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Abstract—In this paper, we propose a very simple and elegant patch-based, machine learning technique for image denoising
using the higher order singular value decomposition (HOSVD). The technique simply groups together similar patches from a
noisy image (with similarity defined by a statistically motivated criterion) into a 3D stack, computes the HOSVD coefficients of
this stack, manipulates these coefficients by hard thresholding and inverts the HOSVD transform to produce the final filtered
image. Our technique chooses all required parameters in a principled way, relating them to the noise model. We also discuss
our motivation for adopting the HOSVD as an appropriate transform for image denoising. We experimentally demonstrate the
excellent performance of the technique on grayscale as well as color images. On color images, our method produces state of
the art results, outperforming other color image denoising algorithms at moderately high noise levels. A criterion for optimal
patch-size selection and noise variance estimation from the residual images (after denoising), is also presented.

Index Terms—image denoising, singular value decomposition (SVD), higher order singular value decomposition (HOSVD),
coefficient thresholding, learning orthonormal bases, patch similarity.

1 INTRODUCTION AND OVERALL DESCRIP-
TION

Image denoising has a very rich history beginning
from the mid-70s. A plethora of different techniques
have been proposed, some of which we will survey
later. In recent times, transform-based techniques, es-
pecially in conjunction with machine learning, have
gained popularity and success in terms of perfor-
mance. In this paper, we propose a very simple,
elegant and effective algorithm that contributes to the
paradigm of learning a pointwise varying transform
basis from the noisy image pixels by exploiting the
non-local self-similarity of the image. A high level
description follows. Given an image [,, which is
the degraded version of an underlying clean image
I, our aim is to recover an estimate of I from I,,.
We assume a zero mean ii.d. Gaussian distribution
of fixed, known standard deviation o (i.e. N (0,0))
as the noise model. The steps involved in the de-
noising algorithm are: (1) At each pixel and for a
fixed patch size, a stack comprising similar image
patches is constructed [using a similarity measure
derived from the noise model, as described in Section
3.4]. (2) Higher order singular value decomposition
(HOSVD) bases (3D for grayscale and 4D for color)
are extracted for each stack. (3) Each stack is projected
onto the bases and coefficients with values below a
hard threshold (determined using well known signal
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processing principles) are truncated to obtain a set
of hypotheses (which are possible denoised values
for each pixel). (4) The patches are reassembled in
image space and the set of hypotheses at each pixel
averaged to obtain a denoised image. The only free
parameter is the patch size. This HOSVD-based image
denoising algorithm achieves close to the state of the
art performance. In Figure 1, we demonstrate sample
results of our method on a grayscale corrupted by
noise from N(0,20), and a color version of the same
image under A(0,20) noise on R,G,B.

The HOSVD is a generalization of the matrix SVD
to higher order matrices [11]. Some pioneering and
successful applications of the HOSVD in computer
vision have been proposed in [35]. In this paper, we
demonstrate the aptness of the HOSVD as a transform
basis for efficient and effective patch-based denoising.
The main thing we wish to emphasize is how such
a simple approach yields a performance comparable to
techniques that are far more complex conceptually as well
from the point of view of implementation. Note that our
approach should not be confused with HOSVD-based
denoising approaches such as [17], which are solely
designed for hyperspectral images, and which treat
the entire image as a single tensor thereby ignoring
non-local patch similarity.

Following the description of our algorithm, we
organize the rest of the paper as follows. We first
briefly survey the existing literature on denoising in
Section 2. In Section 3, we describe the genesis of our
main idea, propose an intermediate algorithm called
the non-local SVD (NL-SVD), and explain why the
HOSVD is an appropriate choice of transform for
denoising. We follow this up with extensive exper-
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Fig. 1. (a) and (d): Original images, (b) and (e): Noisy images from N(0,20) (PSNR 22.0), (c) and (f): Images
restored by HOSVD algorithm (PSNR 27.47 and 30.464). Please zoom electronically for better view.

imental results and comparisons with the generally
more complex state of the art algorithms in Section
4. We also present a criterion for automated selection
of patch-size and for estimating the noise standard
deviation (in case it were unknown), by computing
the properties of a residual image (the difference
between the noisy and denoised image). We conclude
in Section 8.

2 OVERVIEW OF LITERATURE AND RELA-
TION TO PROPOSED TECHNIQUE

The following is a rough categorization of the plethora
of image denoising techniques that have been devel-
oped: partial differential equations (PDEs), spatially
varying convolution and regression, non-local tech-
niques, transform-based techniques and techniques
based on machine learning. We begin this paper by
a brief review of these categories.

PDE-based methods diffuse a noisy image in an
anisotropic manner that extracts and respects the edge
geometry, allowing diffusion along but not across
the image edges [23], [37]. Some PDEs are obtained
from the Euler Lagrange equations corresponding to
functionals that are based on a piecewise constant [28]
or piecewise linear [40] model for natural images. In
practice, the energy functionals are augmented with
prior terms that penalize the error between the noisy
and filtered image, as per the assumed noise model
[28]. A rich class of techniques for image filtering
involve the so-called spatially varying convolutions.
In these methods, an image is convolved with a
pointwise-varying local geometry-driven mask [34].
A closely related idea is the local modeling of an
image with a low-order polynomial function whose
coefficients are computed by a weighted least-squares
regression, and these are then used to compute the
value of the (filtered) image at a central point. These
weights are chosen based on estimates of local ge-
ometry [32] or the difference in the intensity/spatial
coordinate values between neighboring pixels and
the one to be filtered [5], [33], [8]. The most recent
advancement in the area of local convolutions is the
work in [31] which preserves corners and junctions
in addition to edges, using Gabor filter responses at
several orientations in conjunction with an innovative
mixture model.

Transform-domain denoising approaches typically
work at the level of small image patches. In these
approaches, the image patch is projected onto an
orthonormal basis, such as a wavelet [7] or DCT
[38] to yield a set of coefficients, which for natural
images, are known to be sparse and decorrelated
[15]. The smaller coefficients usually correspond to the
higher frequency components of the signal which are
often dominated by noise. To perform denoising, the
smaller coefficients are modified (typically, by ‘hard
thresholding’ [16]), and the patch is reconstructed by
inversion of the transform. This procedure is repeated
for every patch. If the patches are chosen to be non-
overlapping, one can observe seam artifacts at the
patch boundaries and ringing artifacts around image
edges or salient features, which can be attenuated
by performing the aforementioned three steps in a
sliding window fashion and averaging the multiple
hypotheses, yielding superior results [7], [38]. Hard
thresholding also corresponds to the MAP estimate of
the wavelet coefficients under the assumption that the
original wavelet coefficients of clean natural images
have very sparse distributions [30], [15]. There exist
several more sophisticated methods to manipulate
wavelet coefficients, such as those that exploit depen-
dencies in transform coefficients at the same spatial
location but at different scales (e.g. in [29], or the BLS-
GSM method in [25]), or at adjacent spatial locations
[30].

Non-local techniques [4], [42], exploit the fact that
natural images often contain patches in distant re-
gions that are very similar to each other. NL-Means
obtains a denoised image by minimizing a penalty
term on the average weighted distance between an
image patch and all other patches in the image, where
the weights are decreasing functions of the squared
difference between the intensity values in the patches.
This yields an update rule that can be interpreted
as a spatially varying convolution with non-locally
derived masks. NL-Means can also be interpreted as a
minimizer of the conditional entropy of a central pixel
value given the intensity values in its neighborhood
(3], [24].

A combination of non-local and transform-domain
approaches has led to the development of the BM3D
(block matching in three dimensions) method [9]
which is considered the current state of the art in
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image denoising. This method operates at the patch
level and for each reference patch in the image, it
collects a group of similar patches (after a DCT-based
pre-filtering step), which are then stacked together to
form a 3D array. The entire 3D array is projected onto
a 3D transform basis (product of DCT/biorthogonal
and Haar bases) to yield a set of coefficients which
are hard-thresholded. The filtered patches are then
reconstructed by inversion of the transform. This
process is repeated over the entire image in a slid-
ing window fashion with averaging of hypotheses
to yield an intermediate image. This image is then
smoothed (heuristically) with a non-local empirical
Wiener filter to produce a final filtered image. In this
paper, we refer to these two output stages as ‘BM3D1’
and ‘BM3D?2’ respectively. The authors claim that the
group of patches exhibit greater sparsity collectively
than each individual patch in the group, citing that
as the reason for the state of the art performance
of the BM3D method. The results using the BM3D
method are outstanding. However the method is com-
plex with several tunable parameters such as choice
of bases, patch-size, transform thresholds, similarity
measures, etc.

In the transform domain methods such as [9], [38],
a fixed transform basis is chosen for signal repre-
sentation. There exist several papers, e.g. [15], based
on learning the transform basis from the statistics
of image features or patches. There has been recent
interest in learning overcomplete bases (also called
dictionaries) [22], [18], whose inherent redundancy
leads to sparser representation of natural signals. In
the popular KSVD algorithm [1], an overcomplete
dictionary as well as sparse representations of the
patches in that dictionary are learned in an alternating
minimization framework, starting from the overlap-
ping patches from a noisy image, using column-wise
SVD updates. A multi-scale variant of this algorithm
(known as MS-KSVD) learns dictionaries to represent
patches at two or more scales leading to further
redundancy [20]. This algorithm has yielded state of
the art performance, on par with the BM3D algorithm
[20]. As against learning a single overcomplete dictio-
nary for the entire image, the authors of the KLLD
(K locally learned dictionaries) approach [6] perform
a clustering step using K-Means on (coarsely pre-
filtered) patches from the noisy image and then filter
the patches from each cluster separately by projecting
them onto lower-rank bases (learned by PCA) coupled
with a kernel regression framework from [32]. The
entire procedure is iterated for better performance.
There also exists papers such as [21] and [43] which
infer spatially-varying orthonormal bases at each pixel
using PCA.

3 GENESIS OF THE IDEA

In this section, we visit several variants of the patch
SVD for image denoising, propose an intermediate en-

semble SVD algorithm, motivate the idea of HOSVD
as an appropriate transform for image denoising, and
then describe the HOSVD algorithm in detail.

3.1

Given a matrix A of size m; X me, there exists a
factorization of the form A = USVYT, where U is
a mi1 X mp orthonormal matrix, S is a m1 X mao
diagonal matrix of positive ‘singular’ values and V' is
a mg X mo orthonormal matrix. The columns of V and
the columns of U (respectively called the right and left
singular vectors) are respectively the eigenvectors of
the column-column correlation matrix AT A and the
row-row correlation matrix AA”. The singular values
in S are the square roots of the eigenvalues of AT A
(or AAT). The SVD also gives us the optimal low-
rank decomposition of A4, i.e. the optimal solution to
E(A) = ||A — A|]? subject to the constraint rank(A) =
k, k < my,k < my is given by A = |U,SV,I|?
where U, and V), are the first £ columns of U and
V respectively and S contains the & largest singular
values of S. The singular values of natural images
follow an exponential decay rule and the SVD bases
have a frequency interpretation [26], [2]. Given a noisy
image A (a degraded version of an underlying clean
image A.) affected by noise from N(0,0), filtering
is accomplished in three steps: (1) computing the
decomposition of small patches A; = U;S;V;T of size
p % p in sliding window fashion, (2) manipulating the
singular values {S;}, and (3) averaging the hypotheses
appearing at each pixel to produce a final filtered
image. An example of this procedure is illustrated in
Figure 2 for different methods of manipulating the
singular values: (1) rank 1 or rank 2 truncation of each
patch, (2) hard thresholding, i.e. nullification of patch
singular values below a fixed threshold, in this case
chosen to be o+/2logp? (which, as shown in [13], is
the optimal threshold from a statistical risk viewpoint,
for any orthonormal basis, and for A (0,0)), and (3)
truncation of singular values in such a way that the
residual at each patch has a standard deviation of o.

Matrix SVD for Image Denoising

3.2 Oracle Denoiser with the SVD

Figure 2 shows the poor performance of the aforemen-
tioned approach. Basically, the singular vectors of a
noisy patch are unable to adequately separate signal
from noise. There are two key observations we make
here. Firstly, let Q and @), be corresponding patches
from A, and A, respectively. Given the decomposition
Qn = U,S,V,I, the projection of @ (the true patch)
onto the bases (U,,V,) is given as So = ULQV,.
This matrix S is non-diagonal and hence contains
more non-zero elements than S,. Despite this, if we
could somehow change the entries in S,, to match
those in Sg, we would now have a perfect denoising
technique. Secondly, the additive noise doesn’t affect
just the singular values of the patch but the singular
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Fig. 2. Patch-based SVD filtering on the Barbara image: (left to right) clean Barbara image, noisy image with
Gaussian noise of o = 20 (PSNR = 22.11), filtered image with rank 1 truncation in each patch (PSNR = 23.9),
filtered image with rank 2 truncation in each patch (PSNR = 25.05), filtered image with nullification of singular
values below 3¢ in each patch (PSNR = 23.42), filtered image with truncation of singular values in each patch so
as to match noise variance (PSNR = 25.8). Zoom into pdf file for a detailed view.

Fig. 3. Oracle filter with SVD: (left to right) clean Barbara image, noisy image with Gaussian noise of o = 20
(PSNR = 22.11), filtered image with hard threshold 3¢ in each patch (PSNR = 36.9), noisy image with Gaussian
noise of o = 40 (PSNR = 22.11), filtered image with hard threshold 3o in each patch (PSNR = 31.34). Zoom into

pdf file for a detailed view.

vectors as well. Bearing this in mind, it is strange
that SVD-based denoising techniques do not seek to
manipulate the orthonormal bases and instead focus
only on further sparsifying the singular values. We
now perform the following experiment which starts
with a noisy image and assumes that the true singular
vectors of the clean patch underlying every noisy
patch in the image are provided to us by an oracle.
Let the SVD for patch Q (from A.) be Q = USVT. We
project the noisy patch @, onto (U,V) to produce a
matrix Sg, = UTQ,V, following a sliding window
approach with a hard threshold o+/2logp? (as per
[13]) on Sg,, and averaging of multiple hypotheses.
We term this method as the ‘oracle denoiser’. Sample
experimental results with the above technique are
shown in Figure 3 for two noise levels: 20 and 40.
The resulting PSNR values of this ideal denoiser far
exceed the state of the art methods (see Tables 1 and
2). Clearly, this experiment is not possible in practice,
however it serves as a benchmark and chalks out a
path for us to explore: manipulating the SVD bases
of a noisy patch, or somehow using bases that are
‘better” than the SVD bases of the noisy patch, may
be the key to improving denoising performance.

3.3 Nonlocal SVD with Ensembles of Similar
Patches

We now explore a non-local generalization of the
SVD. Given a patch P from the noisy image, we
look for other patches in the image that are ‘similar’
to P, where the notion of similarity is defined in
Section 3.4. Let us consider that there are K such

similar patches (including P) which we label as {P;}
where 1 < i < K. Next, we ask what single pair of
orthonormal matrices Uy, and Vj, will provide the best
rank-k approximation to all the patches { #;}. In other
words, what orthonormal pair (Uy, Vj;) minimizes the
following energy?

K
E(Uk A8} Vi) = D 1I1P = URSOVTIR ()

i=1

where Vi, S € RF*k. The solution is given by an
iterative minimization (starting from random initial
conditions) presented in [26], [39]. Note that the ma-
trices {Si(k)} in this case are not diagonal and the
bases (U, Vy) do not correspond to the individual
SVD bases but to a basis pair that is common to all the
chosen patches. An approximate closed-form solution
to minimize the energy function in Equation 1 and the
associated error bounds are presented in [12]. The so-
lution is given by the first k eigenvectors of the ensem-
ble row-row and column-column correlation matrices
C. = K. PP and C. = YK, PTP; respectively
(corresponding to the k largest eigenvalues). We term
the bases thus derived the ‘NL-SVD’ bases, and have
observed that they are related to the discrete cosine
transform (DCT) bases (see the supplemental material
accompanying this paper).

We use this framework in a denoising algorithm
and we shall show later that this produces excellent
denoising results. We divide the given noisy image
into patches. For each ‘reference’ patch P, we collect
patches similar to it and obtain the full rank NL-SVD
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bases U and V' (to avoid having to select the ‘optimal’
rank k, which need not be the same for every patch).
Next, we project each P onto (U, V') producing the co-
efficient matrix S") = U PV, nullify the coefficients
with values smaller than the threshold o+/2logp?
(from [13]), followed by transform inversion and av-
eraging to produce the filtered image.

3.4 Choice of Patch Similarity Measure

Given a reference patch P,y in a noisy image, we
can compute its K nearest neighbors from the image,
but this requires a choice of K which may not be the
same for every image patch. Hence, we use a distance
threshold 7; and select all patches P; such that | P, s —
P||? < 74. Assuming a fixed, known noise model -
N(0,0), if P,.y and P, were different noisy versions
of the same underlying patch, the following random
variable would have a x?(n?) distribution:

P kT P1k 2
= 3 Frerk — P eff202 S @
k=1

The cumulative of a x?(z) random variable is given
by F(zx;z) = ~(5,5) where v(z,a) stands for the
incomplete gamma function defined as v(z,a) =
Tty Jomo €117 1dt, with T(a) = [(° e~"t*~Vdt being
the Gamma function. We observe that if = > 3, for
any x > 3z, we have F(z;z) > 0.99. Therefore for a
patch-size of n x n and under the given o, we choose
74 = 60°n?. Thus if two patches are noisy versions
of the same clean patch, this threshold will consider
them to be similar, with a very high probability. But
the converse is not true, and therefore we may collect
patch pairs that satisfy the threshold but are quite
different structurally (see supplemental material for an
example). This motivates us to use a hypothesis test
(the one-sided Kolmogorov-Smirnov (K-S) test), in the
NL-SVD algorithm. To avoid having to choose a fixed
significance level, we use the p-values output by the
K-S tests as a weighting factor in the computation of
the correlation matrices, rewriting them as follows:

K
Cr=> pis(Pres, P)PPL ®)
=1

K
Ce= pKs(Pres, Pi)P'P; )
i=1

with pxs(Pres, P;) being the p-value for the K-S test
to check how well the values in P,.; — P; conform to
N(0,/20). This thus gives us a robust version of the
2D-SVD. In practice, we observed that pxs(Prcs, P;)
was usually very close to zero if || P — P;||*> > 30%n?.
Hence we used the less conservative bound 7, =
302n? in our experiments, which led to some improve-
ment in computational speed. We also implemented
a variant of our method in which the hypothesis
test was entirely ignored and equal weights were

used for all patches. Surprisingly, this did not lead to
decrease in denoising performance. Nonetheless, we
still used the hypothesis test because it is a principled
way of mitigating the effect of false positives. Note
that the KS-test criterion was used only in the NL-SVD
algorithm, and not in the HOSVD algorithm from
Section 1 and 3.5.

3.5 Motivation for the Higher Order Singular Value
Decomposition

In the NL-SVD algorithm from Section 3.3, consider a
reference patch P,.y in the noisy image and let its un-
derlying clean patch be Q,.r. Now assume a scenario
where all the K patches {P;} (in Section 3.3) were
noise-corrupted versions of Q.. In such a case, we
observe that limx_, o Zfil PP = QrefQZ;f + oI
Consequently, for large K, we have a good chance
of being able to estimate the SVD bases of ).y and
thus approach the oracle estimator from Section 3.2.
However, such a situation is not possible in most
natural images, and the patches that qualify as similar
will usually not be exact copies of Q,.r modulo noise.
Hence, we adopt the following principle: if a group of
patches are similar to one another in the noisy image,
the denoising should take this fact into account and
not denoise them independently. With this is in mind,
we group together similar patches and represent them
in the form of a 3D stack (see Equation 5 below). The
main idea is that the filtering is performed not only
across the length and breadth of each individual (2D)
patch, but also in the third dimension so as to allow
for similarity between intensity values at correspond-
ing pixels of the different patches. The idea of joint
filtering of multiple patches has been implemented
earlier in the BM3D algorithm [9] (see also Section 2),
but with fixed bases. However, in this paper, we use
this idea to learn spatially adaptive bases. An example
in Figure 4 illustrates the superiority of our HOSVD
approach over NL-SVD, for denoising a portion of
the Barbara image (the tablecloth texture) from Figure
5(a). The third and fourth row of Figure 4 show the
application of coefficient thresholding for smoothing
of the 11 structurally similar patches of size 64 x 64 us-
ing the NL-SVD and HOSVD transforms respectively,
while the last two rows show the filtered patches
after the averaging operations (employing the same
criteria for patch similarity and coefficient threshold-
ing). These figures reveal that HOSVD preserves the
finer textures on the tablecloth surface much better
than NL-SVD which almost erases those textures. We
have also experimentally confirmed the importance
of building the stack from similar patches: randomly
created stacks produce transforms that yield blurry
and grainy images (see supplemental material).
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Fig. 4. Eleven patches of size 64 x 64 from the original Barbara image (row 1), its noisy version under N (0, 20)
(row 2), from the NL-SVD output before averaging (row 3), from the HOSVD output before averaging (row 4),
from the NL-SVD output after averaging (row 5), from the HOSVD output after averaging (row 6). Zoom into pdf

file for a better view.

3.6

Given a p x p reference patch P,.¢ in the noisy image
I, we create a stack of K — 1 similar patches. Here
similarity is defined as in Section 3.4, and hence K
varies from pixel to pixel. Let us denote the stack
as Z € RP*P*K_The HOSVD of this stack given as
follows [11]:

Z=8x UMY x,U? x, UG (5)

Implementation of the HOSVD for denoising

where U(Y) € Rp>r, (D) ¢ RP*P and UG € REXK are
orthonormal matrices, and S is a 3D coefficient array
of size pxpx K. Here, the symbol x,, stands for the n‘"
mode tensor product defined in [11]. The orthonormal
matrices UM, U®?) and U®) are in practice computed
from the SVD of the unfoldings Z(;), Z2) and Z3,
respectively [11]. The exact equations are of the form
Z(k) _ U(k) . S(k) . (Umod(k+1,3) ® Umod(k+2,3))T, where
1 < k < 3 (which are equivalent representations
for the HOSVD). However, the complexity of the
SVD computations for K x K matrices is O(K?).
For computational speed, we impose the constraint
that X < 30 1. The patches from Z are then pro-
jected onto the HOSVD transform. The parameter
for thresholding the transform coefficients is picked
to be oy/2logp?K, again as per the rule from [13].
The stack Z is then reconstructed after inverting the
transform, thereby filtering all the individual patches.
The procedure is repeated over all pixels in sliding
window fashion with averaging of hypotheses. Note
that unlike NL-SVD (see Section 3.3), we filter all the
individual patches in the ensemble and not just the
reference patch. This affords additional smoothing on
all the patches which was required due to the upper
limit of K < 30 unlike the case with NL-SVD.

We also augment the HOSVD denoising with a
Wiener filter step. Let Z be a stack of similar patches
from the HOSVD filtered image (using the same
statistical criterion for similarity), and Z, be the
corresponding stack from the noisy image. Let the

1. We experimentally confirmed that increasing the value of K
(on all images, on several noise levels, for K € 10 : 10 : 120) does
not adversely affect performance.

coefficients of Z and Z,, on the HOSVD bases of Z
be denoted as ¢ and ¢,, respectively. Then the filtered
coefficients of Z,, denoted as ¢,, are computed as
follows, followed by the usual transform inversion
and averaging:

Cn >
2402’

We call this second stage as "'HOSVD2'.

Cp =

(6)

3.7 Relationship of NL-SVD and HOSVD/HOSVD2
to Existing Literature

While our HOSVD/HOSVD2 approach and the
BM3D algorithm (Section 2) both jointly filter a group
of similar patches, there are two major differences.
Firstly, in our approach, the entire 3D basis is learned
from the noisy data, whereas BM3D uses fixed bases.
Secondly, as BM3D performs a Haar transform in
the third dimension, it implicitly treats the patches
as a signal in the third dimension. On the other
hand, our HOSVD/HOSVD2 method does not im-
pose any such ‘signalness’ in the third dimension. In
fact, scrambling the order of the patches in the third
dimension will produce the same values of the pro-
jection coefficients, except for corresponding permu-
tation operations. Hence, the ordering of patches in
the third dimension may potentially alter the output
of a denoising algorithm such as BM3D, whereas our
method will still remain invariant to this change.

In contrast to learning a global dictionary (as in
KSVD [1]) or dictionaries for each patch-cluster (as
in KLLD [6]), our proposed HOSVD/HOSVD2 tech-
nique learns bases that vary from pixel to pixel,
obviating the need for any iterative optimization (just
like PCA-based techniques like [43] and [21]). Both
[21] and [43] use PCA to derive bases from vectorized
patches, whereas NL-SVD and HOSVD/HOSVD2 de-
rive orthonormal basis-pairs from patches represented
as matrices with a row-column separation, leading to
much better computational efficiency (see Section 5).
We present excellent empirical results, amongst the
best reported in current literature, on both grayscale
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and color images. Other points of merit of our tech-
nique are its conceptual and implementation simplic-
ity and a principled approach toward selection of all
required parameters in terms of noise standard devi-
ation. This also holds true for the NL-SVD algorithm,
but its empirical performance is not on par with that
of HOSVD/HOSVD2. We would like to emphasize
that just like most contemporary techniques [9], [1],
our methods NL-SVD, HOSVD/HOSVD?2 are specif-
ically designed for zero mean i.i.d. Gaussian noise of
known noise standard deviation. However, we present
a principled method to estimate the noise standard
deviation in a blind scenario in an indirect manner,
based upon the properties of the residual images (i.e.
the difference between the true and the denoised
image).

4 EXPERIMENTAL RESULTS

GRAYSCALE IMAGES

We now describe our experimental results. For our
noise model (i.e. additive and i.i.d. N'(0, o)), we pick
o € {15,20,25,30,35}. We perform experiments on
Lansel’s benchmark dataset [16] consisting of 13 com-
monly used images all of size of 512 x 512. We
pit NL-SVD, HOSVD/HOSVD2 against the follow-
ing: NL-Means [4], KSVD [1], BM3D1 and BM3D2
(i.e. post Wiener filtering) [9], our implementation
of BM3D using DCT bases for all three dimensions
of the patch stack (as against the combination of
biorthogonal /DCT bases and Haar bases as in [9]),
which we term ‘3D-DCT’ (see Section 4.2), the oracle
denoiser from Section 3.2, and both the stages of
the PCA-based algorithm from [43] (denoted here as
LPG-PCA1 and LPG-PCA2, where LPG stands for
local pixel grouping). At each noise level, we com-
pare results in terms of two metrics: (1) PSNR value
(where PSNR %' 101og,, 222%), and (2) SSIM value
(structured similarity index) computed at patch-size
11 x 11 (as per the implementation in [36]). All these
metrics are measured by first writing the images into
a file in a standard image format and then reading
them back. Despite the minor quantization issues
introduced, we follow this approach as it represents
realistic digital storage of images. Similarly, for all
o values, the noisy images are generated by adding
Gaussian noise to the original image and converting
the result to an image file ([0-255] range). In the
case of BM3D, NL-Means and LPG-PCA, we used
the software provided by the authors online 2. For
KSVD, we used the results already reported by the
authors on the denoising benchmark [16]. These re-
sults were available only for noise levels of ¢ =5 to
o = 25. The noise-level ¢ is specified as input for all
algorithms, which is required for optimal parameter

ON

2. http:/ /www.ipol.im/pub/algo/bcm_non_local_means_
denoising, http://www.cs.tut.fi/~foi/GCF-BM3D, http://www4.
comp.polyu.edu.hk/~cslzhang/code/Program_lpgpca.zip

selection in their provided implementations. For NL-
SVD and HOSVD/HOSVD2, we used 8 x 8 patches
in all experiments and a search window radius of
20 around each point. The search window radius is
not a free parameter as it affects only computational
efficiency and not accuracy. In fact larger sizes of the
search window did not improve the results in our
experiments. There are no other free parameters in our
technique, apart from the patch-size which is also true
of all other patch-based algorithms. Later, in Section
6, we present a criterion for patch-size selection by
measuring the correlation coefficient between patches
from the residual image (i.e. difference between noisy
and denoised images). For NL-means, we used 9 x 9
patches throughout, with a search window radius of
20. For BM3D implementation, we used the default
settings of all the various parameters as obtained
from the authors’ software (their selected patch-size
is again 8 x 8). All our experimental results have been
reported on all 13 images from the Lansel benchmark
[16]. The PSNR and SSIM results for o € {20,30} are
presented in Tables 1 and 2, where we have used
numbers to refer to image names as follows: 13 -
airplane, 12 - Barbara, 11 - boats, 10 - couple, 9 - elaine,
8 - fingerprint, 7 - goldhill, 6 - Lena, 5 - man, 4 -
mandrill, 3 - peppers, 2 - stream, 1 - Zelda. See the
supplemental material for results on noise levels such
as o € {15,25,60,80,100}). From these tables, it can
be observed that HOSVD is superior to NL-Means,
3D-DCT and NL-SVD, whereas NL-SVD is superior
to 3D-DCT and NL-Means. Indeed, HOSVD is also
superior to KSVD and BM3D1 at higher noise levels
(0 > 20) on most images in terms of PSNR/SSIM
values, though it lags slightly behind BM3D2. The av-
erage difference between the PSNR values produced
by HOSVD and BM3D2 at noise levels 20 and 30 is
0.281 and 0.343 respectively (Tables 1 and 2). In all
cases, the oracle is a clear winner in terms of PSNR.
BM3D2 involves a Wiener filter step, which relies
on the assumption that the transform coefficients of
the underlying image are Gaussian distributed, which
is not a valid assumption for coefficients of natural
image patches, but which alone makes a Wiener filter
the optimal least squares estimator [27]. We, how-
ever, have obtained a prominent gain in performance
when we augmented HOSVD with a Wiener filter
step (denoted as ‘HOSVD?2’), further reducing the
gap between our method and BM3D2. At very high
noise levels (¢ >= 60), HOSVD?2 in fact occasionally
outperforms BM3D2 (see supplemental material).

4.1 Comparison with KSVD

The PSNR and SSIM values of NL-SVD are compa-
rable to those reported for KSVD, whereas HOSVD
(and esp. HOSVD?2) often outperforms KSVD. Also,
NL-SVD and HOSVD have other conceptual and
implementation-related advantages as compared to
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TABLE 1
PSNR and SSIM values for noise level ¢ = 20 on the benchmark dataset
Image # | NL-SVD | NL-Means | KSVD | HOSVD | HOSVD2 | 3DDCT | BM3D1 | BM3D2 | Oracle | LPG-PCA1 | LPG-PCA2
13 31.936 30.540 32.266 32.015 32.382 31.433 32.028 32.552 37.695 31.446 32241
12 30.878 29.421 30.762 31.533 31.845 30.543 31.026 31.660 36.603 30.798 31.385
1 30.187 28.911 30.360 30.491 30.646 29.596 30.395 30.802 35.510 30.020 30.251
10 29.961 28.387 29.929 30.299 30.472 29.422 30.252 30.698 36.066 29.839 30.054
9 31.135 29.924 31.341 31.354 31.207 30.887 31.284 31.433 34.178 31.09 31.363
8 28.053 27.424 28.454 28.563 28.724 27.389 28.403 28.794 35.318 28.367 28.642
7 30.098 28.931 30.166 30.536 30.567 29.532 30.397 30.726 35.241 30.052 30.227
6 32.240 30.473 32.371 32411 32.653 31.903 32.375 32.950 36.975 31.853 32.633
5 28.939 27.995 28.853 29.291 29.448 28.250 29.200 29.464 34.989 29.234 29.360
4 25.976 25.933 26.372 25.720 26.360 25.543 26.260 26.582 33.434 26.509 26.420
3 32.009 30.357 32.005 32.166 32.245 31.740 32.138 32.498 36.260 31.663 32.331
2 26.800 26.375 27.062 26.722 27.026 25.892 26.918 27.192 33.485 27.022 26.947
1 33.401 30.902 33.494 33.525 33.667 33.169 33.430 34.075 37971 32.784 33.770
13 0.885 0.802 0.893 0.869 0.888 0.885 0.875 0.899 0.959 0.817 0.895
12 0.882 0.821 0.877 0.897 0.902 0.884 0.884 0.903 0.956 0.862 0.899
11 0.801 0.753 0.803 0.814 0.821 0.789 0.809 0.824 0.922 0.789 0.809
10 0.816 0.755 0.812 0.831 0.840 0.806 0.828 0.845 0.945 0.807 0.825
9 0.747 0.723 0.755 0.761 0.750 0.740 0.755 0.754 0.859 0.753 0.761
8 0.914 0.903 0.922 0.926 0.930 0.899 0.922 0.930 0.984 0.922 0.923
7 0.778 0.736 0.776 0.800 0.804 0.761 0.793 0.807 0.924 0.775 0.790
6 0.858 0.782 0.861 0.852 0.867 0.861 0.855 0.875 0.938 0.817 0.872
5 0.775 0.729 0.768 0.792 0.798 0.753 0.784 0.796 0.930 0.789 0.808
4 0.765 0.760 0.780 0.764 0.789 0.722 0.776 0.792 0.936 0.787 0.778
3 0.835 0.769 0.835 0.830 0.835 0.836 0.831 0.843 0.918 0.800 0.846
2 0.764 0.746 0.773 0.767 0.783 0.700 0.771 0.786 0.942 0.778 0.773
1 0.867 0.777 0.869 0.859 0.866 0.871 0.862 0.880 0.944 0.823 0.879
TABLE 2
PSNR values for noise level o = 30 on the benchmark dataset
Image # | NL-SVD | NL-Means | HOSVD | HOSVD2 | 3DDCT | BM3D1 | BM3D2 | Oracle | LPG-PCAl1 | LPG-PCA2
13 29.875 27.680 30.079 30.356 29.437 30.101 30.711 35.098 28.885 30.031
12 28.639 26.853 29.462 29.795 28.498 28.952 29.793 33.696 28.378 29.147
1 28.305 26.368 28.650 28.862 27.656 28.466 29.017 33.380 27.758 28.243
10 27.740 25.665 28.290 28.462 27.268 28.154 28.759 33.635 27.438 27.853
9 29.997 27.865 29.976 30.016 29.770 29.947 30.420 32.770 29.129 30.006
8 25.863 24.552 26.676 26.825 25.434 26.382 26.874 32.251 26.010 26.268
7 28.357 26.576 28.798 28.918 27.993 28.654 29.145 33.160 27.990 28.464
6 30.233 28.080 30411 30.757 30.000 30.417 31.194 34.597 29.422 30.659
5 26.778 25.176 27.278 27.331 26.248 27.109 27.353 32.041 27.177 27.471
4 24.139 23.396 24.293 24.502 23.094 24.208 24.551 30.233 24.265 24.207
3 29.996 27438 30.150 30.306 29.824 30.164 30.673 34.259 29.420 30.638
2 24.884 23.858 25.278 25.340 24.041 25.115 25.336 30.289 25.055 25.008
1 31.549 28.388 31.385 31.717 31.166 31.267 32.130 35.861 30.202 31.828
13 0.853 0.717 0.815 0.855 0.856 0.832 0.873 0.944 0.704 0.860
12 0.824 0.730 0.836 0.861 0.840 0.833 0.868 0.930 0.775 0.855
11 0.746 0.650 0.752 0.769 0.736 0.750 0.779 0.901 0.689 0.752
10 0.742 0.639 0.760 0.777 0.737 0.757 0.790 0.925 0.703 0.757
9 0.715 0.644 0.710 0.713 0.716 0.712 0.727 0.829 0.664 0.723
8 0.860 0.826 0.890 0.894 0.851 0.881 0.895 0.968 0.873 0.877
7 0.713 0.631 0.733 0.746 0.707 0.728 0.753 0.898 0.675 0.726
6 0.815 0.688 0.791 0.825 0.825 0.803 0.843 0.918 0.712 0.836
5 0.690 0.610 0.710 0.721 0.677 0.704 0.722 0.891 0.694 0.745
4 0.664 0.624 0.686 0.703 0.587 0.677 0.701 0.896 0.677 0.678
3 0.796 0.676 0.771 0.794 0.804 0.782 0.811 0.900 0.705 0.818
2 0.649 0.609 0.687 0.696 0.592 0.675 0.690 0.897 0.673 0.671
1 0.829 0.683 0.797 0.824 0.837 0.806 0.845 0.929 0.714 0.847

KSVD. KSVD learns an overcomplete dictionary on
the fly from the noisy image, requiring expensive iter-
ated optimizations prone to local minima (unlike NL-
SVD/HOSVD/HOSVD2), which puts artificial limits
on the size of the dictionary that can be learned [20].
The KSVD algorithm requires parameters that are not
easy to tune: the number of dictionary vectors (K),
parameter for the stopping criterion for the pursuit
projection algorithm and the tradeoff between data
fidelity and sparsity terms. Some of these parameters
depend on the noise standard deviation which actu-
ally changes when the image is iteratively filtered.

4.2 Comparison with BM3D and 3D-DCT

We refer the reader to Section 2 for a brief descrip-
tion/comparison of the BM3D method. The overall
BM3D algorithm contains a number of parameters:
the choice of transform for 2D and 1D filtering
(whether Haar/DCT/Biorthogonal wavelet), the dis-
tance threshold for patch similarity, the thresholds
for truncation of transform domain coefficients, a
parameter to restrict the maximum number of patches
that are similar to any one reference patch, and the
choice of pre-filter while computing the similarity
between patches in the first stage (BM3D1). There
is an analogous set of parameters for the second
stage that uses empirical Wiener filtering (BM3D2).
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In fact, given the complex nature of this algorithm,
it may be difficult to isolate the relative contribution
of each of its components. Note that NL-SVD and
HOSVD also require thresholds for patch similarity
and truncation of transform domain coefficients, but
these are obtained in a principled manner from the
noise model as explained in Section 3.4. The BM3D
implementation in [9] uses fixed thresholds with an
imprecise relationship to the noise standard deviation.
For instance, it uses a distance threshold of 2500 if
the noise 0 < 40 and a threshold of 5000 otherwise,
a transform domain threshold of 2.70, and a patch-
size of 32 x 32 and a distance threshold of 400 in the
Wiener filtering step. Unlike BM3D, we do not resort
to any pre-filtering methods for finding the distance
between noisy patches, even at high noise levels. Also
for HOSVD2 which uses Wiener filtering, we stick to
the same patch-size (8 x 8) and distance threshold, as
for HOSVD.

We emphasize that the principled selection of a fixed
transform basis (whether DCT or wavelet) is a difficult
task and significantly affects the denoising performance.
We seek to illustrate this point by comparing NL-
SVD and HOSVD with our ‘3D-DCT’ implementation.
We again put an upper limit of K = 30 on the
number of similar patches in an ensemble, and use
the hard threshold of oy/logn?K, exactly as in our
HOSVD implementation. As can be seen in Table 1
and 2 (and results in the supplemental material), NL-
SVD and HOSVD consistently outperform 3D-DCT.
We believe this sufficiently illustrates the advantages
of our method for non-local basis learning.

4.3 Visual Comparison of the Denoised Images
and their Residuals

The original and noisy image (from N(0,20)), and
the denoised images produced by NL-SVD, NL-
Means, BM3D1, BM3D2, HOSVD and HOSVD2 can
be viewed in Figures 5, 6 and 7. The reader is urged
to zoom into the pdf file to view the images more
carefully. Upon zooming, one can observe shock-like
artifacts in certain portions of the denoised images
produced by BM3D, especially by BM3D2. One ex-
ample is Barbara’s face from Figure 5 - see Figure
8 for a zoomed-in view. These artifacts are absent
in NL-SVD though it produces a blurrier image.
HOSVD as well as BM3D outperform NL-SVD on
finer edges and texture, however HOSVD does not
produce the shock artifacts that BM3D does. The
images produced by HOSVD, however, have a finely
grainy appearance, because collective smoothing of
multiple patches tends to undersmooth them slightly.
Overall, amongst all methods, the images produced
by the oracle are undoubtedly the best, especially for
preserving fine shading effects that all other methods
erase.

We performed a more detailed numerical compari-
son between the outputs of NL-SVD, BM3D1, BM3D2

and HOSVD on a portion of the Barbara image.
For this we computed the absolute difference images
between the true image and the outputs of these algo-
rithms, as shown in Figure 8. The mean absolute error
values over the chosen subimage were 5.96 (for NL-
SVD), 5.76 (BM3D1), 5.30 (BM3D2) and 5.50 (HOSVD).
The mean L2 errors were 61.89, 58.13, 49.87 and 53.02
respectively. The errors produced by NL-SVD were
greater than those by BM3D1/BM3D2 for only 46-
50% of the pixels, and the corresponding range for
HOSVD was only 43.5-46%. We also ran a Canny edge
detector (with the default parameters from the MAT-
LAB implementation) on the true image, and com-
puted the errors only on the edge pixels. The mean
absolute errors on edge pixels were 6.42, 6.418, 6.13
and 6.128 for NL-SVD, BM3D1, BM3D2 and HOSVD
respectively, whereas the mean L2 errors on edge
pixels were 68.63, 68.65, 62.15 and 62.75 respectively.
However, for only around 46-47% percent of the edge
pixels, was the error for NL-SVD greater than that
for BM3D1/BM3D2, and the corresponding range for
HOSVD was 42-43%. This further shows that HOSVD
and BM3D yield comparable performance on edges
and textured regions.

The residual images for various algorithms are
shown in the bottom rows of Figures 5, 6 and 7.
Note that the residual is calculated as the differ-
ence between the noisy and denoised image, with
the difference image normalized between 0 and 255.
Ideally, the residual should obey the properties of the
noise model and therefore necessarily be devoid of
structure. NLMeans produces undesirably structured
residuals. Some structure is visible in the residuals
produced by NL-SVD and BM3D1, whereas those by
produced by BM3D2 and HOSVD are the noisiest, and
visually quite similar to those produced by the oracle.

5 COMPARISON OF TIME COMPLEXITY

Assume that the number of image pixels is IV, that the
average time to compute similar patches per reference
patch is Tg, that the average number of patches
similar to the reference patch is K and that the size
of the patch is p x p. The complexity of NL-SVD is
O(|Ts + Kp®|N) because the eigendecomposition of a
pxp matrix and the multiplication of two pxp matrices
are both O(p*) operations. BM3D requires O(Kp?)
time for the 2D transforms and O(K?p?) time for the
1D transforms, if the transforms are implemented us-
ing simple matrix multiplication. This leads to a total
complexity of O([Ts + Kp* + K?p?|N). If algorithms
such as the fast Fourier transform are used, this com-
plexity reduces to O([Ts + Kp?logp + p*>K log K]N).
If we assume that p <« K (which is desirable for
good performance of a non-local algorithm), then NL-
SVD is slightly faster than the more efficient version
of BM3D. The complexity of HOSVD is obtained as
follows. Given a patch stack of size p x p x K, the size
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Fig. 5. Barbara image: (a) clean image, (b) noisy version with & = 20/PSNR = 22, output and residual for NL-
SVD in (c) and (j), for NL-Means in (d) and (k), for BM3D1 in (e) and (1), for BM3D2 in (f) and (m), for HOSVD in
(g) and (n), for HOSVD2 in (h) and (o), for the oracle in (i) and (p). Zoom into pdf file for a detailed view. PSNR

values in Table 1, image 12.
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Fig. 6. Boatimage: (a) clean image, (b) noisy version with o = 20/PSNR = 22, output and residual for NL-SVD in
(c) and (j), for NL-Means in (d) and (k), for BM3D1 in (e) and (I), for BM3D2 in (f) and (m), for HOSVD in (g) and
(n), for HOSVD2 in (h) and (o), for the oracle in (i) and (p). Zoom into pdf file for a detailed view. PSNR values in

Table 1, image 11.

of two of its unfoldings is p x pK, the SVD of which is
O(Kp?). The third unfolding has size K x p?, the SVD
of which is O(min(K?p?, Kp*)). Hence the total com-
plexity of BM3D is O([Ts + Kp*+min(K?p?, Kp*)|N).
Note again that NL-SVD and HOSVD follow the con-
cept of matrix based patch representations as followed
by [26], [12] and [14]. PCA-based methods such as [21]
and [43] represent each p x p patch as a p? x 1 vector
and build a p? x p? covariance matrix to produce the
spatially adaptive bases, leading to a time complexity
of O([Ts + Kp* + p°IN) which is far greater than
that of NL-SVD or HOSVD. The KSVD technique also
follows a vector-based patch representation and the KX
learned bases have size p? x 1 (with K > p?), leading
to a time complexity of O(p?KLNJ) for sparsity

factor L and J iterations for the optimization.

6 SELECTION OF GLOBAL PATCH-SIZE AND
ESTIMATION OF NOISE STANDARD DEVIA-
TION

All results so far were reported for a fixed patch-
size of 8 x 8, a commonly used parameter value in
patch-based algorithms (including JPEG). Here, we
present an objective criterion for selecting the patch-
size that will yield the best denoising performance.
For this, we consider the residual images after de-
noising with NL-SVD using a fixed patch-size p x p,
with a threshold of o/2logp? for hard-thresholding
the transform coefficients. Each residual image is
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Fig. 7. Stream image: (a) clean image, (b) noisy version with o = 20/PSNR = 22, output and residual for NL-SVD
in (c) and (j), for NL-Means in (d) and (k), for BM3D1 in (e) and (l), for BM3D2 in (f) and (m), for HOSVD in (g)
and (n), for HOSVD2 in (h) and (o), for the oracle in (i) and (p). Zoom into pdf file for a detailed view. PSNR

values in Table 1, image 2.

Fig. 8. Top Row: Barbara’s face from (left to right) the original image, and denoised versions (from noise in
N(0,20)) produced by NL-SVD, BM3D1, BM3D2, HOSVD, Oracle. Bottom row: Absolute difference between the
image of Barbara’s face and the denoised image produced by (left to right) NL-SVD, BM3D1, BM3D2, HOSVD

and Oracle. Zoom into pdf file for a detailed view.

divided into non-overlapping patches of size ¢ x ¢
where ¢ € {8,9,...,15,16}. For each value of ¢, we
compute the average absolute correlation coefficient
between all pairs of patches in the residual image,
and then calculate the total of these average values.
The absolute correlation coefficient between vectors v,
and vy (of size ¢? x 1) is defined as follows:

1 (01 = p1)" (02 — o)
q2 leavz

@)

where p; and po are the mean values of vectors
vy and vs, and o0, and o,, are their corresponding
standard deviations. Our intuition is that an optimal
denoiser will produce residual patches that are highly
decorrelated with one another as measured by pyq.
However p,, is certainly dependent upon the patch-
size ¢ x ¢ that is used for computation of the statistics.
Hence, we sum up the cross-correlation values over ¢

ppq(vlv 02) =

and over all patch pairs, thus giving us

Z Ppq(Vis vj)

i€Q,5E€Q,q

Pp = 8)
as the final measure. Here v; and v; denote patches (in
vector form) with their upper left corner at locations
i and j (respectively) in the image domain 2. The
patch-size p x p which produces the least value of
pp is selected as the optimal parameter value. In our
experiments, we varied p from 3 to 16. We have
observed that the PSNR corresponding to the optimal
pp is very close to the optimal PSNR. This can be seen
in Table 3 where for each image in the benchmark
database, we report the following: (1) the highest
PSNR across p € {3,4,5,...,15,16}, (2) the patch-size
which produced that PSNR, (3) the lowest p, value
across p, (4) the patch-size which produced the lowest
pp value and (5) the PSNR for the best patch-size as
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per the criterion p,. One can see from Table 3 that
the drop in PSNR (if any) is very low. The denoised
images and their residuals for different patch-sizes
are also shown in Figures 9. The noise-level for all
these results is ¢ = 20. Ideally, there may not be a
single optimal patch-size for the entire image. A better
approach would be to adapt the patch-size based
on the local structure of the image. However, given
the aggregation of hypotheses from (and consequent
dependence on) neighboring patches, this turns out to
be a non-trivial problem.

We applied the criterion p also for estimation of
noise standard deviation from the residuals of the NL-
SVD algorithm, assuming a fixed patch-size of 8 x 8.
We experimented on the ‘boats” image under noise
levels of 0 =5 to o = 50 in steps of 5. Let us denote
the particular value of noise standard deviation pro-
vided as input parameter to the algorithm to be o.
For each noise level o, we computed the residuals by
using o, = 2 to oy = 82 in steps of 5 (the thresholds
for patch similarity and nullification of coefficients
were computed using o). The estimate of the noise
standard deviation 6 was chosen to be the particular
ot for which the value of p was the least. For all noise
levels, our criterion yielded us accurate estimates. We
show a sample plot of p versus o; in Figure 10 for
o =20 and o = 40.

7 EXPERIMENTAL RESULTS ON COLOR IM-
AGES

We show PSNR and SSIM values for denoising all
24 RGB images from the Kodak gallery®, under inde-
pendent N(0,0) noise on each channel (where o €
{30,40,50}), in Tables 4, 5 and 6 respectively. Just as
done for grayscale images, for all o values, the noisy
images were generated by adding Gaussian noise to
the original image and converting the result to an
image file ([0-255] range). We compare our results
using HOSVD on 4D stacks (termed ‘4D-HOSVD’,
with the different channels representing the fourth
dimension) with NLMeans and the color version of
BM3D in YCbCr color space (using the authors’ re-
spective implementations). We also implemented a
Wiener filter step on top of 4D-HOSVD, which we
term as “4D-HOSVD?2’ (details similar to Equation 6).
We also implemented the following variant of our
HOSVD technique: we learned a decorrelated color
space from the noisy R, G, B values by principal
components analysis (PCA) and then applied the
HOSVD denoising algorithm for grayscale images in-
dependently on the three resulting PCA-transformed
channels. We term this the ‘independent 3D HOSVD’
or ‘3D-IHOSVD'. For 3D-IHOSVD, we compute the
patch similarity independently on the three channels
obtained after PCA using the distance threshold 74 =

3. http:/ /rOk.us/graphics/kodak/

30%n?; whereas in BM3D [9], the patch similarity is
computed only over the Y channel from the YCbCr
color space, which ignores chrominance information.
For 4D-HOSVD/4D-HOSVD?2, the distance threshold
used was 7, = 3 x 302n?. The patch-size used for all
algorithms was 8 x 8.

The 4D-HOSVD method clearly outperformed
NLMeans, 3D-IHOSVD and often BM3D1. Its PSNR
values are very slightly lower than those of BM3D2,
however it outperformed BM3D2 on some images.
4D-HOSVD2 outperformed BM3D2 on 18 out of 24
images at o = 40 and 15 out of 24 images at ¢ = 50 in
terms of PSNR. Over and above PSNR comparisons,
we have observed that at higher noise levels, 3D-
IHOSVD and BM3D2 produce color artifacts that alter
the hue, unlike 4D-HOSVD/4D-HOSVD?2 (see Figure
11 and also 12). Thus 4D-HOSVD?2 is clearly a state
of the art color denoising algorithm. Sample results
using HOSVD are shown in Figure 12 and also in
Figure 1, all under N (0, 30). Also see the supplemental
material for more results. On color images, we consis-
tently outperformed LPG-PCA by almost 1 to 1.5 dB
at several noise levels. This is because the LPG-PCA
implementation for color images in [43] denoises the
R, G, B channels independently (section 3.5 of [43]),
ignoring the coupling.

8 CONCLUSION

We have presented an extremely simple algorithm
- the HOSVD of similar image patches in conjunc-
tion with hard thresholding and averaging. We have
demonstrated its excellent empirical performance in
comparison with the state of the art algorithms
through a large number of experiments on two full
databases (as opposed to arbitrary image subsets from
image databases). Most of the competing algorithms
are either more computationally expensive or more
complex in terms of implementation. As the parame-
ters in our technique are all tied to the noise model,
our method can be elegantly and easily extended
to handle some other non-Gaussian noise models.
We have shown principled criteria for the selection
of patch-size or the estimation of noise standard
deviation in case it is unknown. When augmented
with a Wiener filter step, the HOSVD method out-
performs state of the art algorithms such as BM3D2
and LPG-PCA on color images. On gray-scale images,
the HOSVD with the Wiener filter outperforms LPG-
PCA and comes very close to BM3D2. But we have
observed that it falls short of the shape adaptive
implementation of BM3D [10]. Moreover, we observe
two definite shortcomings of our technique, as also of
all reported techniques in the current state of the art.
First, there is no method, to the best of our knowledge,
for the selection of the optimal patch-size, which need
not be constant across the image. Second, and more
importantly, the oracle denoiser clearly outperforms
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Fig. 9. Reconstructed images when Barbara (with no

ise ¢ = 20) is denoised with NL-SVD run on patch-sizes

(from left to right) 4 x 4, 6 x 6, 8 x 8, 10 x 10, 12 x 12, 14 x 14 and 16 x 16. The corresponding residuals are in the
next row (left to right). Zoom into pdf file for a detailed view.
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Fig. 10. Plot of p versus o; for o = 20 and o = 40, see Section 6.
TABLE 3
Patch-size selection for o = 20 as per criterion p, Section 6
Image # | Best PSNR | Best patch-size | Best p | Best patch-size | Best PSNR

(by PSNR) (by p) by p
13 32.000 8 9.648 14 31.690
12 30.990 10 9.650 11 30.958
11 30.260 8 9.640 14 29.910
10 30.030 9 9.650 11 29.988
9 31.210 8 9.713 16 30.968
28.120 8 9.680 6 28.110
7 30.190 8 9.639 14 30.024
6 32.350 10 9.641 14 32.190
5 29.190 5 9.644 9 28.890
4 26.166 4 9.756 6 26.044
3 32.020 8 9.639 12 31.808
2 27.020 5 9.673 6 27.020
1 33510 10 9.635 11 33.499

all methods discussed in this paper, including ours, ACKNOWLEDGMENTS

by as much 4-5 dB in terms of PSNR. This amply
illustrates the fact that there is tremendous scope for
improvement in the field of image denoising, contrary
to emerging belief.

Recently, other successful denoising techniques
such as [46] and [41] (which use Gaussian mixture
models), or [19], [44] and [45] (which learn overcom-
plete dictionaries), have emerged. In comparison to
these methods, our technique is quite simple and
also obtains separable bases (as opposed to vectorized
patch representations). The approach in [45] (an ex-
tension of the beautiful non-parametric Bayesian dic-
tionary learning method in [44]) also removes spiky
noise in addition to Gaussian noise. Extending our
method to handle such varied noise models is one
important avenue for future research.
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BM3D2, which are absent in 4D-HOSVD/4D-HOSVD2.
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