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ABSTRACT
In this paper we describe a straightforward, yet effective
method of recovering angles from a set of tomographic pro-
jections when the view-angles are completely unknown. Ex-
isting works on this problem have consistently assumed avail-
ability of projections from a large number of angles as well
as made assumptions on the underlying distribution of angles
to aid reconstruction. We make no such assumptions, and yet
show a principled technique which is empirically validated,
and quite robust to noise.

1. INTRODUCTION

Commonly, in a parallel-beam tomographic formulation, the
view angles are assumed to be perfectly known. However,
there are many scenarios where this may not be the case. One
such setting is cryo-electron microscopy (cryoEM), where to-
mographic techniques are used to determine the structure of a
molecule or cell [1]. Multiple repetitions of the procedure are
performed on identical specimens, each of which is arbitrar-
ily oriented. With no way to control the relative orientation
of the replica specimens, the tomographic angles are essen-
tially unknown. Another use case of such a technique is in
insect tomography [2], or tomography of objects performing
unknown rigid motion, which is equivalent to performing a
tomographic reconstruction on a fixed object, with the view
angles of the projects being unknown. Uncertainty in view
angles, though to a lower degree, may also occur due to pa-
tient motion in medical imaging [3].

In each of these scenarios, there may be significant or
complete uncertainty in the angles from which tomographic
projections are computed. It has been shown in [4] that
under certain modest conditions, the view angles can be
uniquely determined from the tomographic projections, and
that the estimated angles are in principle stable under noise
[5] in almost all cases. However the associated algorithms
rely on some strong assumptions. Most algorithms make
use of the assumption that projections at nearby angles (or
moments thereof) are similar to each other, and utilize this
assumption to formulate an embedding of projections onto
a lower-dimensional space using dimensionality reduction
techniques. [6] uses Spherical Locally Linear Embedding
(sLLE) to embed projections on a circular, 2-D space; [7]

utilizes spherical multi-dimensional scaling to reduce dimen-
sionality; [8] uses a Laplacian graph-based manifold learning
method to embed projections from various view angles on the
circle. Others such as [5] have utilized simple heuristics like
a nearest neighbour search to find angle ordering. In all cases,
the essence of the methodology has been to find out an or-
dering of angles. This suffers from multiple problems: First,
since the assumptions are not mathematically driven, there
is no theoretical guarantee on the resultant angles to satisfy
the Helgasson-Ludwig Consistency conditions (See section
3.2), which relate the geometric moments of the underlying
image to those of its tomographic projections. Second, since
the algorithms provide only an ordering on the angles, one
must depend on knowledge of the underlying probability
distribution of the angles to recover the actual angle values.
Lastly, the use of such methods necessitates the availability
of projections from a large number of angles. Otherwise, the
angle estimates have a large variance (Section III, [8]). While
in certain scenarios, obtaining a large number of measure-
ments may be feasible, it is always advantageous to be able
to reconstruct with a fewer view angles. In this paper, we de-
scribe a method which is mathematically motivated, general
in applicability, robust to a fair degree of noise, and viable
even with projections from a few angles being available.

2. BACKGROUND AND PROBLEM FORMULATION

In the problem of (parallel beam) tomographic reconstruction,
the input consists of a set of angles, θ , {θ1, θ2, ..., θP } and
the corresponding projections of a 2-D image from these an-
gles, forming the set Pθ , {Pθi}Pi=1. A projection, Pθi , is
essentially a vector of line integrals of the image, as viewed
from angle θi (from a fixed 0 angle). That is, the sth ele-
ment of the vector Pθi , Pθi(s), is the line integral along a
ray at a distance s from the origin, and inclined at an angle
θi to the y-axis. It is well known that given infinitely many
such projections with known corresponding angles, the im-
age can be reconstructed perfectly. However this is infeasi-
ble in practice. Hence, multiple techniques have been devel-
oped to reconstruct images from a sparse set of projections,
e.g., the well-known filtered back-projection technique [9], or
moment-based methods such as [10].



2.1. Unknown View Angles

In some applications, the exact angles in θ are not known
with precision, or not known at all. In such situations, there is
an inherent ambiguity associated with the angles being recov-
ered. Rotating the initial image by a fixed angle φ would pro-
duce the exact same set of projections, but at an angular shift
of φ. Further, reflecting the original image also allows for the
same set of projections to be produced. Therefore, all angles
will be determined with this inherent ambiguity. That is, we
may have an inherent ambiguity as θ̂i = σθi + 2niπ + φ,
where θi is the original angle from where the ith projection
has been acquired, θ̂i is the estimated value of this angle,
σ ∈ {+1,−1}, ni ∈ Z, and φ is the fixed rotational ambi-
guity. This is not a limitation as such, and we will evaluate
the correctness of results allowing for such an ambiguity. It
has been shown that provided a surprisingly small number
of such projections, this problem permits a unique solution
(allowing for aforementioned ambiguity) under very mild as-
sumptions on the underlying image [4]. Further, the same
authors have also proved that such a solution is stable under
noise in [5]. However, a constructive algorithm to illustrate
this, which does not rely on stronger assumptions on the dis-
tribution of the angles, has not been published. In the follow-
ing section, we describe an algorithm that empirically satisfies
these criteria.

3. ALGORITHM DESCRIPTION

The complete process consists of three stages: (a) Denoising
noisy tomographic projections, (b) Angle estimation through
iterative coordinate descent, and (c) Image reconstruction us-
ing the estimated angles. In this work we provide algorithms
for steps 1 and 2. Existing algorithms for step 3 perform quite
well. For assessing the technique, we use the error in estima-
tion of angles as a metric for evaluation. For testing, we have
used filtered back-projection (FBP) algorithm for reconstruc-
tion for simplicity, though better algorithms inspired from the
compressed sensing literature may be used [11].

3.1. Denoising

We used a patch-based PCA denoising method to reduce the
noise in the projections. This algorithm is adapted from a
similar algorithm for 2-D images, as described in [12] (a pop-
ular method, widely used for denoising). We consider patches
of size d × 1 from a moving window across each projec-
tion. For each patch, we find its L nearest patches (in the
L2-norm sense). We perform PCA on this set of L vectors
and project each one along the principal directions to pro-
duce eigencoefficients. To denoise the patch, we manipu-
late these coefficients using Wiener-like updates of the form

x̂il = yil

(
σ2
l

σ2
l + σ2

)
, where x̂il is an estimate of the lth de-

noised coefficient for patch i (1 ≤ l ≤ d), yil is the cor-

responding noisy coefficient for patch i, and σ2
l (the mean

squared value of the lth coefficient across all L patches) is

estimated as: σ̂2
l = max

(
0, 1

L

L∑
i=1

y2i − σ2

)
.

Note that this is different from a PCA-based denoising
approach as used in [13], where entire projections are com-
pared. The patch-based approach proposed above has two
distinct advantages: (a) The use of patches (with size appro-
priately tuned) allows for similarity among different parts of
the same projection as well; and (b) This method works even
when the total number of projections is considerably lower.
When finding similarity between entire projections in a small
set, it is unlikely that we find very similar projections.

3.2. Coordinate Descent

This is the key part of the algorithm. We utilize the Helgasson-
Ludwig Consistency Conditions (HLCC) [14], which de-
scribe the relationship between the geometric moments of the
underlying image f(x, y) and its projections from a given
angle. For a particular angle θi, the nth order moment of Pθi
is calculated as follows:

m
(n)
θi

=

∫ ∞
−∞

Pθi(s)s
nds (1)

Now, there exist n + 1 image moments of the nth order. For
natural numbers p, q, such that p+q = n, the nth order image
moments can be calculated as [9]:

υp,q =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)xpyqdxdy (2)

The HLCC describe a relationship between the nth order pro-
jection moments and the nth order image moments:

m
(n)
θi

=

n∑
j=0

(
n

j

)
(cos θi)

n−j(sin θi)
jυn−j,j (3)

Using projection moments from multiple angles, (3) can be
written in matrix form, m(n) = A(n)υ(n) where, for the nth

order equation, A(n) is the P × (n + 1) matrix defined by
A(n)

ij =
(
n
j

)
(cos θi)

n−j(sin θi)
j , and υ(n) , {υp,q|p+q =

n, p, q ∈ Z}, and m(n) is a vector containing the projection
moments of order n at P different angles. This equation can
be used to determine υ(n), and for this, we need P ≥ n+ 1.

Since, in practice, the projections are noisy, despite de-
noising, equation 3 will not be satisfied exactly. Further, un-
certainty in the value of θis will translate into more approx-
imation errors. In our problem setting, we do not actually
know the values of θi. We will, instead, use hypothesized val-
ues of θi. For hypothesized values of θ and the set of image
moments, υ = {υ(n)}kn=0, we can define our energy func-
tion, E as:

E(θ,υ) =

k∑
n=0

p∑
i=1
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)2

(4)



This equation is the crux of the algorithm. E(θ,υ) is the ob-
jective we must minimize by appropriately selecting values of
the parameters θ and υ. This is achieved through an iterative
approach, where estimates for each θi are improved one at a
time, and the values of υ recalculated using a pseudo-inverse.
We can now describe the iterative algorithm using coordinate
descent.

1: Randomly initialize θ estimates, by picking each θi uni-
formly from −π to π

2: Calculate projection moments,m(j)
θi

, of the first 1 ≤ j ≤
k orders.

3: Estimate image moments of the first k orders, υ(i), 1 ≤
i ≤ k. We only need k + 1 view angles for this, but we
set k to a much lower value than the number of available
views, to introduce redundancy into the system.

4: Calculate E using 4.
5: Set ∆E =∞
6: while ∆E > ε do
7: for each θi do
8: for each angle in −π to π, with appropriate reso-

lution do
9: Assume this value for θi

10: Recalculate image moments using this value
11: Calculate E again, using updated values of θi

and image moments
12: if E < previous-best-estimate then
13: update the best estimate for θi
14: ∆E = Old value of E − new value of E
15: Update the value of E
16: end if
17: end for
18: end for
19: end while

For each θi, the algorithm performs a 1-D brute-force search
for the value that minimizes E. The image moments are then
re-estimated, and the value of E updated At each step, ex-
actly one θi is updated. Since each update always reduces E,
and E is a non-negative quantity, it is guaranteed to converge
eventually. In practice, it is seen that it takes a small number
of iterations to converge. Further, the highest order moment
to consider, k is a tunable parameter. When we increase k
by 1, we increase the number of knowns by p - one known
projection moment of order k for each of the p angles - and
the unknowns by only k - image moments of the kth order,
introducing more redundancy in the system. So, in theory, it
is feasible to use a very large k. However, in experiments, it
was seen that while angle recovery generally improves with
increasing the value of k, going beyond order 6 or 7, the gain
was marginal, but increased computation time significantly.

The search space is not convex, and so, the convergence
point using coordinate descent may be sensitive to initializa-
tion values of θis. To counteract this to a certain extent, we
used a multi-start strategy, where the above algorithm is run

multiple times, each time with a random initialization for θ.
Finally, the iteration with the least value of E at convergence
is chosen as the optimal set of assignments for θ. Using this
multi-start strategy, we almost always obtained accurate angle
estimates.

4. EXPERIMENTAL RESULTS

Experiments were conducted for multiple square images, with
a size of 200x200 pixels, under zero mean, i.i.d. Gaussian
noise with standard deviation varying from 1% to 10% of
the standard deviation of the tomographic projections. It was
observed that the final angles recovered were consistently
close (almost entirely within ±1◦, occasional outliers reach-
ing±5◦) to the actual angles used to compute the projections.
In each case, ten uniformly random initialization values were
used for angle estimates, and the search was performed in
1◦ steps, with a value of k = 5. To test the robustness of
the algorithm to different angle distributions, experiments
were conducted on non-integer angles sampled from (a) a
(0, 180) uniform distribution, (b) a non-uniform distribution,
picking angles from each successive 30◦ interval in the ratio
0.2:0.3:0.12:0.3:0.35 and (c) an extremely peaky distribution
with 10 angle values sampled close to each of 10 randomly
chosen, spread out peaks. We emphasize that knowledge of
this distribution of the angles was not used anywhere in the
estimation process.

Reconstruction results using filtered back-projection and
with a set of 30 angles as input for two images are included in
Figure 2 along with the angle estimation results in the top row
of Figure 3. Although, reconstructed images are also shown
for visual interpretation, it should be noted that the recon-
struction suffers from significant noise because of the limita-
tions of FBP, and should be considered only in comparison
to the baseline provided alongside. The quality of angle re-
covery can be seen in Figure 3 for different images and angle
distributions at a noise level of 10%.

4.1. Comparison with Existing Techniques

We compared our results to the algorithm in [13] which builds
upon prior work in [8] using the code provided by the authors.
A further comparison was made with the algorithm closely
matching the one described in [5]. These methods are repre-
sentative of the class of methods that assume knowledge of
the angle distribution.

While both methods ([5, 13]) are indeed quite effective
when the input consists of a large number of angles from a
uniform distribution (even at incredibly low SNR), we ob-
served in our experiments that they both fail completely (er-
ror greater than 30◦) if either the number of angles is small
(e.g., 30, as in the experiment here), or if the distribution is
not uniform. The former result can be predicted directly from
the variance of the angle estimates as evaluated in [8].



Fig. 1. Original images used. Reconstruction results in Fig 2

Fig. 2. FBP reconstruction using a non-uniform distribution
of angles. Top to bottom: Using (a) 5% noise & actual angles,
(b) 5% noise & estimated angles, (c) 10% noise & actual an-
gles (d) 10% noise & estimated angles Reconstructions done
with 30 angles (first column), 100 angles (second column),
100 angles (third column). Image canvas sizes have been ex-
panded to allow for images to fit rotated reconstructions

Table 1. Statistics of errors in angle recovery, 5% noise

Error Earthrise
30 angles

Earthrise
100 angles

Mickey
30 angles

Mickey
100 angles

≤ 1◦ 13 94 20 66
≤ 3◦ 29 99 29 96
≤ 5◦ 30 100 29 100
> 5◦ 0 0 1 0

5. SUMMARY AND CONCLUSIONS

We proposed a general method for image reconstruction
from projections from unknown view angles and empirically

Fig. 3. In each figure, X and Y axes show true and estimated
angles respectively, under 10% noise. Left: image ‘mickey’;
Right: image ‘earthrise’. Angles drawn from - Top row:
a uniform distribution; Middle: a non-uniform distribution;
Bottom: very peaky distribution. For visualization, the offset
φ in the estimated angles has been removed manually

demonstrated its efficiency in a wide variety of scenarios -
with varying number of view angles, with different distribu-
tions for generation of the angles, and at multiple noise levels.
The key idea is to iteratively improve angle estimates to re-
duce HLCC residuals, using a coordinate descent strategy.

On experimenting with values of the maximum order of
image moments to be considered, it was discovered that there
is a clear trade-off between accuracy and computational time,
but only up to a (fairly low) threshold, after which, increasing
the order causes no noticeable improvement in the recovered
angles. However, this remains a parameter which must be
tuned by the user. In practical applications, besides unknown
view angles, different projections could be acquired at differ-
ent and unknown shifts. This scenario can be handled easily
assuming the background intensity as 0, since that would pro-
duce projections padded with an appropriate number of zeros.

There exist several open avenues for future research, such
as handling projections with impulse noise or missing bins,
projections with fan-beam geometry, reconstructions of 3D
objects, and exploring the relationship of this problem with
tasks such as automated instrument calibration in compressed
sensing.
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