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Abstract. This paper presents an approach to image filtering that is
driven by the properties of the iso-valued level curves of the image and
their relationship with one another. We explore the relationship of our
algorithm to existing probabilistically driven filtering methods such as
those based on kernel density estimation, local-mode finding and mean-
shift. Extensive experimental results on filtering gray-scale images, color
images, gray-scale video and chromaticity fields are presented. In con-
trast to existing probabilistic methods, in our approach, the selection of
the parameter that prevents diffusion across the edge is robustly decou-
pled from the smoothing of the density itself. Furthermore, our method
is observed to produce better filtering results for the same settings of
parameters for the filter window size and the edge definition.

1 Introduction

Filtering of images has been one of the most fundamental problems studied in
low-level vision and signal processing. Over the past decades, several techniques
for data filtering have been proposed with impressive results on practical appli-
cations in image processing. As straightforward image smoothing is known to
blur across significant image structures, several anisotropic approaches to im-
age smoothing have been developed using partial differential equations (PDEs)
with stopping terms to control image diffusion in different directions [1]. The
PDE-based approaches have been extended to filtering of color images [2] and
chromaticity vector fields [3]. Other popular approaches to image filtering in-
clude adaptive smoothing [4] and kernel density estimation based algorithms [5].
All these methods produce some sort of weighted average over an image neigh-
borhood for the purpose of data smoothing, where the weights are obtained from
the difference between the intensity values of the central pixel and the pixels in
the neighborhood, or from the pixel gradient magnitudes. Beyond this, tech-
niques such as bilateral filtering [6] produce a weighted combination that is also
influenced by the relative location of the central pixel and the neighborhood
pixels. The highly popular mean-shift procedure [7], [8] is grounded in similar
ideas as bilateral filtering, with the addition that the neighborhood around a
pixel is allowed to change dynamically until a convergence criterion is met. The
authors prove that this convergence criterion is equivalent to finding the mode
of a local density built jointly on the spatial parameters (image domain) and
the intensity parameters (image range).
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In this paper, we present a new approach to data filtering that is rooted in
simple yet elegant geometric intuitions. At the core of our theory is the repre-
sentation of an image as a function that is at least C0 continuous everywhere. A
key property of the image level sets is used to drive the diffusion process, which
we then incorporate in a framework of dynamic neighborhoods à la mean-shift.
We demonstrate the relationship of our method to many of the existing filtering
techniques such as those driven by kernel density estimation. The efficacy of our
approach is supported with extensive experimental results. To the best of our
knowledge, ours is the first attempt to explicitly utilize image geometry (in terms
of its level curves) for this particular application.

This paper is organized as follows. Section 2 presents the key theoretical
framework. Section 3 presents extensions to our theory. In section 4, we present
the relationship between our method and mean-shift. Extensive experimental
results are presented in section 5, and we present further discussions and con-
clusions in section 6.

2 Theory

Consider an image over a discrete domain Ω = {1, ..., H} × {1, ..., W} where
the intensity of each discrete location (x, y) is given by I(x, y). Moreover con-
sider a neighborhood N (xi, yi) around the pixel (xi, yi). It is well-known that
a simple averaging of all intensity values in N (xi, yi) will blur edges, so a
weighted combination is calculated, where the weight of the jth pixel is given
by w(1)(xj , yj) = g(|I(xi, yi) − I(xj , yj)|) for a non-increasing function g(.) to

facilitate anisotropic diffusion, with common examples being g(z) = e−
z2

σ2 or

g(z) = σ2

σ2+z2 , or their truncated versions. This approach is akin to the kernel
density estimation (KDE) approach proposed in [5], where the filtered value of
the central pixel is calculated as:

Î(xi, yi) =

∑
(xj,yj)∈N (xi,yi)

I(xj , yj)K(I(xj , yj) − I(xi, yi); Wr)

∑
(xj ,yj)∈N (xi,yi)

K(I(xj , yj) − I(xi, yi); Wr)
. (1)

Here the kernel K centered at I(xi, yi) (and parameterized by Wr) is related to
the function g and determines the weights. The major limitations of the kernel
based approach to anisotropic diffusion are that the entire procedure is sensitive
to the parameter Wr and the size of the neighborhood, and might suffer from a
small-sample size problem. Furthermore, in a discrete implementation, for any
neighborhood size larger than 3 × 3, the procedure depends only on the actual
pixel values and does not account for any gradient information, whereas in a
filtering application, it is desirable to place greater importance on those regions
of the neighborhood where the gradient values are lower.

Now consider that the image is treated as a continuous function I(x, y) of
the spatial variables, by interpolating in between the pixel values. The earlier
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discrete average is replaced by the following continuous average to update the
value at (xi, yi):

Î(xi, yi) =

∫ ∫
N (xi,yi)

I(x, y)g(|I(x, y) − I(xi, yi)|)dxdy

∫ ∫
N (xi,yi)

g(|I(x, y) − I(xi, yi)|)dxdy

. (2)

The above formula is usually not available in closed form. We now show a
principled approximation to this formula, by resorting to geometric intuition.
Imagine a contour map of this image, with multiple iso-intensity level curves
Cm = {(x, y)|I(x, y) = αm} (referred to henceforth as ‘level curves’) separated
by an intensity spacing of ∆. Consider a portion of this contour map in a small
neighborhood centered around the point (xi, yi) (see Figure 1(a)). Those regions
where the level curves (separated by a fixed intensity spacing) are closely packed
together correspond to the higher-gradient regions of the neighborhood, whereas
in lower-gradient regions of the image, the level curves lie far away from one an-
other. Now as seen in Figure 1(a), this contour map induces a tessellation of
the neighborhood into some K facets, where each facet corresponds to a region
in between two level curves of intensity αm and αm + ∆, bounded by the rim
of the neighborhood. Let the area ak of the kth facet of this tessellation be de-
noted as ak. Now, if we make ∆ sufficiently small, we can regard even the facets
from high-gradient regions as having constant intensity value Ik = αm. This now
leads to the following weighted average in which the weighting function has a
very clean geometric interpretation, unlike the arbitrary choice for w(1) in the
previous technique:

Î(xi, yi) =

K∑
k=1

akIkg(|Ik − I(xi, yi)|)

K∑
k=1

akg(|Ik − I(xi, yi)|)

. (3)

As the number of facets is typically much larger than the number of pixels, and
given the fact that the facets have arisen from a locally smooth interpolation
method to obtain a continuous function from the original digital pixel values,
we now have a more robust average than that provided by Equation 1. To intro-
duce anisotropy, we still require the stopping term g(|Ik − I(xi, yi)|) to prevent
smearing across the edge, just as in Equation 1.

Equation 2 essentially performs an integration of the intensity function over
the domain N (xi, yi). If we now perform a change of variables transforming
the integral on (x, y) to an integral over the range of the image, we obtain the
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expression

Î(xi, yi) =

∫ ∫
N (xi,yi)

I(x, y)w(1)(x, y)dxdy

∫ ∫
N (xi,yi)

w(1)(x, y)dxdy

=

∫ q=q2

q=q1

∫
C(q)

qg(|q − I(xi, yi)|)

|∇I|
dldq

∫ q=q2

q=q1

∫
C(q)

g(|q − I(xi, yi)|)

|∇I|
dldq

=

lim
∆→0

q2∑
α=q1

∫ α+∆

q=α

∫
C(q)

qg(|q − I(xi, yi)|)

|∇I|
dldq

lim
∆→0

q2∑
α=q1

∫ q=α+∆

q=α

∫
C(q)

g(|q − I(xi, yi)|)

|∇I|
dldq

(4)

where C(q) = N (xi, yi) ∩ f−1(q), q1 = inf{I(x, y)|(x, y) ∈ N (xi, yi)}, q2 =
sup{I(x, y)|(x, y) ∈ N (xi, yi)} and l stands for a tangent along the curve f−1(q).
This approach is inspired by the smooth co-area formula for regular functions
[9] which is given as

∫
Ω

φ(u)|∇u|dxdy =

∫ +∞

−∞

Length(γq)φ(q)dq (5)

where γq is the level set of u at the intensity q and φ(u) represents a function of u.

Note that the term
∫ q=α+∆

q=α

∫
C(q)

dldq
|∇I| in Equation 4 actually represents the area

in N (xi, yi) that is trapped between two contours whose intensity value differs
by ∆. Previous work from [10] and [11] considers this quantity when normalized
by |Ω| to be actually equal to the probability that the intensity value lies in the
range [α, α + ∆]. Bearing this in mind, Equation 3 now acquires the following
probabilistic interpretation:

Î(xi, yi) =

q2∑
α=q1

Pr(α < I < α + ∆|N )αg(|α − I(xi, yi)|)

q2∑
α=q1

Pr(α < I < α + ∆|N )g(|α − I(xi, yi)|)

. (6)

As ∆ → 0, this produces an increasingly better approximation to Equation 2.
It should be pointed out that there exist methods such as adaptive filter-

ing [4], [12] in which the weights in Equation 1 are obtained as w(2)(xj , yj) =
g(|∇I(xj , yj)|). These methods place more importance on the lower-gradient pix-
els of the neighborhood, but do not exploit level curve relationships in the way
we do, and the choice of the weighting function does not have the geometric
interpretation that exists in our technique. There also exists an extension to the
standard neighborhood filter in Equation 1 reported in [13], which performs a
weighted least squares polynomial fit to the intensity values (of the pixels) in
the neighborhood of a location (x, y). The value of this polynomial at (x, y) is
then considered to be the smoothed intensity value. This technique differs from
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Fig. 1. (a) An image contour map with high and low gradient regions in a neighborhood
around a pixel (dark dot). (b) A contour map of an RGB image in a neighborhood.
The red, green and blue contours correspond to contours of the R,G,B channels re-
spectively. The tessellation induced by the above level-curve pairs contains 19 facets.
(c) A tessellation induced by RGB level curve pairs and the square pixel grid.

the one we present here in two fundamental ways. Unlike our method, it does
not use areas between level sets as weights to explicitly perform a weighted av-
eraging. Secondly as proved in [13], its limiting behavior when Wr → 0 and
|N (x, y)| → 0 resembles the geometric heat equation with a linear polynomial,
and resembles higher order PDEs when the degree of the polynomial is increased.
Our method is the true continuous form of the KDE-based filter from Equation
1. This KDE-based filter limits to the Perona-Malik equation, as proved in [13].

3 Extensions of Our Theory

3.1 Color Images

We now extend our technique to color (RGB) images. Consider a color image
defined as I(x, y) = (R(x, y), G(x, y), B(x, y)) : Ω → R3 where Ω ⊂ R2. In
color images, there is no concept of a single iso-contour with constant values
of all three channels. Hence it is more sensible to consider an overlay of the
individual iso-contours of the R, G and B channels. The facets are now induced
by a tessellation involving the intersection of three iso-contour sets within a
neighborhood, as shown in Figure 1(b). Each facet represents those portions
of the neighborhood for which αR < R(x, y) < αR + ∆R, αG < G(x, y) <

αG + ∆G, αB < B(x, y) < αB + ∆B . The probabilistic interpretation for the
update on the R,G,B values is as follows

R̂(xi, yi), Ĝ(xi, yi), B̂(xi, yi) =

∑
β

Pr[β < (R, G, B) < β + ∆|N )βg(R, G, B)

∑
β

Pr[β < (R, G, B) < β + ∆|N )g(R, G, B)
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where β = (αR, αG, αB), ∆ = (∆R, ∆G, ∆B) and g(R, G, B) = g(|R−R(xi, yi)|+
|G−G(xi, yi)|+ |B−B(xi, yi)|). Note that in this case, I(x, y) is a function from
a subset of R2 to R3, and hence the three-dimensional joint density is ill-defined
in the sense that it is defined strictly on a 2D subspace of R3. However given
that the implementation considers joint cumulative interval measures, this does
not pose any problem in a practical implementation. We wish to emphasize that
the averaging of the R,G,B values is performed in a strictly coupled manner, all
affected by the joint cumulative interval measure.

3.2 Chromaticity Fields

Previous research on filtering chromaticity noise (which affects only the direction
and not the magnitude of the RGB values at image pixels) includes the work in
[3] using PDEs specially tuned for unit-vector data, and the work in [5] (page
142) using kernel density estimation for directional data. The more recent work
on chromaticity filtering in [14] actually treats chromaticity vectors as points on
a Grassmann manifold G1,3 as opposed to treating them as points on S2, which
is the approach presented here and in [5] and [3].

We extend our theory from the previous section to unit vector data and
incorporate it in a mean-shift framework for smoothing. Let I(x, y) : Ω → R3

be the original RGB image, and let J(x, y) : Ω → S2 be the corresponding
field of chromaticity vectors. A possible approach would involve interpolating the
chromaticity vectors by means of commonly used spherical interpolants to create
a continuous function, followed by tracing the level curves of the individual unit-
vector components v(x, y) = (v1(x, y), v2(x, y), v3(x, y)) and computing their
intersection. However for ease of implementation for this particular application,
we resorted to a different strategy. If the intensity intervals ∆ = (∆R, ∆G, ∆B)
are chosen to be fine enough, then each facet induced by a tessellation that uses
the level curves of the R, G and B channel values, can be regarded as having a
constant color value, and hence the chromaticity vector values within that facet
can be regarded as (almost) constant. Therefore it is possible to use just the
R,G,B level curves for the task of chromaticity smoothing as well. The update
equation is very similar to Equation 7 with the R,G,B vectors replaced by their
unit normalized versions. However as the averaging process does not preserve
the unit norm, the averaged vector needs to be renormalized to produce the
spherical weighted mean.

3.3 Gray-scale Video

For the purpose of this application, the video is treated as a single 3D signal
(volume). The extension in this case is quite straightforward, with the areas
between level curves being replaced by volumes between the level surfaces at
nearby intensities. However we take into account the causality factor in defining
the temporal component of the neighborhood around a pixel, by performing the
averaging at each pixel over frames only from the past.
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4 Level Curve Based Filtering in a Mean-shift Framework

All the above techniques are based on an averaging operation over only the
image intensities (i.e. in the range domain). On the other hand, techniques
such as bilateral filtering [6] or local mode-finding [15] combine both range and
spatial domain, thus using weights of the form wj = g(s)((xi − xj)

2 + (yi −
yj)

2)g(r)(|(I(xi, yi) − I(xj , yj)|) in Equation 1, where g(s) and g(r) affect the
spatial and range kernels respectively. The mean-shift framework [8] is based on
similar principles, but changes the filter window dynamically for several itera-
tions until it finds a local mode of the joint density of the spatial and range
parameters, estimated using kernels based on the functions g(r) and g(s). Our
level curve based approach fits easily into this framework with the addition of a
spatial kernel. One way to do this would be to consider the image as a surface
embedded in 3D (a Monge patch), as done in [16], and compute areas of patches
in 3D for the probability values. However such an approach may not necessarily
favor the lower gradient areas of the image. Instead we adopt another method
wherein we assume two additional functions of x and y, namely X(x, y) = x

and Y (x, y) = y. We compute the joint probabilities for a range of values of the
joint variable (X, Y, I) by drawing local level sets and computing areas in 2D.
Assuming a uniform spatial kernel for g(s) within a radius Ws and a rectangular
kernel on the intensity for g(r) with threshold value Wr (though our core theory
is unaffected by other choices), we now perform the averaging update on the
vector (X(x, y), Y (x, y), I(x, y)), as opposed to merely on I(x, y) as was done in
Equation 6. This is given as:

(X(xi, yi), Y (xi, yi), Î(xi, yi)) =

K∑
k=1

(xk, yk, Ik)akg(r)(|Ik − I(xi, yi)|)

K∑
k=1

akg(r)(|Ik − I(xi, yi)|)

. (7)

In the above equation (xk, yk) stands for a representative point (say, the centroid)
of the kth facet of the induced tessellation1, and K is the total number of facets
within the specified spatial radius. Note that the area of the kth facet, i.e. ak,
can also be interpreted as the joint probability for the event x̃ < X(x, y) <

x̃ + ∆x, ỹ < Y (x, y) < ỹ + ∆y, α < I(x, y) < α + ∆, if we assume a uniform
distribution over the spatial variables x and y. Here ∆ is the usual intensity
binwidth, (∆x, ∆y) are the pixel dimensions, and (x̃, ỹ) is a pixel grid-point.
The main difference between our approach and all the aforementioned range-
spatial domain approaches is the fact that we naturally incorporate a weight in
favor of the lower-gradient areas of the filter neighborhood. Hence the mean-shift
vector in our case will have a stronger tendency to move towards the region of
the neighborhood where the local intensity change is as low as possible (even
if a uniform spatial kernel is used). Moreover just like conventional mean shift,

1 The notion of the centroid will become clearer in Section 5.
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our iterative procedure is guaranteed to converge to a mode of the local density
in a finite number of steps, by exploiting the fact that the weights at each
point (i.e. the areas of the facets) are positive. Hence Theorem 5 of [7] can be
readily invoked. This is because in Equation 7, the threshold function g(r) for the
intensity is the rectangular kernel, and hence the corresponding update formula
is equivalent to one with a weighted rectangular kernel, with the weights being
determined by the areas of the facets.

A major advantage of our technique is that the parameter ∆ can be set to as
small a value as desired (as it just means that more and more level curves are be-
ing used), and the interpolation gives rise to a robust average. This is especially
useful in the case of small neighborhood sizes, as the intensity quantization is now
no more limited by the number of available pixels. In conventional mean-shift,
the proper choice of bandwidth is a highly critical issue, as very few samples are
available for the local density estimate. Though variable bandwidth procedures
for mean-shift algorithms have been developed extensively, they themselves re-
quire either the tuning of other parameters using rules of thumb, or else some
expensive exhaustive searches for the automatic determination of the bandwidth
[17], [18]. Although our method does require the selection of Ws and Wr, the
filtering results are less sensitive to the choice of these parameters in our method
than in standard mean shift.

5 Experimental Results

In this section we present experimental results to compare the performance of our
algorithm in a mean shift framework w.r.t. conventional kernel-based mean shift,
as well as to two recent algorithms that are closely related to mean-shift: UINTA
[19] and NL-Means [20]. For our algorithm, we obtain a continuous function
approximation to the digital image, by means of piecewise linear interpolants
fit to a triple of intensity values in half-pixels of the image (in principle, we
could have used any other smooth interpolant). The corresponding level sets for
such a function are also very easy to trace, as they are just segments within
each half-pixel. The level sets induce a polygonal tessellation. We choose to split
the polygons by the square pixel boundaries as well as the pixel diagonals that
delineate the half-pixel boundaries, thereby convexifying all the polygons that
were initially non-convex (see Figure 1(c)). Each polygon in the tessellation can
now be characterized by the x, y coordinates of its centroid, the intensity value of
the image at the centroid, and the area of the polygon. Thus, if the intensity value
at grid location xi, yi is to be smoothed, we choose a window of spatial radius
Ws and intensity radius Wr around (xi, yi, I(xi, yi)), over which the averaging is
performed. In other words, the averaging is performed only over those locations
x, y for which (x−xi)

2 +(y−yi)
2 < W 2

s and |I(x, y)−I(xi, yi)| < Wr . We would
like to point out that though the interpolant used for creating the continuous
image representation is indeed isotropic in nature, this still does not make our
filtering algorithm isotropic. This is because polygonal regions, whose intensity
value does not satisfy the constraint |I(x, y)− I(xi, yi)| < Wr , do not contribute
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Fig. 2. Leftmost column: original images, Second from left: degraded images with zero
mean Gaussian noise of std. dev. 0.003, Second from right: results obtained by our
algorithm, and rightmost column: mean shift with Gaussian kernel (right column).
Both both methods, Ws = Wr = 3. VIEWED BEST when ZOOMED in the pdf file.

to the averaging process (see the stopping term in Equation 3), and hence the
contribution from pixels with very different intensity values will be nullified.

5.1 Gray-scale Images

We ran our filtering algorithm over four arbitrarily chosen images from the popu-
lar Berkeley image dataset 2, and the Lena image. To all these images, zero mean
Gaussian noise of variance 0.003 (per unit gray-scale range) was added. The fil-
tering was performed using Ws = Wr = 3 for our algorithm and compared to
mean-shift using Gaussian and Epanechnikov kernels with the same parameter.
Our method produced superior filtering results to conventional mean shift with
both Gaussian and Epanechnikov kernels. The results for our method, for Gaus-
sian kernel mean shift and for UINTA are displayed in Figure 2. The visually
superior appearance was confirmed objectively with mean squared error (MSE)
values in Table 1. It should be noted that the aim was to compare our method to

2 http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
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Image M1 M2 M3 MUINTA MNL MSE

1 110.95 176.57 151.27 280.7 130.7 181.27

2 53.85 170.18 106.32 95.43 127.48 193.5

3 106.64 185.15 148.379 121.3 147.41 191.76

4 113.8 184.77 153.577 127.4 147.98 190

Lena 78.42 184.16 128.04 101.5 125.38 194.82

Table 1. MSE for filtered images using (M1) = Our method with Ws = Wr = 3, using
(M2) = Mean shift with Gaussian kernels with Ws = Wr = 3 and (M3) = Mean shift
with Gaussian kernels with Ws = Wr = 5, MUINTA = MSE with UINTA method with
neighborhood radius 9, smoothing parameter h = 10 (similar to Wr), 1000 samples for
density estimate and 30 iterations per pixel, and MNL = MSE with NL-means with
search window size 18 × 18, neighborhood size 5 × 5, and smoothing parameter h = 5
(similar to Wr). MSE = mean-squared error in the corrupted image. Intensity scale is
from 0 to 255.

standard mean shift for the exact same setting of the parameters Wr and Ws, as
they have the same meaning in all these algorithms. Although increasing the value
of Wr will provide more samples for averaging, this will allow more and more
intensity values to leak across edges. Moreover, in Table 1, we also compare our
method to NL-means [20] and UINTA [19], again for similar parameter settings.
Further empirical results with our algorithm (using WS = Wr = 5) were ob-
tained on Lansel’s benchmark dataset [21]. The dataset contains noisy versions
of 13 different images. Each noisy image is obtained from one of three noise
models: additive Gaussian, Poisson, and multiplicative noise model, for one of
five different values of the noise standard deviation σ ∈ { 5

255 , 10
255 , 15

255 , 20
255 , 25

255},
leading to a total of 195 images. Despite the fact that we did not tweak any pa-
rameters depending on the noise model (we chose Wr = Ws = 5), we produced
excellent denoising results. The average MSE and MSSIM (an image quality met-
ric defined in [21]) are shown in the plots in Figure 3. We have also displayed the
denoised versions of a fingerprint image from this dataset under three different
values of σ for additive noise in Figure 3.

5.2 Color Images

Similar experiments were run on colored versions of the same four images from
the Berkeley dataset. The original images were degraded by zero mean Gaussian
noise of variance 0.003 (per unit intensity range), added independently to the
R,G,B channels. For our method, independent interpolation was performed on
each channel and the joint densities were computed as described in the previous
sections. Level sets at intensity gaps of ∆R = ∆G = ∆B = 1 were traced in
every half pixel. Experimental results were compared with conventional mean
shift using a Gaussian kernel. The parameters chosen for both algorithms were
Ws = Wr = 6. Despite the documented advantages of color spaces such as Lab
[5], all experiments were performed in the R,G,B space for the sake of simplicity,
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Fig. 3. First row: (a), (c) and (e): Fingerprint image subjected to additive Gaussian
noise of std. dev. σ = 5

255
, 10

255
and 15

255
respectively. (b), (d) and (f): Denoised versions of

(a), (c) and (e) respectively. Second row: A plot of the performance of our algorithm on
the Lansel dataset, averaged over all images from each noise model (Additive Gaussian
(AWGN), multiplicative Gaussian (MWGN) and Poisson) and over all five σ values,
using MSE (left) and MSSIM (right) as the metric. VIEWED BEST when ZOOMED
in the pdf file (in color).

and also because many well-known color de-noising techniques operate in this
space [2]. As seen in Figure 4 and Table 2, our method produced better results
than Gaussian kernel mean shift for the chosen parameter values.

5.3 Experiments with Chromaticity Vectors and Video

Two color images were synthetically corrupted with chromaticity noise altering
just the direction of the color-triple vector. These images are shown in Figure
5. These images were filtered using our method and Gaussian kernel mean shift
with a spatial window of size Ws = 4 and a chromaticity threshold of Wr = 0.1
radians. Note that in this case, the distance between two chromaticity vectors v1

and v2 is defined to be the length of the arc between the two vectors along the
great circle joining them, which turns out to be θ = cos−1 v1

T v2. The specific
expression for the joint spatial-chromaticity density using the Gaussian kernel

was e
−

(x−xi)
2+(y−yi)2

2W2
s e

− θ2

2W2
i . The filtered images using both methods are shown

in Figure 5. Despite the visual similarity of the output, our method produced
a mean-squared error of 378 and 980.8, as opposed to 534.9 and 1030.7 for
Gaussian kernel mean shift.

We also performed an experiment on video de-noising using the David se-
quence 3. The first 100 frames from the sequence were extracted and artificially
degraded with zero mean Gaussian noise of variance 0.006. Two frames of the
corrupted and de-noised (using our method) sequence are shown in Figure 6, as

3 obtained from http://www.cs.utoronto.ca/˜dross/ivt/
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Fig. 4. Left column: original images, second from left: Degraded images with zero
mean Gaussian noise of std. dev. 0.003, second from right: results by our algorithm
(left column) and Rightmost: mean shift with Gaussian kernel (right column). Both
both methods, Ws = Wr = 6. Viewed best when ZOOMED in the pdf file (in color).

also a temporal slice through the entire video sequence (for the tenth row of each
frame). For this experiment, the value of ∆ was set to 8 in our method.

Image M1 M2 M3 MSE

1 319.88 496.7 547.9 572.54

2 354.76 488.7 543.4 568.69

3 129.12 422.79 525.48 584.24

4 306.14 477.25 526.8 547.9

Table 2. MSE for filtered images using (M1) = Our method with Ws = Wr = 6, using
(M2) = Mean shift with Gaussian kernels with Ws = Wr = 6 and (M3) = Mean shift
with Epanechnikov kernels with Ws = Wr = 6. MSE = mean-squared error in the
corrupted image. Intensity scale is from 0 to 255 for each channel.

6 Discussion

We have presented a new method for image denoising, whose principle is rooted
in the notion that the lower-gradient portions of an image inside a neighborhood
around a pixel should contribute more to the smoothing process. The geometry
of the image level sets (and the fact that the spatial distance between level sets
is inversely proportional to the gradient magnitudes) is the driving force be-
hind our algorithm. We have linked our approach to existing probability-density
based approaches, and our method has the advantage of robust decoupling of the
edge definition parameter from the density estimate. In some sense, our method
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Fig. 5. Two images and their corrupted versions obtained by adding chromaticity
noise (first and second columns respectively). Results obtained by filtering with our
method (third column), and with Gaussian mean shift (fourth column). Viewed best
when ZOOMED in the pdf file (in color).

can be viewed as a continuous version of mean-shift. It should be noted that
a modification to standard mean-shift based on simple image up-sampling us-
ing interpolation will be an approximation to our area-based method (given the
same interpolant). We have performed extensive experiments on gray-scale and
color images, chromaticity fields and video sequences. To the best of our knowl-
edge, ours is the first piece of work on denoising which explicitly incorporates
the relationship between image level curves and uses local interpolation between
pixel values in order to perform filtering. Future work will involve a more de-
tailed investigation into the relationship between our work and that in [16], by
computing the areas of the contributing regions with explicit treatment of the

Fig. 6. First two images: frames from the corrupted sequence. Third and fourth: images
filtered by our algorithm. Fifth and sixth images: a slice through the tenth row of the
corrupted and filtered video sequences. The images are numbered left to right, top to
bottom.
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image I(x, y) as a surface embedded in 3D. Secondly, we also plan to develop
topologically inspired criteria to automate the choice of the spatial neighborhood
and the parameter Wr for controlling the anisotropic smoothing.
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