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ABSTRACT
Music transcription refers to the process of analyzing a piece
of music to generate a sequence of constituent notes and
their duration. Transcription of music from audio signals
is fraught with problems due to auditory interference such
as ambient noise, multiple instruments playing simultane-
ously, accompanying vocals or polyphonic sounds. For sev-
eral instruments, there exists added information for music
transcription which can be derived from a video sequence of
the instrument as it is being played. This paper proposes
a method to utilize this visual information for the case of
keyboard-like instruments to generate a transcript automat-
ically, by analyzing the video frames. We present encour-
aging results under varying lighting conditions on different
song sequences played out on a keyboard.

CCS Concepts
•Computing methodologies → Activity recognition and
understanding;
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1. INTRODUCTION
Music transcription is defined as the process of noting

down music that has already been played or recorded, in
the form of a sequence of notes (i.e. the fundamental fre-
quency of the sound signal) and their time duration (dif-
ference between the end and start time of the note). The
major applications of music transcription include digital re-
rendering of music using the sounds of other instruments,
editing of the musical piece, or analysis (e.g., determin-
ing the degree of similarity between two musical pieces, or
searching a database of musical transcripts for the presence
of a certain musical phrase). It can also be of pedagogical
value and help students and teachers of music in the study
of certain musical forms.
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There are two different types of musical systems - mono-
phonic and polyphonic. Monophonic digital music is pro-
duced when there is only one instrument playing one note
at a time. While pitch detection for monophonic systems
is a widely solved problem, in the case of polyphonic dig-
ital music, which may contain multiple instruments along
with vocals all playing at the same time, it still remains
largely unsolved [3, 4, 8]. It is known that the varied forms
of western music are primarily polyphonic, whereas the In-
dian classical traditions are monophonic. However even in
such monophonic traditions, it is not uncommon to have
multiple melodies being played simultaneously. Examples
include the background drone or tanpura in Indian classi-
cal concerts (both vocal and instrumental), the playing of
multiple keys simultaneously on a harmonium to generate
interesting melodic effects, or simply multiple musical in-
struments playing together. These scenarios present further
challenges for music transcription even in primarily mono-
phonic traditions.

Due to these difficulties, one may resort to a hardware-
based solution independent of audio analysis. Some instru-
ments have a MIDI (Musical Instrument Digital Interface)
which allows one to electronically store the output of the
instrument in a computer. MIDI is common in electronic
instruments such as the synthesizer (also called ‘keyboard’)
or the electronic piano. However MIDI is not present in sev-
eral types of pianos or organs (and some keyboards as well),
and in all Indian instruments such as the harmonium or the
sitar. For such cases, automatic music transcription from
live concerts or an informal ‘jam session’ becomes challeng-
ing due to the difficulties that arise in performing source
separation from a single recording. The problem is further
exacerbated by ambient audio noise such as audience ap-
plause or people speaking. While noise cancelling micro-
phones can be employed for eliminating background noise
[6], they are not effective in eliminating unwanted sounds of
high amplitude, or the effect of other instruments or singing
voices nearby. One could imagine the use of dedicated ‘shot-
gun’ microphones1 for each instrument, each having a very
narrow angle of acceptance (also called pickup angle). This
imposes new challenges such as synchronization of all such
microphones, higher costs, and new difficulties in dealing
with large-sized instruments such as the piano. However,
the biggest difficulty in their usage lies in the separation of
multiple sounds from the same instrument: for example, the
sound of two or more keys being pressed simultaneously on

1http://www.audio-technica.com/cms/site/
62073812c42084c8/
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Figure 1: Keyboard-like instruments without MIDI:
harmonium (top row, left), organ (top row,
right), grand piano (bottom row). Image sources:
wikipedia articles on harmonium, reed organ and
grand piano.

a harmonium or a piano. In such scenarios, information in
the form of a video where all the sources of sound are clearly
visible can be of immense help. In this paper, we present
the relatively unexplored idea of using image processing to
detect the actual keystrokes for a piano, harmonium or key-
board (called ‘keyboard-like instruments’ - see Figure 1), in
order to automatically generate a transcript. We present
results for song sequences played out on a keyboard, as it
allows for comparison with the ground truth generated in
the MIDI file. However, our method can be easily extended
to the harmonium or the piano, and it may ultimately be
scaled to other instruments such as a sitar, and can be de-
ployed individually for all instruments in a concert thereby
auto generating the whole transcript. Such an image-based
technique is inherently immune to ambient audio noise or
the interfering effects of multiple instruments.

This paper is organized as follows. In Section 2, we de-
scribe our experimental setup to record video sequences of
a keyboard while it is being played. Section 3 describes the
preprocessing steps and the main image analysis method.
Experimental results are presented in Section 4, the relation
between our approach and some existing literature is dis-
cussed in Section 5, and a discussion/conclusion follows in
Section 6.

2. EXPERIMENTAL SETUP
Our experimental setup consisted of a keyboard besides a

video camera on a tripod. Most of our initial experiments
were performed on a Casio CTK860IN keyboard as it is
MIDI enabled which allowed us to generate ground truth
for comparison. A high definition Panasonic HC-V750 cam-
era capable of video acquisition at a 1920 x 1080 resolution
with 120 fps was used. But for this particular problem we
obtained satisfactory results with videos captured at 640 x
480 resolution with 28 fps without encountering any motion
blur artifacts. The camera was positioned on the left side of
the keyboard at a height of 3 feet above it. An orthographic
view was deliberately avoided because in such views, the
changes in the images due to a key-press were almost neg-
ligible. The side view was better suited to capture changes
in key structure during key-presses and hence the apparatus

was arranged in this manner as shown in Figure 2.

(a) Apparatus

(b) Frames acquired by cam-
era

(c) Geometrically normalized and cropped frame

Figure 2: Setup of apparatus for music transcription

3. PREPROCESSING AND IMAGE ANAL-
YSIS

The aim of our image analysis was to determine which
key(s) was (were) pressed in each frame of the video. This
created a sequence of notes played and determined their du-
ration as well, since the frame rate of the video camera was
known. Hence, this was used to generate a MIDI file which
can be played on a computer or a keyboard. However before
such analysis can be performed, there were some preprocess-
ing steps required.

3.1 Geometric Normalization
The camera captures a wide range of keys and other irrel-

evant portions of the keyboard or background in each frame
(see Figure 2). It was decided to restrict key-press detection
to only two octaves of the keyboard, ranging from the lower
C (key #48 as per MIDI format) through the middle C to
the upper C. Such a range is generally the norm in Indian
classical music. A geometric normalization was performed to
align the acquired frames with an orthographic view of the
keyboard as the latter is more convenient for preprocessing.
For this, four points on the plane containing the white keys
of the keyboard were manually selected in the first frame of
the video to serve as boundary points of the relevant octaves.



They were mapped to corresponding corners of a reference
image captured in an orthographic view and a homography
mapping was calculated. This selection of points had to
be performed once on only the first frame as all subsequent
frames were subjected to the same mapping. Prior to the
homography computation and transformation, the images
were converted to gray-scale, and cropped beyond the se-
lected boundaries. One such frame after the transformation
is shown in Figure 2(c).

There was an implicit assumption that the keyboard as
well as the camera would be stationary throughout the record-
ing, which was true for all our experiments. However, the
frame alignment problem in cases where the keyboard moves
during the recording can be easily dealt with by placing a
few flourescent markers at various corners of the keyboard
(although we did not use this in our experiments). This
would in fact avoid the manual step altogether as well.

3.2 Key Boundary Extraction
Next, the step boundaries of each of the white and black

keys were automatically calculated. For each black key, all
pixel intensity values along a horizontal scan-line over the
black key were stored separately. Values greater than a pre-
fixed mid-range value (between black and white) were as-
signed the highest value and those lower were assigned the
lowest value from the allowable intensity range. Now all
transitions in the line from high to low or vice-versa sig-
naled a boundary for the black key. The specific location
of the scanline as well as the specific mid-range value was
observed to be not very important in our experiments.

For the white keys, all edges were detected in the white
key area by using a Canny edge detector. Hough lines were
calculated from the edges and all approximately vertical and
sufficiently long lines were treated as white key boundaries.
In some cases, this procedure was seen to miss a few key
boundaries (especially under bright lighting). But the miss-
ing boundaries were easily extrapolated as all white keys
have equal width and the homography maps the side view
to an orthographic projection. Assuming that more than
half of the boundary lines were properly detected, the me-
dian of the widths of all the detected keys was set to be the
actual key-width and erroneous boundary lines were cor-
rected. The computed boundaries for both black and white
keys are shown in Figure 3(a).

3.3 Key-press Detection
Since the geometry of the white and black keys is very

different, both these cases were considered separately.
White keys: Figure 3(b) shows the transformed image

of the keyboard with pressed white keys. It was observed
that a single pressed white key always resulted in baring
the usually covered side of its adjacent white key on the
right side (as the camera is placed on the left side of the
keyboard). This was an important characteristic to iden-
tify pressed white keys. We attempted to design a simple
rule-based algorithm to detect this pattern and to mark the
corresponding white key as pressed by creating a set of hand-
crafted rules. However, problems arose due to variations in
the structure of this pattern due to changes in lighting. Also
this particular pattern was markedly different for two adja-
cent key-presses as compared to a single key-press as seen in
Figure 3(b).

In order to design a general and robust method for this

(a) Boundaries for black and white keys (marked in green)

(b) Pressed white keys: single and two adjacent

(c) Feature vectors for white keys

(d) Feature vectors for black
keys

Figure 3: Various steps for preprocessing before key-
press detection

problem, we decided to resort to a machine learning method.
A support vector machine (SVM)2 was trained to classify
each key as pressed or not pressed instead of creating a
manual combination of heuristic rules. The training was
performed on a set consisting of feature vectors extracted
from non-pressed keys (labeled ‘-1) and single pressed keys
(labeled as ‘+1’) as well as two adjacent pressed keys (both
labeled as ‘+1’). The feature vector consisted of a part of
the scan-line covering the width of the relevant key and half
of its two adjacent keys (see Figure 3(d)). The scan-line was
taken roughly midway between the edge of the white keys
and the edge of the black keys, but its exact position did not
have any impact on the results. Note that this classifier was
trained to detect single key-presses as well as two adjacent
white key-presses.

Black keys: Detection of black keys posed a different
challenge as the distinctive pattern in pressed white keys is
absent in pressed black keys. Also some visible parts of the
black keys do not lie in the same plane (since the camera is
placed on one side of the keyboard as in Figure 2) and so
a single homography fails to produce a proper orthographic
view of the black keys. Figure 3(d) depicts that the size of
the keys on the left side (closer to the camera) of the image is

2https://www.csie.ntu.edu.tw/˜cjlin/libsvm/
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much wider than that on the right side. However, black keys
when pressed go deep into their own grooves reducing the
amount of black pixels in the vicinity of their boundaries.
This was exploited to design feature vectors for the keys.
Similar to the white keys, scan-lines taken from the vicinity
of the black keys were chosen to be the feature vectors of that
particular key, as shown in Figure 3(d), except that here the
scan-lines were resized to a fixed size (60×1) using interpola-
tion. Whenever a key was pressed the amount of black pixels
in the scan-line receded and produced a new pattern. How-
ever since different black keys had different apparent width
in the acquired images, the patterns of these vectors were
different for each individual key. Hence we divided the black
keys across the two octaves into two different groups based
on their position (the first 7 keys nearer to the camera for
the first group and the last 3 keys in the second group, out
of the total of 10 black keys in the chosen two octave range),
and trained a different SVM for each group. Since for black
keys, a single homography is an approximation, the appar-
ent width of the black keys in the geometrically normalized
image undergoes minor variations w.r.t. the camera view-
point. However, we observed that our SVM-based classifiers
were robust to those variations.

3.4 Illumination Normalization
The feature vectors described above are not invariant to

changes in illumination. To bring about this invariance, we
adopted the method in [10] where it was applied to face
images. The method is essentially a type of homomorphic
filtering pivoted around the assumption that the intensity
profile I of a surface is determined by its inherent albedo
ρ and external lighting. Under the Lambertian assumption,
we have I = ρn · s where n and s stand for the surface nor-
mal direction and the lighting direction respectively. Since
the keyboard surface is primarily flat, we have ∇I ≈ ∇ρW
where W = n · s is a constant. To remove the effects of illu-
mination which is dominated by lower frequencies, we use a
smoothed version of I given as Is = I ∗ g where g is a Gaus-
sian kernel. This yields us a normalized gradient given by

∇Î =
∇I
W
≈ ∇ρ. Now, ∇Î is basically a high-pass filtered

version of I and it may be very noisy. To remove the noise
and restore the structural pattern, an integration operation
is performed on these gradients to yield an illumination in-
variant representation. For this, we employed the method
from [1] based on the popular method by Frankot and Chel-
lappa. The effect of this illumination normalization step is
clearly depicted in Figure 3.4. It should be noted that this
technique is related to the retinex algorithm [7]. This tech-
nique is largely unaffected by cast shadows except along the
boundaries of the cast shadow.

3.5 Transcript Generation
The SVMs for black and white keys were trained offline on

scan-lines extracted from geometrically- and illumination-
normalized frames acquired under six different lighting con-
ditions. The scan-line for each key in each frame was man-
ually labeled as ‘key-press’ or ‘key not pressed’, which pro-
duced the ground truth for training. Now for testing, each
frame of a new video to be transcribed was similarly nor-
malized as described earlier, and the scan-line at each key
in each frame was classified using the SVM. This produced
the sequence of notes. The duration of each note was com-

Figure 4: Original frames (top 3 rows) and their cor-
responding illumination-normalized frames (bottom
3 frames)

puted from the frame indices and the (known) frame-rate of
the camera. A MIDI file was generated from this informa-
tion using publicly available software3.

4. EXPERIMENTAL RESULTS
All experiments were carried out indoors in a lab with

several tube-lights fixed to the ceiling.
Our first set of experiments were carried out to test the

efficacy of the key-press detection algorithm. For this, we
recorded videos of a keyboard while an amateur player was
striking only single white keys of the keyboard, or single
black keys, or a pair of adjacent white keys, on a key-
board. Every frame was manually tagged as either ‘no key-
press’ or else with the number(s) of the keys that was (were)
pressed. The SVM classifiers were tested on other similar
videos of the keyboard, under slightly different lighting con-
ditions simulated by slightly changing the position of the
keyboard. The performance was tested separately for single
white keys, double adjacent white keys and black keys using
three performance measures: accuracy (fraction of correct
classifications for each frame), precision (number of correctly
detected key-presses/total number of detected key-presses)
and recall (total number of detected key-presses/total num-
ber of actual key-presses). Finally, the F-score, i.e. the har-
monic mean of the precision and recall, was calculated. As
can be seen in Figure 5(a), for single black and single white
key-presses the F-scores were all between 99-100%, whereas
for two adjacent white key-presses, these parameters were
around 93%.

A second set of experiments were performed on a dataset
gathered under 15 different lighting conditions within our
laboratory (see Figure 3.4 for a sample of lighting condi-
tions). The SVM classifiers were learned on feature vec-
tors extracted from geometry- and illumination-normalized
frames taken from a subset of six illumination conditions and
tested on the remaining nine. This was repeated ten times,
using a different subset of six for training each time. The F-
scores results are plotted in Figure 5(b). It should be noted

3http://kenschutte.com/midi
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(a) Minor illumination variation

(b) Major illumination variation

Figure 5: Performance measures in the form of F-
scores for key-presses under minor and major illu-
mination variation

that these results are on a frame per frame basis. The recall
is much higher if the percentages are computed by count-
ing the key-presses instead of the number of frames. This
is because we almost never missed an entire key, though we
missed some frames from the key-press.

A third set of experiments was performed on a set of
eight song sequences played on the keyboard by an ama-
teur player. The duration of each song was around 20 sec-
onds. Six of the songs consisted of snippets played out in
the following Indian classical music scales (raagas): Durga,
Malhar, Bibhas, Bhupali and Megh, two were pieces from two
popular songs: ‘Twinkle twinkle little star’, and tomaar holo
shuru (a popular Bengali song), and the last one consisted
of all consecutive seven sharp notes played out in sequence
(this is called as sargam in Indian music). The classifica-
tion was performed using the SVM classifiers learned in the
previous (i.e., second) set of experiments, and transcripts
were generated in the form of MIDI files. The generated
MIDI files were played using a software called Anvil Studio
20154. It was observed that the MIDI files generated by our
program sounded similar to the original MIDI file recorded
while the song sequence was being played, some errors due
to false positives notwithstanding. In our transcription, we
have artificially removed any period of silence at the begin-
ning of the original song, and hence the transcribed files are
usually slightly shorter than the original ones.

For reference, the original and reconstructed MIDI files
and their corresponding conversions to mp3 format are in-
cluded in the supplemental material accompanying this pa-
per. The MIDI files as well as the mp3 files can be directly
played out in Windows Media Player.

4http://www.anvilstudio.com/

Song Percentage Accuracy
Malhar 91.05
Durga 95.95

Twinkle 70.87
Tomaar 89.37
Sargam 94.57
Megh 91.5

Bhupali 93.53
Bibhas 70.35

Table 1: Percentage accuracy of transcription for
each song (measured w.r.t. manually marked out
ground truth in each video frame)

Due to errors in transcription, it was very difficult to di-
rectly compare the MIDI files as a measure of ground truth.
It was also difficult to compare the original and transcribed
waveforms (i.e., audio signals) due to their slightly differ-
ent lengths. Hence, we measured the transcription qual-
ity in terms of the number of correctly classified frames
in comparison to a manually marked ground truth in ev-
ery video frame. A correctly classified frame was defined
to be one of the following: (1) a frame in which no key
was pressed and for which the classifiers all returned with
a no-press, (2) a frame in which only one key was pressed,
and for which the lone key-press was correctly detected with
no other key-press detected, (3) a frame in which only one
key was pressed and for which the key-press with the high-
est probability (as output by the SVM) was the correct
one. Note, however, that in the actual transcription, we
did not artificially eliminate such false positives that had
a low probability as output by the SVM. Also note that
in our experiments, we have not worked with multiple key-
presses per frame. Based on this assumption and defini-
tion, the percentage of correctly classified frames for the
eight songs are presented in Table 4. Resources pertain-
ing to the experiments carried out can be accessed from
https://www.cse.iitb.ac.in/˜ajitvr/music transcription.

Processing times: There are several steps of our algo-
rithm, of which the illumination normalization and classifi-
cation using the SVM are the most expensive. The process-
ing time per frame was around 1 second in all on a standard
PC, without exploiting any parallelization.

5. RELATED WORK
In this section, we summarize the very few existing re-

search papers on this or related topics. The work in [11]
uses video sequences with clear audio to learn cross-modal
associations between audio and visual information. These
associations learned offline are applied to video sequences of
people speaking or the playing of a large xylophone using
a hammer, to denoise the audio components corrupted by
ambient noise using the (clean) visual information. This ap-
proach is called ‘cross-modal denoising’. The image analysis
problem for the xylophone in [11] does not consider illumina-
tion variations and it is a simpler task since the hammer hit-
ting the xylophone is a feature that is more distinctive than
a single or double key-press for a keyboard. The approach
in [5] analyzes video sequences of a piano being played to
detect and track the pianist’s hands or fingers for the pur-
pose of teaching fingering techniques to students remotely.

http://www.anvilstudio.com/
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A technique for fingering recognition from depth images is
proposed in [9]. None of these three techniques can be di-
rectly compared to our proposed method, as they work with
essentially different problems.

Recently, a computer vision technique for music transcrip-
tion from pianos was proposed in [2]. This technique detects
key-presses using the difference images, i.e. the difference
between the frames of the video sequence and a reference
image that contains no key-presses. The main observation
is that a white key-press is associated with a decrease in
the intensity of the neighboring pixels at the base of the pi-
ano, as portions of nearby black keys which were not visible
earlier are now exposed. This gives rise to negative-valued
blobs in the difference image at the base of the piano. Sim-
ilarly, a black key-press is associated with a positive valued
blob in the difference image at the base of the piano. While
this method has shown very beautiful results, the rule for
reporting a key-press is based on the size of this blob. As
such, this rule is not designed to handle illumination changes
while the piano is being played. This is because such illumi-
nation changes will change the threshold required to decide
the presence of a positive or negative blob since the reference
image and the current video frames will have very different
intensity values. In fact, these thresholds will not necessar-
ily be constant throughout the image if the lighting change
is non-uniform. This will require additional machinery for
updating the reference image during the music recording or
jam session. On the other hand, our approach attempts
to normalize against major illumination changes, and the
learned classifier is trained on images acquired under many
lighting conditions.

6. CONCLUSION
We have proposed a very simple and easy to implement

approach to transcribing music played out on keyboard-like
instruments. The approach makes novel use of visual in-
formation. This is, to the best of our knowledge, the first
technique that is trained to handle a variety of illumination
changes, including those that occur during the musical per-
formance (due to actual change of ambient lighting, as well
as due to shadows cast if people move around during in-
formal jam sessions), for the purpose of image-based music
transcription. While we have encouraging results, our ap-
proach does get hindered by false positives due to issues as
occasional occlusion of the keys by the hands of the keyboard
player. This can be tackled by using two cameras, one on the
left and one on the right side of the keyboard respectively,
which we hope to accomplish in future. Future work will
also involve more extensive transcriptions for music played
out on pianos or harmoniums, as well as combining visual
and auditory data for multi-modal transcription.
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