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ABSTRACT
Recent work in tomography focuses on algorithms that en-
able faster and more accurate reconstruction from as few
measurements as possible. We review the advantage of jointly
reconstructing multiple slices and show that joint recon-
struction may suffer in the presence of adjacent dissimilar
slices. This gives rise to the need to detect similarity or
dissimilarity of unknown images before performing joint re-
construction.

We propose a method to detect ‘similar’ slices directly
from their tomographic measurements and juxtapose these
similar slices. Since the images themselves are not available
by definition, we compute similarity between slices based on
image moments; these in turn are estimated in a novel way
from Radon projection moments. A segmented least squares
algorithm is then designed to couple only similar slices. Our
results confirm the benefit of this method for tomographic
reconstruction.

Keywords
Compressive sensing, Radon projection moments, image mo-
ments, tomographic reconstruction

1. INTRODUCTION
Research in tomographic reconstruction is driven by the

need to speed up the acquisition process. This can be done
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(a)

Figure 1: With every combination of sets of coupled slices,
we get a different performance in joint reconstruction. The
method in this paper determines the best coupling mecha-
nism.

by reducing the number of measurements, which at first
glance, might also result in the reduced quality of reconstruc-
tion. However, recent developments in compressive sensing
[8, 7] enable reconstruction from measurements fewer than
that specified by the Nyquist criterion.

Since tomography involves multiple measurements of slices
in a 3D volume, a related idea in the compressive sensing
framework is to solve for the complete reconstruction of sev-
eral slices in a batch. Several slices may individually have
a small number of measurements, but together, they may
carry more information. The solutions are in an iterative

http://dx.doi.org/10.1145/3009977.3010054


framework of an optimization problem using the sparsity of
the underlying data under a suitable basis. As a result mod-
ern methods strive to use a large number of slices to obtain
better quality results.

A practical problem in this is in the determination of the
number of slices to jointly solve for, in the reconstruction.
Fig. 1 (reconstructions on 10 slices of humerus bone CT [2])
throws some light on this situation. We see that at one ex-
treme we can use one slice at a time and reconstruct. How-
ever, using different combinations of (multiple) slices results
in better quality as can be seen in the PSNR plot. That
said, using a very large number of slices actually hurts the
reconstruction. We therefore need a systematic procedure
to choose the best coupling of slices for each dataset, and
couple only ‘similar’ slices. This is vexing because we don’t
have the true slices in the first place, and therefore it’s not
clear whether a slice is similar to another slice to determine
coupling. In this paper, we determine the best coupling in a
compressive sensing framework, and hence we review related
definitions.

1.1 Terminology in Compressive Sensing
Let x ∈ Rn be the original signal, and Φ ∈ Rm×n be the

measurement matrix that produces a measurement vector
y = Φx where y ∈ Rm, m � n. Let Ψ be the sparse
representation matrix for x, i.e., x = Ψθ where θ ∈ Rn is a
sparse or compressible vector. Now we have

y = ΦΨθ + η (1)

where η is the measurement noise such that ‖η‖2 ≤ ε where
ε ≥ 0 is an upper bound on the magnitude of noise. Then θ
can be estimated by solving

θ̂ = argmin||θ||1 such that ||y −ΦΨθ||2 ≤ ε. (2)

As per [7], the estimate of θ̂ obeys

||θ̂ − θ||2 ≤ C0||θ − θs||1/
√
s+ C1ε (3)

where θs is a vector with the s largest coefficients in θ alone,
in terms of absolute value (and the rest set to 0). Thus
the error is bound by the sum of two terms: the first one
proportional to the estimation error in the noiseless case,
and the other proportional to the noise magnitude. The
coefficients C0 and C1 are independent of n and are generally
small, being proportional to the incoherence between Ψ and
Φ. Hence, this technique is robust to noise. Also note that,
the minimum number of measurements required m is related
to the reconstruction quality by:

m ≥ C log(n/δ) ||θ||0 µ2(Ψ,Φ) (4)

where µ2(Ψ,Φ) is the level of coherency between Ψ and Φ.
This also shows that as θ becomes less sparse, more mea-
surements have to be taken [6]. [18] aims to reduce m, the
number of measurements required, by increasing the spar-
sity of θ.

1.2 Related Work & Problem Definition
In several applications involving tomographic reconstruc-

tion, the aim is to reconstruct multiple consecutive 2D slices
from a 3D volume (hereafter simply called slices), or to re-
construct a single 2D slice as it evolves over time (hereafter

referred to as time-frames). There has been a lot of re-
cent work [16],[15],[5],[17] in joint reconstruction of multiple
MRI slices/time-frames. However, all of these assume that
consecutive slices/time-frames are always similar. In [16],
successive 2D slices are jointly represented using 3D wavelet
transforms. In [15], the first time frame is densely sam-
pled; the support of its wavelet coefficients is identified and
knowledge of this support is used to reconstruct all consec-
utive frames. In [5], each time frame is first independently
reconstructed using 2D wavelet sparsity. This is followed by
a motion estimation step, and then a motion compensation
step where all frames are re-estimated using the fact that
the difference between a frame and its motion-compensated
successive frame is sparse. In [17] a transform basis, the
Kronecker product of a 2D Wavelet (for spatial dimensions)
and a 1D Fourier for the temporal direction, has been used
where the latter sparsely represents periodic motion.

In contrast to all work mentioned above, we do not assume
successive slices or time-frames to be always similar, nor do
we assume periodicity as in [17]. We allow for cases where
there could be significant differences between a set of consec-
utive slices (say at the boundary of an object). Fig. 2 shows
that joint reconstruction is not always superior. Visual re-
sult of reconstruction of one of the slices can be seen in Fig. 3

1.3 Contributions
Our key contributions in this work are:

• The idea of using image moments as a measure of sim-
ilarity of underlying slices. Note that Radon projec-
tions are acquired at different set of angles for each
slice, and therefore, one cannot compare them directly
to deduce similarity of the underlying data. Using a
different set of angles for different slices is critical in
the compressive sensing framework. For example, for
adjacent slices, this enables us to capture nearly twice
the information for a pair of slices, when jointly recon-
structed.

• A scheme for best coupling of slices after similarity, or
lack thereof, is deduced.

• Verification of the proposed procedure by carrying out
experiments on multiple datasets of different domains
(both medical and non-medical) (these will be made
available in the public domain).

Governing scheme: Let the measured data at time t be
given by yt = Φtxt = ΦtΨθt, where Φt is the measurement
matrix at time t. Let Rt = ΦtΨ. Then, the measurements
of any two consecutive frames are expressed [18] as

[
yt

yt+1

]
=

[
Rt 0
0 Rt+1

] [
θt
θt+1

]
+

[
ηt

ηt+1

]
=

[
Rt 0

Rt+1 Rt+1

] [
θt

∆θt

]
+

[
ηt

ηt+1

]
where ∆θt = θt+1 − θt. Since adjacent frames often have a
significant amount of redundancy, ∆θt is also sparse and in-
fact more sparse than θt and θt+1. In this technique, both
θt and ∆θt are estimated by solving the following:



[
θ̂t

∆θ̂t

]
= argmin

θ,∆θ

∥∥∥∥[ yt

yt+1

]
−
[

Rt 0
Rt+1 Rt+1

] [
θt

∆θt

]∥∥∥∥2

2

+ τ

∥∥∥∥[ θt∆θt

]∥∥∥∥
1

(5)

In [18], this method was extended to jointly reconstruct
more frames. A maximum of four frames were taken to-
gether due to constraints in memory and the time taken to
compute one optimization pass. The disadvantage of such
a coupling is that if the frames were dissimilar (for exam-
ple, across video shot boundaries), the differences between
their coefficients will no longer be sparse, requiring more
measurements. We present a method to first verify whether
successive time-frames or slices are similar, and only then
decide whether to couple them.

2. METHOD
Hereafter, we have used the terms ‘slice’(2D cross-sections

across depth of an object) and ‘time-frame’ interchangeably
as our algorithm is applicable for both the cases. We chose
our measurement matrix Φ to represent the Radon trans-
form, which is quite natural for CT. However, our method
is equally applicable for radial sampling strategies in MRI
as well (where the acquisition involves sampling the Fourier
space of the object being scanned). This is because, if radial
sampling were used for MRI, the Fourier Slice Theorem can
directly relate the Fourier coefficients along radial lines in
2D Fourier space of the object to the Fourier transform of
the Radon projections along the corresponding orientations.
Although other sampling patterns like spiral and uniform
sampling in Cartesian grid is possible in MRI, the radial
pattern has the advantage that it enables dense sampling in
the low frequency region which has higher information con-
tent. Further, we chose the sparse representation matrix Ψ
to be the Discrete Cosine Transform (DCT).

2.1 Reconstruction using Successive Slice Re-
dundancy

Given the choice of Φ and Ψ, for each set of slices that
will be reconstructed jointly, we use a different set of angles
while taking Radon measurements. This enables us to cap-
ture more information as the slices are expected to be simi-
lar. For example, if slice 1 is measured with v views and slice
2 is measured with a different set of v views, then together
we have information from 2v views for joint reconstruction
of each slice. This is why the reconstruction quality is ex-
pected to improve. Our aim is to couple as many similar
slices as possible. However, if we couple dissimilar frames,
then the quality of reconstruction will deteriorate because the
difference between two different s-sparse vectors could be as
high as 2s-sparse — which will require more measurements
to be captured. This can be seen from our experiment with
lumbar dataset [3] consisting of 12 slices where successive
slices were significantly different (probably due to low depth
resolution while acquisition). The joint reconstruction of all
slices together gave the least PSNR as seen in Fig. 2. Visual
result of the reconstruction of one of the slices can be seen
in 3. Moreover, coupling a large number of slices also in-
creases the computation time. Therefore, it is necessary to
formulate a technique that provides us with sets of similar
slices.
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Figure 2: Reconstruction on dataset of the lumbar spine [3]:
Joint reconstruction may actually hurt quality

200 400 600 800 1000 1200 1400

50

100

150

200

250

300

350

400

450

500

Figure 3: Reconstruction of (left) a slice of lumbar spine by
(center) single slice reconstruction, (right) Joint reconstruc-
tion with all slices together

2.2 Computing Similarity between Slices
Since, to begin with we neither have the original slices nor

their reconstructed versions, we need some metric that

• can be computed from the available tomographic mea-
surements

• represents in some sense, the similarity between two
slices

We choose this metric to be geometric image moments.
Moments have, for long, been used to describe the shape
of a set of points. An image, f(x, y) can be uniquely ex-
pressed [11] by the set of all image moments. When all
the image moments of two slices are almost equal, this im-
plies that the images are very similar and hence the differ-
ences between their DCT coefficients will be sparse, which
is favourable for reconstruction. Therefore, we take the dif-
ferences in image moments between two slices as a measure
of dissimilarity and then decide whether or not to couple
those slices. Each geometric image moment is a weighted
sum of the pixel intensities of an image. The image moment
of order p+ q is given by [10]:

IMp,q =

+∞∫∫
−∞

f(x, y) xp yq dx dy. (6)

These can also be viewed as projection of a 2D function
onto monomials. They are known to describe various image



properties. For example, the zeroth order moment repre-
sents the area of the image (sum of all pixel intensities in
a binary image) and the first order moments represent the
mean. The higher orders describe other features like the
orientation of the pattern. Since we cannot obtain all the
moments, we compute a few of them from the Radon projec-
tion moments [19]. The kth order Radon projection moment
at an angle Θ is given by

PM
(k)
Θ =

+∞∫
−∞

PΘ(s)sk ds (7)

where PΘ(.) is the Radon projection measured at view Θ,
and is given by

PΘ(s) =

+∞∫∫
−∞

f(x, y) δ(x cos Θ + y sin Θ− s) dxdy (8)

Therefore,

PM
(k)
Θ =

+∞∫∫
−∞

f(x, y) (x cos Θ + y sin Θ)k dxdy (9)

And,

(x cos Θ + y sin Θ)k =

k∑
l=0

(
k − l
k

)
(x cos Θ)k−l (y sin Θ)l

(10)
Eq. 11 relates the image moments IMp,q of order p + q

of a slice with its kth order projection moment PMk
Θ, with

projections being taken at an orientation Θ [19].
IMk,0

IMk−1,1

...
IM0,k

 = C−1


PMk

Θ1

PMk
Θ2

...
PMk

Θk+1

 (11)

where

C =


cosk Θ1

(
k−1
k

)
cosk−1 Θ1 sin Θ1 . . . sink Θ1

cosk Θ2

(
k−1
k

)
cosk−1 Θ2 sin Θ2 . . . sink Θ2

...
... . . .

...

cosk Θk+1

(
k−1
k

)
cosk−1 Θk+1 sin Θk+1 . . . sink Θk+1


Thus, in order to compute image moments of order k, we

need projections from at least k + 1 views: Θ1,Θ2...Θk+1.
In our experiments, we have used image moments of order
5 and lower.1

2.3 Optimally Coupling Slices
Since the difference between two different s-sparse vectors

is 2s-sparse, we want to avoid joint reconstruction of dis-
similar slices. We have used the segmented least squares
algorithm [13] to optimally bunch together all consecutive
similar slices. Let j through n (including n) be the last

1Thus, the following set of 21 moments were used in our ex-
periments: {IM0,0, IM0,1, IM1,0, IM2,0, IM0,2, IM1,1, IM0,3,
IM3,0, IM1,2, IM2,1 ... IM5,0, IM0,5, IM3,2, IM2,3, IM1,4 and
IM4,1}.

bunch of slices coupled for reconstruction. Then, the total
minimal error in reconstructing all n frames can be seen as
the sum of three terms: the minimum error in reconstruct-
ing the first (j − 1) slices, the error in joint reconstruction
of slices j through n, and the penalty for the break at frame
j, i.e., not coupling slices j − 1 and j. Mathematically,

OPT(n) = min1≤j≤n(ej,n + D + OPT(j− 1)) (12)

where, OPT(n) is the total error of reconstructing all n
slices; ej,n is the average difference in image moments be-
tween successive slices from slice j to n, including j and n;
(this is an indicator of the error in joint reconstruction of
slices j through n); and D is the penalty of introducing a
break in coupling, between slice j − 1 and j. D is an im-
portant model parameter in our optimality scheme. A high
value will couple all slices even if they are dissimilar and a
low value will mostly favor single slice reconstruction.

3. EXPERIMENTS AND RESULTS
We solve an unconstrained version of Eq. 2 as shown be-

low:

minimize (||ΦΨθ − y||22 + λ||θ||1) (13)

using an existing solver [14]. Eq. 13 is known as the L1-
regularized Least Squares problem [12]. From proposition
3.2 in [9], we know that the solution to Eq. 13 and Eq. 2
are equivalent. λ is the regularization parameter and its
value is usually fixed on a trial and error basis. We fixed it
to be 0.01. We performed experiments on different datasets
and compared the following reconstruction techniques, using
2D-DCT as the sparse transform:

• Independent single-slice reconstruction,

• Joint reconstruction coupling each and every slice,

• Joint reconstruction with a scheme that involves a sub-
set of all slices (coupling every two adjacent slices).

• Joint reconstruction coupling slices bunched together
by our optimality scheme.

Since we have the ground truth slices, our quantitative
evaluation of the reconstructed versions is based on Peak
Signal to Noise Ratio (PSNR). It is defined as

PSNR = 10 log10

I2
max

MSE
(14)

where Imax denotes the maximum pixel intensity value in
the entire slice; and MSE denotes mean squared error with
respect to the reference ground truth slice.

3.1 Walnut dataset
We took 60 slices from a CT Walnut dataset [4]. Each slice

was of size 240× 240 and represented different axial depth.
Radon measurements were taken along 20 angles (8.3% of
the data is measured). Fig. 4 shows the PSNR plots after
reconstruction. Independent single slice reconstruction was
poor. The segmented least squares based method performed
better in most slices, than joint reconstruction of all the
slices. We have chosen D to be d times the average difference
in image moments between consecutive slices, where d =
1.45. The segmented least squares algorithm coupled the
slices in the following manner: (1-23), (24-27) and (31-60).
All the remaining frames were not coupled and reconstructed
as per single slice reconstruction.



3.2 Humerus dataset
We took 110 slices from a CT dataset of the Humerus

bone [2]. Each slice was of size 160 × 160 and represented
different axial depth. Radon projections were computed for
20 angles (12.5% of the data is measured)2). Fig. 5 shows
the PSNR plots after reconstruction, and the visual results
can be found in our supplementary material. As seen in
Fig. 8, the reconstruction was poor when all the slices were
coupled together. In most cases, the segmented least squares
based coupled reconstruction performed better than single
slice reconstruction. Although the performance using adja-
cent slice coupling is comparable to our proposed coupling
method, this is not the case in other experiments. Further,
there is no specific reason for choosing adjacent two-slice
coupling over adjacent three-slice or four-slice coupling, or,
for that matter, a mixture of these.

We have chosen D to be d times the average difference in
image moments between consecutive slices, where d = 1.3.
The segmented least squares algorithm coupled the slices in
the following manner: (2-8), (10-18), (26-41), (45-67), (71-
91) and (98-110). All the remaining slices were not coupled
and reconstructed as per single slice reconstruction.

3.3 Brainweb dataset
We took 60 slices from a Brainweb dataset [1]. Each slice

was of size 180× 180 and represented different axial depth.
Radon measurements were taken along 25 angles (13.89% of
the data is measured). Fig. 6 shows the PSNR plots after
reconstruction and the visual results can be found in our
supplementary material. As seen in Fig. 7, the reconstruc-
tion was poor when all the slices were coupled together. The
segmented least squares based method performed better in
most slices, than single slice reconstruction. We have cho-
sen D to be d times the average difference in image moments
between consecutive slices, where d = 1.1. The segmented
least squares algorithm coupled the slices in the following
manner: (6-18), (20-37), (43-46), (52-56) and (58-60). All
the remaining frames were not coupled and reconstructed as
per single slice reconstruction.

Note that in most datasets (and especially in Brainweb),
the PSNR continuously decreases for the case of joint re-
construction with all slices. This is because the ith slice is
computed after reconstructing the DCT coefficients of all
the previous slices, i.e.

θi = θi−1 + ∆θi−1 (15)

where ∆θi−1 = θi−θi−1. Hence, the reconstruction error
adds up cumulatively and therefore PSNR decreases as i, the
slice number, increases.

For all our experiments, the maximum number of permit-
ted iterations in the compressive sensing solver was set to
500. Single slice reconstruction was the fastest of all tech-
niques, taking less than a minute for each slice. As we couple
more number of slices, the time taken for reconstruction in-
creases. In general, we observed that if single slice method
takes T units of time, then joint reconstruction of n slices
takes higher than nT units of time.

2Percentage of data measured by taking k projections of a
slice of size [sz sz] is approximately equal to k×sz

sz×sz
× 100
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Figure 4: Reconstruction on the Walnut dataset [4]. Our
method combines slices (1-23), (24-27) and (31-60)
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Figure 5: Reconstruction on the Humerus dataset [2]. Our
method combines slices (2-8), (10-18), (26-41), (45-67), (71-
91) and (98-110)

4. CONCLUSION
Although joint reconstruction by coupling many similar

slices is useful, the reconstruction accuracy may degrade
if dissimilar slices are coupled. We have proposed a new
technique to compute similarity between slices directly from
their tomographic measurements, and thereby encourage cou-
pling of only the similar slices for joint reconstruction. Our
results confirm an improvement in the reconstruction pro-
cess. This will reduce the number of measurements needed
in tomography, thus reducing the exposure to radiation in
CT and increasing acquisition speed in MRI. The estimate
of the parameter D in our optimality scheme is currently
empirical. Designing an automated method for tuning D is
an avenue for future work.
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Joint reconstruction by proposed method
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Figure 6: Reconstruction on the Brainweb dataset [1]. Our
method combines slices (6-18), (20-37), (43-46), (52-56) and
(58-60)

Figure 7: One of the reconstructed slices from Brainweb
dataset [1]: Top left: original slice; top right: single slice
reconstruction; bottom left: our method; bottom right: joint
reconstruction of all slices together
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