than I/N .

Instead of the term ‖y−Aθ‖2 in (P2-L2), one could however consider the term L(y,Aθ) , ‖(y−Aθ)./
√
Aθ‖2

where ‘./’ indicates element-wise division. We conjecture and have experimentally observed that tail-235

bounds based on L(y,Aθ) are signal-independent. However we can easily prove that for any i, E[(yi −

(Aθ)i)
2/(Aθ)i] = 1 and Var[(yi− (Aθ)i)

2/(Aθ)i] = E[(yi− (Aθi))
4/((Aθ)i)

2]−E2[(yi− (Aθ)i)
2/(Aθ)i] =

2 + 1/(Aθ)i. These are greater than the corresponding values for the JSD, as can be seen from the proof

of Theorem 1 in the Appendix (see Eqns. 26 and 33). This leads us to conjecture that the bounds with

the SQJSD will be tighter. An estimator using L(y,Aθ) is essentially a normalized form of the LASSO.240

Experimental results with it have been shown in [18] and its sign-consistency has been analyzed in [33]. But

there is no work which presents signal estimation bounds with it, to the best of our knowledge. At this

point, we consider the complete development of an estimator using L(y,Aθ) to be beyond the scope of this

paper, as it is non-trivially different from estimators based on SQJSD, Poisson NLL or `2 difference.

3. Numerical Experiments245

Generation of Test Measurements: Experiments were run on Poisson-corrupted compressed mea-

surements obtained from each signal taken from an ensemble of 1D signals with 100 elements. Each signal

x = Ψθ in the ensemble was generated using sparse linear combinations of DCT basis vectors, and was

forced to be non-negative by adjusting the DC component. The support sets of the sparse coefficients were

randomly selected, and different signals had different supports. In some experiments (see later in this sec-250

tion), all the signals were normalized so that they had a fixed intensity I. The sensing matrix followed the

architecture discussed in Section 2.

Comparisons: We show results on numerical experiments for problem (P2). We omitted the explicit

constraint that ‖Ψθ‖1 = I, as its inclusion did not affect the results significantly (see Fig. 8), and refer to it

simply as (P2) in this section. We compared our results with those obtained using the following estimators,255

all without the ‖Ψθ‖1 = I constraint:

1. A regularized version of P2-L2 (from the previous section) referred to here as (P2-L4):

argmin ρ‖θ‖1 + ‖y −ΦΨθ‖22 s.t. Ψθ � 0.

2. A regularized estimator using the Poisson NLL, referred to here as (P-NLL):

argmin ρ‖θ‖1 +
∑N
i=1[ΦΨθ]i − yi log[ΦΨθ]i s.t. Ψθ � 0.260
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3. A regularized version of (P2), referred to here as (P4):

argmin ρ‖θ‖1 + J(y,ΦΨθ) s.t. Ψθ � 0.

4. An estimator P-VST of the following form based on our work on variance stabilization transforms for

Poisson noise [34] (see also Sec. 4.3): argmin ρ‖θ‖1+‖
√
y + 3/8−

√
ΦΨθ + 3/8‖22 s.t. Ψθ � 0. Note:

In [34], we have analyzed the theoretical properties of a constrained version of P-VST.265

In all of these, ρ is a regularization parameter. Before describing our actual experimental results, we state

a lemma which shows that solving (P4) is equivalent to solving (P2) for some pair of (ρ, ε) values, but

again without the constraint ‖Ψθ‖1 = I. The proof of this lemma follows [35] and can be found in the

supplemental material.

Lemma 3: Given θ which is the minimizer of problem (P4) for some ρ > 0, there exists some value of ε = εθ270

for which θ is the minimizer of problem (P2), but without the constraint ‖Ψθ‖1 = I.

Note that despite this equivalence, in practice we preferred (P2) over (P4) as selection of ρ poses practical

difficulties, as opposed to the statistically motivated choice for ε.

Implementation Packages: As JSD is a convex function and
√
J(y,Φx) ≤ ε implies J(y,Φx) ≤ ε2,

we solved both (P2) and (P4) using the well-known CVX package [36] with the SCS solver for native275

implementation of logarithmic functions4. Likewise, (P2-L4) and P-VST were also implemented using CVX.

For (P-NLL), we used the SPIRAL-TAP algorithm from [32].

Parameter Choices and Description of Experiments: In all experiments, the value of ε for (P2)

was chosen as per the tail bounds on SQJSD, which are independent of x as noted in Section 2.2. To be

specific, we set ε =
√
N/2 for all experiments with no further tweaking whatsoever. This value is lower than280

what is predicted by our theoretical analysis which deals with worst case bounds, and gave us better results.

We also report results for (P2) with ε set to the 99-percentile of the SQJSD values, computed empirically

on an arbitrary set of signals and their compressive measurements. This is perfectly principled, because

we know that the statistics of SQJSD depend only on N and not on the (unknown) signals. For (P-NLL),

(P2-L4), (P4) and P-VST, the value of ρ was chosen by cross-validation (CV). For (P-NLL), the optimization285

was run for a maximum of 500 iterations, which was more than the default parameter of 100 specified in

the associated package [32]. We ran a total of three experiments on each of the competing methods. The

comparison metric was the relative reconstruction error given as RRMSE(x,x?) ,
‖x− x?‖2
‖x‖2

where x?

is the estimate of x. In the intensity experiment, we studied the effect of change in signal intensity I on

the RRMSE, keeping the signal sparsity s fixed to 10 (out of 100 elements) and N = 50. For CV, the290

parameter ρ was chosen to be the parameter from the set PV , {10−7, 10−6, ..., 10−2, 0.1, 1} which yielded

the best RRMSE reconstruction of an ensemble of synthetic signals with sparsity s = 10 and I = 1000, from

4http://web.cvxr.com/cvx/beta/doc/solver.html
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N = 50 compressive measurements. We also separately report results when ρ was chosen omnisciently (i.e.

we used the value of ρ from a chosen range, that yielded the best signal reconstruction results in terms of

RRMSE, assuming the ground truth was known). In the experiment on number of measurements, we studied295

the effect of change in N on the RRMSE, keeping I = 106 and s = 10 fixed. For CV, the parameter ρ was

chosen to be the parameter from the set PV which yielded the best RRMSE reconstruction of an ensemble of

synthetic signals with sparsity s = 10, I = 106 from N = 20 compressive measurements. We also separately

report results when ρ was chosen omnisciently. In the signal sparsity experiment, we studied the effect of

change in s on the RRMSE, keeping I = 106 and N = 50 fixed. For CV, the parameter ρ was chosen to be300

the parameter from the set PV which yielded the best RRMSE reconstruction of an ensemble of synthetic

signals with sparsity s = 40, I = 106 from N = 50 compressive measurements. Again, we also separately

report results when ρ was chosen omnisciently.

Observations and Comments: The results (i.e. average RRMSE values computed over Q = 100

signals) for the intensity experiment, the experiment on N and the sparsity experiment are respectively305

presented in Figs. 2, 3 and 4. Note that the best tuning parameters ρ for (P2-L4) and (P-NLL) are signal-

dependent. As can be seen from the plots, an omniscient choice of ρ (defined as the value of ρ from a chosen

range, that yields the best signal reconstruction results in terms of RRMSE, assuming the ground truth is

known) for (P4), (P-NLL), (P2-L4) and P-VST no doubt improves their performance (as it would also for

(P2)). However an omniscient choice is not practical, and improper choice of ρ indeed adversely affects310

the performance of (P4), (P-NLL), (P2-L4), and P-VST5 CV-based methods can help, but here again they

require some prior knowledge of signal properties in order to be effective. Moreover, a very important point

to be noted here is that for (P2), we have a statistically consistent and signal independent parameter ε. The

methods (P4), (P-NLL), (P2-L4) do not have this benefit. From the plots for (P2) in Fig. 2, we observe that

the RRMSE decreases on an average with increase in I. We would have observed such a trend even with315

(P-NLL) and (P2-L4) with omnisciently picked parameters or CV procedures that require a priori knowledge

of signal properties such as intensity or sparsity, but that is not practical. From the plots for (P2) in Fig. 3,

we observe that the RRMSE is not always guaranteed to decreases on an average with increase in N , owing

to the flux-preserving nature of Φ which causes poorer SNR with increase in N . The results for the sparsity

experiment in Fig. 4, we see that the RRMSE can increase with increase in s. All these trends are in line320

with our worst case bounds.

Low signal intensity: We ran experiments using P2 with ε =
√
N/2 and ε set to the empirically

computed 99-percentile of the SQJSD values. The experiment were run for compressive measurements of

5At cursory glance, the results of P-VST in our work in [34] may appear to different from those reported in this paper.

However several settings are different in the two papers. For example, in [34], many experiments have been run at higher

intensity levels, and that paper also contains experiments on a contrained version of P-VST.
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a DCT-sparse signal with s = 10, I = 103,m = 100 with flux-preserving sensing matrices (with p = 0.5)

and with N ∈ {10, 20, ..., 100}. Thus in expectation, the maximum value of the noiseless measurements was325

upper bounded by 5 when N = 100. In such low-intensity regimes, we indeed observe from the results plotted

in Fig 5, that the RRMSE increases with increase in N as predicted by the bounds. As seen, the RRMSE

increase is much sharper for ε =
√
N/2 than for the 99 percentile of SQJSD, because the latter values were

lower than
√
N/2. This is because our theoretical bounds are worst case, and the empirical results can thus

be better than what is predicted by the bounds.330

Image Reconstruction Experiments: We also tested the performance of all competing methods on

an image reconstruction task from compressed measurements under Poisson noise. Each patch of size 7× 7

from a gray-scale image was vectorized and 25 Poisson-corrupted measurements were generated for this patch

using the sensing matrix discussed in Section 2. This model is based on the architecture of the compressive

camera designed in [37, 38] except that we considered overlapping patches here. Each patch was reconstructed335

from its compressed measurements independently by solving (P2) with sparsity in a 2D-DCT basis, with

ε =
√
N/2. The final image was reconstructed by averaging the reconstructions of overlapping patches

(which is similar to running a deblocking algorithm on reconstructions from non-overlapping patches). This

experiment was repeated for different I values by suitably rescaling the intensities of the original image

before simulation of the compressive measurements. In Fig. 6, we show reconstruction results with (P2) with340

ε =
√
N/2 under different values of I. There is a sharp decrease in relative reconstruction error with increase

in I. For (P4), (P-NLL) and (P2-L4), the ρ parameter was picked omnisciently on a small set of patches at a

fixed intensity level of I = 105 and used for all other intensities. For these experiments, we observed nearly

identical numerical results with (P4), (P-NLL) and (P2-L4), as with (P2) with a fixed ε =
√
N/2. However,

for the lowest intensity level of I = 105, we observed that (P2) produced a lower RRMSE than (P-NLL) (0.13345

as against 0.18).

The constraint ‖x?‖1 = I: Note that in our experiments, we have not made use of the hard constraint

‖x?‖1 = I in problems (P2) or in any of the competing methods (P4), (P-NLL), (P2-L4),P-VST . In practice,

we however observed that the estimated ‖x?‖1 was close to the true I, especially for higher values of I ≥ 106,

and moreover even imposition of the constraint did not significantly alter the results as can be seen in Fig. 7350

for a 100-dimensional signal with 50 measurements and sparsity 5.

Computational Complexity: Also, to get an idea of the computational complexity of various estimators,

we plot a graph (Fig. 8) of the average reconstruction time (across noise instances) till convergence w.r.t. m

with N = m/2 each time, and also w.r.t. N keeping m fixed. The experiments were run for signals with

s = 10, I = 106. For the former plot, we chose m ranging from 100 to 3500, with N = m/2 measurements355

in each case. For the latter plot, we chose signals with m = 100. From the plots, it appears that (P2) is

more time-intensive than other estimators, including (P4). However there are two reasons for this apparent
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trend. First, we ran (P4), (P-NLL),(P-VST) and (P2-L4) with a fixed value of ρ and hence the time for

cross-validation is ignored. Second, it is well-known that constrained formulations such as (P2) are often

implemented using their corresponding unconstrained formulations (i.e. (P4) here), and are hence less360

efficient. Such arguments have been made in [39] in the context of support vector machines.

Handling zero-valued measurements: Note that zero-valued measurements pose no problem, given the

definition of J(y,Aθ) as in Section 2.2.

Summary: All the numerical experiments in this section confirm the efficacy of using the JSD/SQJSD

in Poisson compressed sensing problems. In particular, the statistical properties of the SQJSD allow for365

compressive reconstruction with statistically motivated parameter selection, unlike methods based on the

Poisson negative log-likelihood which require tweaking of the regularization/signal sparsity parameter.

Reproducible Research: Our supplemental material at https://www.cse.iitb.ac.in/~ajitvr/SQJSD/

contains scripts for execution of these results in CVX.

4. Relation to Prior Work370

There exist excellent algorithms for Poisson reconstruction such as [28, 6, 40, 41], but these methods do

not provide performance bounds. In this section, we put our work in the context of existing work on Poisson

compressed sensing with theoretical performance bounds. These techniques are based on one of the following

categories: (a) optimizing either the Poisson negative log-likelihood (NLL) along with a regularization term,

or (b) the LASSO, or (c) using constraints motivated by variance stabilization transforms (VST).375

4.1. Comparison with Poisson NLL based methods

These methods include [15, 24, 42, 18, 19, 43]. One primary advantage of the SQJSD-based approach

over the Poisson NLL is that the former (unlike the latter) is a metric, and can be bounded by values

independent of I as demonstrated in Section 2.2. In principle, this allows for an estimator that in practice

does not require tweaking a regularization or signal sparsity parameter, and instead requires a statistically380

motivated bound ε to be specified, which is more intuitive. Moreover, the methods in [15, 24] (and their

extensions to the matrix completion problem in [44, 45, 46]) employ `0-regularizers for the signal, due to

which the derived bounds are applicable only to computationally intractable estimators. The results in both

papers have been presented using estimators with `1 regularizers with the regularization parameters (as in

[15]) or signal sparsity parameter (as in [24]) chosen omnisciently, but the derived bounds are not applicable385

for the implemented estimator. In contrast, our approach proves error bounds with the `1 sparsity regularizer

for which efficient and tractable algorithms exist. Moreover, the analysis in [24] is applicable to exactly sparse

signals, whereas our work is applicable to signals that are sparse or compressible in any orthonormal basis.

Recently, NLL-based tractable minimax estimators have been presented in [18], but knowledge of an upper
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Method Objective Function

This paper Problem (P2) from Section 1.1, with ε chosen using properties of the SQJSD

[15] NLL(y,Φx) + ρpen(ΨTx) such that x � 0, ‖x‖1 = I where pen(ΨTx) = ‖ΨTx‖0
[24] NLL(y,Φx) such that x � 0, ‖x‖1 = I, ‖ΨTx‖0 ≤ s

[18] NLL(y,Φx) such that x � 0, ‖ΨTx‖1 ≤ s

[47] ‖y −Φx‖2 + ρ‖ΨTx‖1 such that x � 0, ‖x‖1 = I; ρ is chosen as O(1/I)

[34] ‖ΨTx‖1 such that ‖√y −
√

Φx‖2 ≤ ε,x � 0, ‖x‖1 = I with ε picked based on

chi-square tail bounds

[17] ‖y −Φx‖2 + ρ
∑
k dk|(Ψ

Tx)k|, with weights dk picked statistically

[48] ‖ΨTx‖1 such that NLL(y,Φx) ≤ ε where no criterion to choose ε is analyzed

Table 1: Objective functions optimized by various Poisson compressed sensing methods. Note that Ψ refers to an orthonormal

signal basis.

bound on the signal sparsity parameter (`q norm of the signal, 0 < q ≤ 1) is required for the analysis, even390

if the sensing matrix were to obey the RIP. A technique for deriving a regularization parameter to ensure

statistical consistency of the `1-penalized NLL estimator has been proposed in [19], but that again requires

knowledge of the signal sparsity parameter. In our work, the constraint ‖x‖1 = I was required only due to

the specific structure of the sensing matrix, and even there, it was not found to be necessary in practical

implementation. For clarity the specific objective functions used in these techniques is summarized in Table395

4.1. The work in [42] deals with a specific type of sensing matrices called the expander-based matrices,

unlike the work in this paper which deals with any randomly generated matrices of the form Eqn. 9, and the

bounds derived in [42] are only for signals that are sparse in the canonical basis. In [43], performance bounds

are derived in situ with system calibration error estimates for multiple measurements, which is essentially a

different computational problem, which again requires knowledge of regularization parameters.400

4.2. Comparison with LASSO-based methods

These methods include [16, 17, 49, 33, 50, 48] and are based on optimization of a convex function of the

form
∑N
i=1(yi − [Φx]i)

2 + ρ‖ΨTx‖1. The performance of the LASSO (designed initially for homoscedastic

noise) under heterscedasticity associated with the Poisson noise model is examined in [33] and necessary and

sufficient conditions are derived for the sign consistency of the LASSO. Weighted/adaptive LASSO and group405

LASSO schemes with provable guarantees based on Poisson concentration inequalities have been proposed

in [16, 17]. Group LASSO based bounds have also been derived in [49] and applied to Poisson regression.

Bounds on recovery error using an `1 penalty are derived in [48] and [50] based on the RIP and maximum

eigenvalue condition respectively. These techniques do not provide bounds for realistic physical constraints
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in the form of flux-preserving sensing matrices. The quantity ε is not analyzed theoretically in [48] unlike410

in our method - see Table 4.1. Moreover the LASSO is not a probabilistically motivated (i.e. penalized

likelihood based) estimator for the case of Poisson noise. Even considering an approximation of Poisson(λ)

by N (λ, λ), the approximated likelihood function would be K(y,Φx) ,
∑N
i=1

(yi−[Φx]i)2
[Φx]i

+ log[Φx]i and

not
∑N
i=1(yi − [Φx]i)

2 as considered in the LASSO. While K(y,Φx) is nonconvex, J(y,Φx) is a convex

function. Moreover J(y,Φx) is a lower bound on K(y,Φx) if [Φx]i ≥ 1. This is shown in Eqn. 25 while415

proving Theorem 1. Therefore our SQJSD method provides a tractable way to implement an estimator using

K(y,Φx) if the parameter ε is chosen based on the statistics of
√
K(y,Φx).

4.3. Comparison with VST-based methods

VST-based methods, especially those based on variants of the square-root transformations, have been used

extensively in denoising [51] and deblurring [52] under Poisson noise, but without performance bounds. In the

context of Poisson CS, the VST converts a linear problem into a non-linear one via a square-root transform.

The basic motivation is that if y ∼ Poisson(λ), then
√
y + 3/8 ∼ N (

√
λ+ 3/8, 1/4) approximately, with

improvement in the quality of approximation to the Gaussian distribution as well as the fixed variance when

λ is large. Our group has recently shown [53, 34] that despite the conversion to non-linear measurements,

this non-linear regression via a data fidelity of the form ‖
√
y + 3/8−

√
Φx+ 3/8‖2 has various advantages

for Poisson CS reconstructions, with a similar statistically motivated parameter (ε) selection, as for the

SQJSD. The specific estimator developed there is as follows:

min‖θ‖1 such that ‖
√
y + 3/8−

√
ΦΨθ + 3/8‖2 ≤ ε,Ψθ � θ. (14)

There are many similarities as well as difference between the properties of the SQJSD estimator in this

paper and the aforementioned constrained formulation based on the VST from [34]. Let us denote the data420

fidelity term as g(y) (see proof of Theorem 1), which is given by SQJSD in this paper and by ‖
√
y + 3/8−√

Φx+ 3/8‖2 in [34]. In both cases, we have shown that E[g(y)] is O(
√
N) and that Var[g(y)] is independent

of the signal and N . In both cases, we require a small lower bound on the magnitude of the underlying

measurement, for the theory to hold, but the experiments reveal that the lower bound is not strictly required.

In terms of numerical simulations shown in this paper, we also see cases when both (P2) and omniscient425

(P-VST) outperform each other. However there are important differences as well. We conjecture based on

empirical simulation that the expected value of SQJSD is smaller than O(
√
N) (see also Fig. 1), whereas

the same does not hold for our VST-based work. This may help tighten our SQJSD bounds further. On the

other hand, our VST-based work has been extended to handle Poisson-Gaussian noise. A full exploration of

CS with Poisson-Gaussian noise using the SQJSD (or a modified form of SQJSD) is beyond the scope of this430

paper. However most importantly, in this paper, we have presented the interesting result that the SQJSD

also possesses variance stabilizing properties for the Poisson distribution. To the best of our knowledge, there
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is no prior literature in statistics or signal processing reporting such a result. Apart from this, the data

fidelity term in the VST-based work is essentially a negative log quasi -likelihood, whereas the SQJSD is

related to a symmetrized version of the Poisson negative log-likelihood (as shown in Sec. 5).435

5. Relation between the JSD and a Symmetrized Poisson Negative Log Likelihood

In this section, we demonstrate the relationship between the JSD and an approximate symmetrized version

of the Poisson negative log likelihood function. As such, this relationship does not affect the performance

bounds, but is interesting in its own right. Consider an underlying noise-free signal x ∈ R+
m×1. Consider

that a compressive sensing device acquires N � m measurements of the original signal x to produce a

measurement vector y ∈ Z+
N×1. Assuming independent Poisson noise in each entry of y, we have ∀i, 1 ≤

i ≤ N, yi ∼ Poisson(Φx)i, where as considered before, Φ is a non-negative flux-preserving sensing matrix.

The main task is to estimate the original signal x from y. A common method is to maximize the following

likelihood in order to infer x:

L(y|Φx) =

N∏
i=1

p(yi|(Φx)i)

=

N∏
i=1

(Φx)i
yi

yi!
e−(Φx)i .

(15)

The negative log-likelihood NLL can be approximated as:

NLL(y,Φx) ≈
N∑
i=1

yi log
yi

(Φx)i
− yi + (Φx)i +

log yi
2

+
log 2π

2
. (16)

This expression stems from the Stirling’s approximation [54] for log yi! given by

log yi! ≈ yi log yi − yi +
log yi

2
+

log 2π

2
. (17)

This is derived from Stirling’s series given below as follows for some integer n ≥ 1:

n! ≈
√

2πn
(n
e

)n(
1 +

1

12n
+

1

288n2
)
≈
√

2πn
(n
e

)n
. (18)

Consider the generalized Kullback-Leibler divergence between y and Φx, denoted as G(y,Φx) and defined

as

G(y,Φx) ,
N∑
i=1

yi log
yi

(Φx)i
− yi + (Φx)i. (19)

The generalized Kullback-Leibler divergence turns out to be the Bregman divergence for the Poisson noise

model [55] and is used in maximum likelihood fitting and non-negative matrix factorization under the Poisson
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noise model [13]. The negative log-likelihood can be expressed in terms of the generalized Kullback-Leibler

divergence in the following manner:

NLL(y,Φx) ≈ G(y,Φx) +

N∑
i=1

( log yi
2

+
log 2π

2

)
. (20)

Let us consider the following symmetrized version of the NLL:

SNLL(y,Φx) = NLL(y,Φx) +NLL(Φx,y) ≈ G(y,Φx) +G(Φx,y) +

N∑
i=1

( log yi
2

+
log(Φx)i

2
+ log 2π

)
(21)

≥ G(y,Φx) +G(Φx,y) = D(y,Φx) +D(Φx,y),

where D is the Kullback-Leibler divergence from Eqn. 10. The inequality above is true when the term

in parantheses is non-negative, which is true when either (1) for each i, we must have yi ≥
1

4π2(Φx)i
, or

(2) the minimum value for yi ≥ d ,
1

4π2
(∏N

i=1(Φx)i
)(1/N)

. We collectively denote these conditions as440

‘Condition 1’ henceforth. Note that, given the manner in which Φ is constructed, we have the guarantee

that (Φx)i ≥
xmin
N

with a probability of 1−Npm where xmin is the minimum value in x. The quantity on

the right hand side of the last equality above follows from Eqns. 10 and 19, and yields a symmetrized form

of the Kullback-Leibler divergence Ds(y,Φx) , D(y,Φx) + D(Φx,y). Now, we have the following useful

lemma giving an inequality relationship between Ds and J , the proof of which follows [56] and can be found445

in the supplemental material.

Lemma 4: Given non-negative vectors u and v, we have
1

4
Ds(u,v) ≥ J(u,v).

Combining Eqns. 22 and Lemma 4, we arrive at the following conclusion if ‘Condition 1’ holds true:

SNLL(y,Φx) ≤ ε =⇒ J(y,Φx) ≤ ε/4 =⇒
√
J(y,Φx) ≤ ε′ ,

√
ε/2. (22)

Let us consider the following optimization problem:

(P3): minimize‖z‖1 such that SNLL(y,Az) ≤ ε,Ψz � 0, ‖Ψz‖1 = I. (23)

Following Eqn. 22, we observe that a solution to (P2) is also a solution to (P3) if the parameter ε is chosen450

based on the statistics of
√
SNLL(y,Az). Note that Condition 1 can fail with higher probability if (Φx)i

is small, due to which the J ≤ SNLL bound may no longer hold. However, this does not affect the validity

of Theorems 1 or 2, or the properties of the estimator proposed in this paper. Note that we choose to solve

(P2) instead of (P3) in this paper, as the SQJSD is a metric unlike SNLL, which makes it easier to establish

theoretical bounds using SQJSD. Also, there is no literature on the statistical properties of
√
SNLL(y,Az),455

established so far.
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6. Conclusion

In this paper, we have presented new upper bounds on the reconstruction error from compressed mea-

surements under Poisson noise in a realistic imaging system obeying the non-negativity and flux-preservation

constraints, for a computationally tractable estimator using the `1 norm sparsity regularizer. Our bounds are460

easy to derive and follow the skeleton of the technique laid out in [1]. The bounds are based on the properties

of the SQJSD from Section 2.2, of which some, such as signal-independent mean and variance, are derived in

this paper. Our bounds are applicable to sparse as well as compressible signals in any chosen orthonormal

basis. We have presented numerical simulations with parameters chosen based on noise statistics (unlike

the choice of regularization or signal sparsity parameters in other techniques), demonstrating the efficacy465

of the method in reconstruction from compressed measurements under Poisson noise. We observe that the

derived upper bounds decrease with an increase in the original signal flux, i.e. I. However the bounds do not

decrease with an increase in the number of measurements N , unlike conventional compressed sensing. This

observation, though derived independently and using different techniques, agrees with existing literature on

Poisson compressed sensing or Poisson matrix completion [15, 45, 44, 46]. The reason for this observation470

is the division of the signal flux across the N measurements, thereby leading to poorer signal to noise ratio

per measurement.

There exist several avenues for future work, as follows. A major issue is to derive lower-bounds on the

reconstruction error, and to derive bounds for (P4) along with a statistical criterion for the selection of ρ.

Another avenue to use more general models for signal and noise correlation as in [57], to consider effect of475

quantization [58] over and above Poisson noise, and to consider simultaneous dictionary learning and sensing

matrix inference in the context of Poisson compressed sensing [59].

7. Appendix

7.1. Proof of Theorem 1

To prove this theorem, we first begin by considering y ∼ Poisson(γ) where γ ∈ R+ and derive bounds for

the mean and variance of J(y, γ). Thereafter, we generalize to the case with multiple measurements.

Let f(y) , J(y, γ) for non-negative and real-valued y for the purpose of deriving bounds. Hence we have

f(y) =
1

2
(γ log γ + y log y)− γ + y

2
log
(γ + y

2

)
.

∴ f (1)(y) =
1

2
[log y − log

(γ + y

2

)
].

∴ f(y) =

∫ y

γ

f (1)(t)dt as f(γ) = 0.
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where f (k)(y) stands for the kth derivative of f(y). As f (1)(y) is a non-decreasing function (since f (2)(y) is

non-negative for all y), we have

f(y) ≤ (y − γ)f (1)(y). (24)

Likewise, noting that f (1)(γ) = 0 we get f (1)(y) =
∫ y
γ
f (2)(t)dt. We know that f (2)(y) = 1

2

[
1
y −

1
y+γ

]
is a

decreasing function as f (3)(y) is negative for all y.

If y ≥ γ then f (2)(y) ≤ f (2)(γ). Therefore, f (1)(y) ≤ (y − γ)f (2)(γ). If y ≤ γ then f (2)(y) ≥ f (2)(γ).

Therefore, −f (1)(y) ≥ (γ − y)f (2)(γ). Combining Eqn. 24 with the above inequality, we get

f(y) ≤ (y − γ)2f (2)(γ) =
1

4γ
(y − γ)2. (25)

Therefore, using E[(y − γ)2] = γ for a Poisson random variable, we have

E[f(y)] ≤ 1

4γ
E[(y − γ)2] =

1

4
. (26)

Thus, we have found an upper bound on E[f(y)] which is independent of γ.

We will now derive a lower bound on E[f(y)], as it will be useful in deriving an upper bound for Var(f(y)).

We can expand f(y) using a second order Taylor series about γ along with a (third order) Lagrange remainder

term as follows:

f(y) = f(γ) + f (1)(γ)(y − γ) +
f (2)(γ)

2!
(y − γ)2 +

f (3)(z(y))

3!
(y − γ)3

=
1

8γ
(y − γ)2 − 1

12
(y − γ)3

[ 1

z2(y)
− 1

(γ + z(y))2

]
for some z(y) that lies in the interval (y, γ) or (γ, y). Therefore,

E[f(y)] =
1

8γ
E[(y − γ)2]− 1

12

[ ∞∑
y=0

e−γγy

y!
(y − γ)3

[ 1

z2(y)
− 1

(γ + z(y))2

]]
=

1

8
− 1

12

[ ∞∑
y=0

e−γγy

y!
(y − γ)3

( 1

z2(y)
− 1

(γ + z(y))2

)]
.

Let α be the largest integer less than or equal to γ. We can split the second term in the RHS of the

above expression into the sum of two terms I1 and −I2, depending upon whether y is greater than α or not.

I1 and I2 are defined as follows:

I1 =
1

12

[ α∑
y=0

e−γγy

y!
(γ − y)3

( 1

z2(y)
− 1

(γ + z(y))2

)]
I2 =

1

12

[ ∞∑
y=α+1

e−γγy

y!
(y − γ)3

( 1

z2(y)
− 1

(γ + z(y))2

)]
.

In order to lower bound E[f(y)], we want to minimize I1 and maximize I2 w.r.t. z(y). Since 1
z2(y) −

1
(γ+z(y))2 is a decreasing function of z(y), it can be proved that I1 is minimized when z(y) = γ and that I2
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attains a maximum when z(y) = γ. Therefore, we obtain

E[f(y)] ≥ 1

8
− 1

16γ2
E[(y − γ)3] =

1

8
− 1

16γ
. (27)

This lower bound is loose if γ < 0.5 since we know that E[f(y)] must clearly be non-negative. Hence it is

more apt to express the lower bound as follows:

E[f(y)] ≥ max(0,
1

8
− 1

16γ
). (28)

In summary, we have

max(0,
1

8
− 1

16γ
) ≤ E[f(y)] ≤ 1

4
. (29)

We now proceed to derive an upper bound on the variance of f(y).

Using Eqn. 25 we get,

E[(f(y))2] ≤ 1

16γ2
E[(y − γ)4] =

γ(1 + 3γ)

16γ2
≤ 3

16
+

1

16γ
. (30)

Recall that Var[f(y)] = E[(f(y))2]− (E[f(y)])2. Using Eqns. 30 and 28, we get480

Var(f(y)) ≤ 3
16 + 1

16γ −
(

max(0,
[
1
8 −

1
16γ

]
)
)2

(31)

≤ max(0, 1164 + 5
64γ −

1
256γ2 ) (32)

≤ 11
64 + 5

64γ . (33)

Now consider that y is a vector of N measurements such that ∀i ∈ {1, 2, ..., N}, yi ∼ Poisson(γi) and all

measurements are independent. We will later replace γi by (Φx)i where Φ is a non-negative flux-preserving

matrix and x is the unknown signal to be estimated. Let us define some terminology as follows:

fi(yi) ,
(γi log γi + yi log yi)

2
− γi + yi

2
log
(γi + yi

2

)
, f(y) ,

N∑
i=1

fi(yi), g(y) ,
√
f(y).

Jensen’s inequality gives the following upper bound on the expected value of g(y):

E[g(y)] = E[
√
f(y)] ≤

√√√√ N∑
i=1

E[fi(yi)] ≤
√
N

4
. (34)

In order to lower bound E[g(y)] we use the following inequality for the non-negative variable f :

√
f ≥ 1 +

f − 1

2
− (f − 1)2

2
.

This inequality follows since it is equivalent to 3f − f2 ≤ 2
√
f which implies 3b − b3 ≤ 2 which is true for
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any b ≥ 0. Define f̃ ,
f

E[f ]
such that E[f̃ ] = 1. Therefore, we have the following inequalities:

√
f̃ ≥ 1 +

f̃ − 1

2
− (f̃ − 1)2

2

∴ E[

√
f̃ ] ≥ 1− Var(f̃)

2

∴ E[
√
f ] ≥

√
E[f ]

(
1− Var(f)

2E[f ]2

)
∴ E[g] ≥

√
E[f ]

(
1− Var(f)

2E[f ]2

)
.

Now, we can find an upper bound on Var[g(y)]

Var(g) = E[g2]− E[g]2

≤ E[f ]− E[f ]
(

1− Var(f)

2E[f ]2

)2
≤ Var(f)

E[f ]
− 1

4

Var(f)2

E[f ]3
.

Note that the first inequality in the chain above requires that (E[g])2 ≥ E[f ]
(

1 − Var(f)
2E[f ]2

)2
. This follows

from the earlier relationship E[g] ≥
√
E[f ]

(
1 − Var(f)

2E[f ]2

)
, only if its RHS is non-negative. Since E[f ] ≥ 0,

this is equivalent to the condition that
(

1− Var(f)
2E[f ]2

)
≥ 0. It can be shown that this is guaranteed if N ≥ 32

for the case when ∀i, γi ≥ 1, by invoking the lower bound on E[f ] from Eqn. 28 and the upper bound on

Var(f) from Eqn. 33. More generally, if ∀i, γi ≥ 0.5 + c where c > 0, then we must have N ≥ (10.5+11c)(1+2c)
4c2485

to guarantee the afore-mentioned result.

As for different i, the variables fi(yi) are independent of each other, we get Var(f) =
∑N
i=1 Var(fi), due

to which we have:

Var(g) ≤
∑N
i=1 Var(fi)∑N
i=1E(fi)

− 1

4

(
∑N
i=1 Var(fi))

2

(
∑N
i=1E(fi))3

≤
11N + 5

∑N
i=1 1/γi∑N

i=1 max(0, 4(2− 1/γi))
. (35)

The last step follows from Eqn. 33 and 28 and gives us the final upper bound. The expression on the RHS

is a decreasing function of γi, and the upper bound is reached when ∀i, 1 ≤ i ≤ N, γi = 1/2 + c where c > 0.

This upper bound is 11
8 + 21

16c .

In order to obtain a tail bound on
√
J(y,Φx), we can use Chebyshev’s inequality to prove that P (

√
J(y,Φx) ≤490 √

N/4 +
√

11
8 + 21

16c

√
N) ≥ 1− 1

N , since the variance of
√
J(y,Φx) is upper bounded by 11

8 + 21
16c . However,

we show here that
√
J(y,Φx) is approximately Gaussian distributed which leads to tighter bounds and with

an even higher probability: P (
√
J(y,Φx) ≤

√
N/4 +

√
11
8 + 21

16c

√
N) ≥ 1 − 2e−N/2 using upper bounds

on the mean and variance of
√
J(y,Φx) from Eqns. 34 and 35 respectively. However while proving the

Gaussianity, we further get a constant factor improvement as shown in the following paragraph.495

By the central limit theorem, we know that P ( f(y)−Nµ
σ
√
N
≤ α)→ Φg(α) as N →∞, where Φg is the CDF

for N (0, 1), and µ, σ are respectively the expected value and standard deviation of fi. All the fi values
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will have near-identical variances (≤ 11
64 + 5

64(0.5+c) from Eqn. 33) if the intensity of the measurements is

sufficiently high. Due to the continuity of Φg
6, we have P ( f(y)−Nµ

σ
√
N
≤ α + α2σ2

4µσ
√
N

) → Φg(α) as N → ∞.

Hence we have P (f(y) ≤ (
√
Nµ+ ασ

2
√
µ )2)→ Φg(α) as N →∞, and taking square roots we get P (

√
f(y) ≤500

(
√
Nµ+ ασ

2
√
µ ))→ Φg(α) as N →∞. By rearrangement, we obtain P (

√
f(y)−

√
Nµ

σ/(2
√
µ) ≤ α)→ Φg(α) as N →∞.

With this development and since µ ≤ 1/4, σ ≤
√

11
64 + 5

64(0.5+c) from Eqns. 26 and 33, we can now invoke a

Gaussian tail bound to establish that P (
√
J(y,Φx) ≤

√
N/4 +

√
11
64 + 5

64(0.5+c)

√
N) ≥ 1 − 2e−N/2. Note

that the Gaussian nature of
√
J(y,Φx) emerges from the central limit theorem and is only an asymptotic

result. However we consistently observe it to be true even for small values of N ∼ 10 as confirmed by a505

Kolmogorov-Smirnov test (see [23]). �

7.2. Proof of Theorem 2

Our proof follows the approach for the proof of the key results in [1, 11] for the case of bounded, signal-

independent noise, but meticulously adapted here for the case of Poisson noise.

1. Consider an upper bound ε on
√
J(y,Φx), i.e.,

√
J(y,Φx) ≤ ε. We will later set ε using tail bounds

on the distribution of the random variable
√
J(y,Φx) from Theorem 1 of the main paper. For now,

we prove the following result:

‖ΦΨ(θ − θ?)‖2 ≤ 2
√

8Iε. (36)

We have

‖ΦΨθ − ΦΨθ?‖2 ≤ ‖ΦΨ(θ − θ?)‖1 = I‖ΦΨ(
θ

I
− θ

?

I
)‖1

≤ I
√

8J(
ΦΨθ

I
,
ΦΨθ?

I
) by Lemma 2

≤ I
√

8J(
y

I
,
ΦΨθ

I
) + I

√
8J(

y

I
,
ΦΨθ?

I
) by Lemma 1

=
I√
I

√
8J(y,ΦΨθ) +

I√
I

√
8J(y,ΦΨθ?) ≤ 2

√
8Iε.

Note that Lemma 2 can be used in the third step above because we have imposed the constraint that510

‖Ψθ?‖1 = ‖Ψθ‖1 = I and because by the flux-preserving property of Φ, we have ‖ΦΨθ‖1 ≤ I and

‖ΦΨθ?‖1 ≤ I.

2. Let us define vector h , θ? − θ which is the difference between the estimated and true coefficient

vectors. Let us denote vector hT as the vector equal to h only on an index set T and zero at all other

indices. Let T c denote the complement of the index set T . Let T0 be the set of indices containing the515

6inspired from https://tinyurl.com/ybmc7rgs

25

https://tinyurl.com/ybmc7rgs


s largest entries of θ (in terms of absolute value), T1 be the set of indices of the next s largest entries

of hT c
0
, and so on. We will now decompose h as the sum of hT0 ,hT1

,hT2
, .... Our aim is to prove a

logical and intuitive bound for both ‖hT0∪T1‖2 and ‖h(T0∪T1)c‖2.

3. We will first prove the bound on ‖h(T0∪T1)c‖2, in the following way:

(a) We have

‖hTj
‖2 =

√∑
k

h2
Tjk
≤ s1/2‖hTj‖∞,

s‖hTj
‖∞ ≤

∑
i

|hTj−1i
| = ‖hTj−1

‖1.

Therefore,

‖hTj
‖2 ≤ s1/2‖hTj

‖∞ ≤ s−1/2‖hTj−1
‖1.

(b) Using Step 3(a), we get

‖h(T0∪T1)c‖2 = ‖
∑
j≥2

hTj
‖2 ≤

∑
j≥2

‖hTj
‖2

≤ s−1/2
∑
i≥1

‖hTi‖1

≤ s−1/2‖h(T0)c‖1.

(c) Using the reverse triangle inequality and the fact that θ? is the solution of (P2), we have

‖θ‖1 ≥ ‖θ + h‖1

=
∑
i∈T0

|θi + hi|+
∑

i∈(T0)
c

|θi + hi|

≥ ‖θT0‖1 − ‖hT0‖1 + ‖h(T0)
c‖1 − ‖θ(T0)c‖1.

Rearranging the above equation gives us

‖h(T0)
c‖1 ≤ ‖h(T0)‖1 + 2‖θ − θs‖1

(d) We have

‖h(T0∪T1)c‖2 ≤ s
−1/2‖h(T0)c‖1

≤ s−1/2(‖h(T0)‖1 + 2‖θ − θs‖1)

≤ ‖h(T0)‖2 + 2s−1/2‖θ − θs‖1

Using ‖h(T0)‖2 ≤ ‖hT0∪T1
‖2, we get

‖h(T0∪T1)c‖2 ≤ ‖hT0∪T1
‖2 + 2s−1/2‖θ − θs‖1. (37)
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4. We will now prove the bound on ‖h(T0∪T1)‖2, in the following way:520

(a) We have

Φ =

√
p(1− p)
N

Φ̃ +
(1− p)
N

1N×m

ΦΨ(θ − θ?) =

√
p(1− p)
N

Φ̃Ψ(θ − θ?)+

(1− p)
N

1N×mΨ(θ − θ?)

=

√
p(1− p)
N

Φ̃Ψ(θ − θ?)+

(1− p)
N

(‖Ψθ‖1 − ‖Ψθ?‖1)

As ‖Ψθ?‖1 = ‖Ψθ‖1 = I, we get

ΦΨ(θ − θ?) =

√
p(1− p)
N

Φ̃Ψ(θ − θ?). (38)

Let us define B , Φ̃Ψ. If N ≥ O(s logm), then Φ̃ obeys RIP of order 2s with very high

probability, and so does the product B since Ψ is an orthonormal matrix [12].

From Eqn. 38 above we have,

‖B(θ − θ?)‖2 =

√
N

p(1− p)
‖ΦΨ(θ − θ?)‖2

≤ 2

√
8NI

p(1− p)
ε using Eqn. 36

∴ ‖Bh‖2 ≤ 2

√
8NI

p(1− p)
ε

Defining C1 , 2

√
8

p(1− p)
, we have

‖Bh‖2 ≤ C1

√
NIε (39)

(b) The RIP of B with RIC δ2s gives us,

‖BhT0∪T1
‖2 ≤

√
1 + δ2s‖hT0∪T1

‖2

Using Eqn. 39 and the Cauchy-Schwartz inequality,

|〈BhT0∪T1 ,Bh〉| ≤ ‖BhT0∪T1‖2‖Bh‖2

≤ C1ε
√
NI(1 + δ2s)‖hT0∪T1

‖2. (40)
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(c) Note that the vectors hT0
and hTj

, j 6= 0 have disjoint support. Consider

|〈BhT0
,BhTj

〉| = ‖hT0
‖2‖hTj

‖2|〈BĥT0
,BĥTj

〉|

where ĥT0 and ĥTj are unit-normalized vectors. This further yields,

|〈BhT0 ,BhTj 〉|

= ‖hT0
‖2‖hTj

‖2
‖B(ĥT0 + ĥTj )‖2 − ‖B(ĥT0 − ĥTj )‖2

4

≤ ‖hT0
‖2‖hTj

‖2
(1 + δ2s)(‖ĥT0

‖2 + ‖ĥTj
‖2)− (1− δ2s)(‖ĥT0

‖2 + ‖ĥTj
‖2)

4

≤ δ2s‖hT0‖2‖hTj‖2. (41)

Analogously,

|〈BhT1
,BhTj

〉| ≤ δ2s‖hT1
‖2‖hTj

‖2. (42)

(d) We observe that

BhT0∪T1
= Bh−

∑
j≥2

BhTj

‖BhT0∪T1
‖22 = 〈BhT0∪T1

,Bh〉 − 〈BhT0∪T1
,
∑
j≥2

BhTj
〉. (43)

(e) Using the RIP of B and Eqns. 40, 41, 42, 43, we obtain

(1− δ2s)‖hT0∪T1
‖22 ≤ ‖BhT0∪T1

‖22 ≤ C1ε
√
NI(1 + δ2s)‖hT0∪T1

‖2 + δ2s(‖hT0
‖2 + ‖hT1

‖2)
∑
j≥2

‖hTj
‖2.

As hT0 and hT1 are vectors with disjoint sets of non-zero indices, it follows that

‖hT0
‖2 + ‖hT1

‖2 ≤
√

2‖hT0∪T1
‖2.

Therefore, we get

(1− δ2s)‖hT0∪T1‖22 ≤ ‖hT0∪T1‖2
(
C1ε

√
NI(1 + δ2s) +

√
2δ2s

∑
j≥2

‖hTj‖2
)
. (44)

(f) We have ∑
j≥2

‖hTj
‖2 ≤ s−1/2‖h(T0)c‖1

≤ s−1/2‖h(T0)‖1 + 2s−1/2‖θ − θs‖1

≤ ‖h(T0)‖2 + 2s−1/2‖θ − θs‖1

≤ ‖hT0∪T1‖2 + 2s−1/2‖θ − θs‖1. (45)
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Combining Eqns. 44 and 45,

‖hT0∪T1
‖2 ≤ C1ε

√
NI(1 + δ2s)

1− (1 +
√

2)δ2s
+

2
√

2δ2s

1− (1 +
√

2)δ2s
s−1/2‖θ − θs‖1. (46)

5. Combining the upper bounds on ‖h(T0∪T1)‖2 and ‖h(T0∪T1)c‖2 yields the final result as follows:

‖h‖2 = ‖hT0∪T1 + h(T0∪T1)c‖2 ≤ ‖hT0∪T1‖2 + ‖h(T0∪T1)c‖2 ≤ 2‖hT0∪T1‖2 + 2s−1/2‖θ − θs‖1.

Using Eqn. 46, we get

‖h‖2 ≤ 2C1ε

√
NI(1 + δ2s)

1− (1 +
√

2)δ2s
+
(2− 2δ2s + 2

√
2δ2s

1− (1 +
√

2)δ2s

)
s−1/2‖θ − θs‖1.

Let us define C ′ ,
4
√

8(1 + δ2s)√
p(1− p)(1− (1 +

√
2)δ2s)

and C ′′ ,
(2− 2δ2s + 2

√
2δ2s

1− (1 +
√

2)δ2s

)
. This yields

‖h‖2 ≤ C ′
√
NIε+ C ′′s−1/2‖θ − θs‖1. (47)

The positivity requirements for C ′ and C ′′ are met by δ2s <
√

2 − 1. Dividing both sides by I we

obtain the first part of the theorem,

‖θ − θ?‖2
I

≤ C ′
√
N

I
ε+

C ′′s−1/2‖θ − θs‖1
I

.

However using tail bounds on
√
J(y,Φx) from Theorem 1 from the main paper, we can set ε =

√
N( 1

2 +
√
11√
8

). This yields the following:

Pr
(‖θ − θ?‖2

I
≤ C̃ N√

I
+
C ′′s−1/2‖θ − θs‖1

I

)
≥ 1− 1/N, (48)

where C̃ , C ′(1/2 + σ) where σ is the upper bound of
√

11
8 + 21

64c on the standard deviation of the

SQJSD as stated in Theorem 1. For sufficiently high intensity signals, the previous analysis shows that

σ is independent of both I and N . Also, the probability of 1 − 1/N can be refined to 1 − 2e−N/2 as525

argued in the comments after Theorems 1 and 2. �
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Figure 1: First row: Plot of mean and 99 percentile (left), and plot of variance (right) of the values of
√
J(y,Φx) versus I

for a fixed N = 500 for a signal of dimension m = 1000. Second row: Plot of mean and 99 percentile (left), and plot of the

variance (right) of the values of
√
J(y,Φx) versus N for a fixed I = 106 for a signal of dimension m = 1000. The left plot

also contains a plot of N0.43 and (N/2)0.5 for comparison. Third row: Left - Plot of variance of
√
J(y,Φx) versus N for a

signal with I = 40,m = 500, i.e. very low values of Φx. Right - Empirical CDF of
√
J(y,Φx) for N = 100, I = 104,m = 500

compared to a Gaussian CDF with mean and variance equal to that of the values of
√
J(y,Φx). Scripts for reproducing these

results are available at [23].
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Figure 2: Results for intensity experiment. Top: Mean of RRMSE versus I for the following problems: (P2) with ε =
√
N/2,

(P2) with ε = 99 percentile of SQJSD values, and following estimators with ρ by cross-validation (CV): (P4), (P-NLL), (P2-L4)

and (P-VST). Bottom: Mean of RRMSE versus I for the following problems: (P2) with ε =
√
N/2, (P2) with ε = 99 percentile

of SQJSD values, and following estimators with omniscient ρ: (P4), (P-NLL), (P2-L4) and (P-VST). All results are for an

ensemble of Q = 100 1D signals of 100 elements, for fixed N = 50 and fixed signal sparsity s = 10 in the 1D-DCT basis.
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Figure 3: Results for experiment on number of measurements. Top: Mean of RRMSE versus N for the following problems:

(P2) with ε =
√
N/2, (P2) with ε = 99 percentile of SQJSD values, and following estimators with ρ by cross-validation (CV):

(P4), (P-NLL), (P2-L4) and (P-VST). Bottom: Mean of RRMSE versus N for the following problems: (P2) with ε =
√
N/2,

(P2) with ε = 99 percentile of SQJSD values, and following estimators with omniscient ρ: (P4), (P-NLL), (P2-L4) and (P-VST).

All results are for an ensemble of Q = 100 1D signals of 100 elements, for fixed I = 106 and fixed signal sparsity s = 10 in the

1D-DCT basis.
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Figure 4: Results for sparsity experiment. Top: Mean of RRMSE versus s for the following problems: (P2) with ε =
√
N/2,

(P2) with ε = 99 percentile of SQJSD values, and following estimators with ρ by cross-validation (CV): (P4) , (P-NLL), (P2-L4)

and (P-VST). Bottom: Mean of RRMSE versus s for the following problems: (P2) with ε =
√
N/2, (P2) with ε = 99 percentile

of SQJSD values, and following estimators with omniscient ρ: (P4), (P-NLL), (P2-L4) and (P-VST). All results are for an

ensemble of Q = 100 1D signals of 100 elements, for fixed I = 106 and fixed N = 50. Signal sparsity is in the 1D-DCT basis.

37



Figure 5: Results for low-intensity experiment with increase in N : The RRMSE for P2 can increase with N . In this experiment,

the signal was DCT-sparse with s = 10,m = 103, I = 103.

Figure 6: Sample reconstruction results for Poisson-corrupted compressed measurements of an image using (P2) with ε =
√
N/2

and a 2D-DCT basis. Left to right, top to bottom: original image, reconstructions for I = 105, I = 106, I = 107, I = 108,

I = 109, I = 1010. The respective relative reconstruction errors (RRMSE) are 0.17, 0.11, 0.092, 0.089, 0.0885, 0.0884. Refer to

Section 3 for more details.
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Figure 7: RRMSE comparison for (P2) with and without imposition of the ‖x?‖1 = I constraint.
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Figure 8: Comparison of the running times of various estimators w.r.t. m with N = m/2 (top), and w.r.t. N for fixed

m = 100 (bottom). For all competing estimators including (P4), the time is recorded only for a single value of ρ without any

cross-validation.
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