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Abstract

We present a new method for compact representation
of large image datasets. Our method is based on treat-
ing small patches from an image as matrices as opposed
to the conventional vectorial representation, and encod-
ing those patches assparseprojections onto a set of ex-
emplar orthonormal bases, which are learneda priori
from a training set. The end result is a low-error, highly
compact image/patch representation that has significant
theoretical merits and compares favorably with existing
techniques on experiments involving the compression of
ORL and Yale face databases.

1 Introduction

Most conventional techniques of image analysis treat
images as elements of a vector space. Lately, there has
been a steady growth of literature which regards images
as matrices, e.g. [7], [11], [10], [4]. As compared to a
vectorial method, the matrix-based representation helps
to better exploit the spatial relationships between image
pixels. In this paper, we regard an image as a set of
matrices (one per image patch) instead of using a single
matrix for the entire image as in [7], [11]. There usually
exists a great deal of similarity between a large number
of patches in one image or across several images of a
similar kind. We exploit this fact to learn a small num-
ber of full-sized orthonormal bases (as opposed to a sin-
gle set of low-rank bases learned in [7], [11] and [2], or
a single set of projection vectors learned in [10]) to re-
construct a set of patches from a training set by means
of sparseprojections with least possible error.

There exist several research papers on sparse image
representation, such as [5]. Some recent contributions
include the work in [1], which encodes image patches
as a sparse linear combination of a set of overcomplete
dictionary vectors (learned from a training set). How-
ever all these are againvector-based techniques, un-

like our matrix-based approach. The matrix-based algo-
rithm presented in [4] may cursorily appear to be similar
to the one we present here. However, that technique is
based on learning asingleset of non-orthonormal bases
for producing aneighborhood-preservingprojection of
the original training samples onto a lower-dimensional
space for a classification application, as opposed to op-
timizing for good reconstruction, which is one of our
main aims here.

Our paper is organized as follows. We describe the
theory and the main algorithm in sections (2.1) to (2.3).
Section (3) presents experimental results and compar-
isons with existing techniques. Further discussion is
presented in section (4).

2 Theory

Consider a set of images of a particular kind (say
face images), each of sizeM1 × M2. We divide
each image into non-overlapping patches of sizem1 ×
m2, m1 ≪ M1, m2 ≪ M2, and treat each patch as
a separate matrix. Exploiting the similarity inherent in
these patches, we effectively represent them by means
of sparse projections onto (appropriately created) or-
thonormal bases, which we term ‘exemplar bases’. We
learn these exemplarsa priori from a set of training im-
age patches. Before describing the learning procedure,
we first explain the mathematical structure of the exem-
plars.

2.1 Exemplar Bases and Sparse Projec-
tions

Let P ∈ Rm1×m2 be an image patch. Using sin-
gular value decomposition (SVD), we can representP

as a combination of orthonormal basesU ∈ Rm1×m1

and V ∈ Rm2×m2 in the formP = USV T , where
S ∈ Rm1×m2 is a diagonal matrix of singular values.
HoweverP can also be represented as a combination of



any set of orthonormal bases̄U and V̄ , different from
those obtained from the SVD ofP . In this case, we have
P = ŪSV̄ T whereS turns out to be anon-diagonal
matrix1. Contemporary SVD-based compression meth-
ods leverage the fact that the SVD provides the bestlow-
rank approximation to a matrix [9], [6]. We choose to
depart from this notion, and instead answer the follow-
ing question: Whatsparsematrix W ∈ Rm1×m2 will
reconstructP from a pair of orthonormal bases̄U andV̄

with the least error‖P − ŪWV̄ T ‖2? Sparsity is quan-
tified by an upper boundT on theL0 norm ofW , i.e.
on the number of non-zero elements inW (denoted as
‖W‖0)2. We prove that theoptimalW with this sparsity
constraint is obtained by nullifying the least (in absolute
value)m1m2 − T elements of the estimated projection
matrix S = ŪT P V̄ . Due to the ortho-normality of̄U
andV̄ , this simple greedy algorithm turns out to be op-
timal (see Theorem 1). This is quite unlike the approxi-
mation algorithms such as orthogonal matching pursuit
(OMP), employed in [1] for least-error representation
of a given vector as a sparse linear combination of an
overcomplete set of unit vectors, which is known to be
an NP-hard problem. Moreover, the quality of the ap-
proximation in OMP is dependent onT , with an upper
bound on the reconstruction error that is

√
1 + 6T times

the optimal error under some conditions ([8], Theorem
C). Our algorithm does not have such dependencies.
Theorem 1: The optimal sparse projection matrixW
with ‖W‖0 = T is obtained by setting to zerom1m2 −
T elements of the matrixS = ŪT P V̄ having least ab-
solute value.
Proof: We haveP = ŪSV̄ T . The least-squares error
(Frobenius norm) in reconstructing a patchP using a
matrix W other thanS is e = ‖Ū(S − W )V̄ T ‖2 =
‖S − W‖2 as Ū and V̄ are orthonormal. LetI1 =
{(i, j)|Wij = 0} andI2 = {(i, j)|Wij 6= 0}. Then
e =

∑
(i,j)∈I1

S2
ij +

∑
(i,j)∈I2

(Sij − Wij)
2. This er-

ror will be minimized whenSij = Wij in all locations
whereWij 6= 0 andWij = 0 at those indices where the
corresponding values inS are as small as possible. Thus
if we want‖W‖0 = T , thenW is the matrix obtained
by nullifying m1m2 − T entries fromS that have the
least absolute value and leaving the remaining intact.�

2.2 Learning the Bases

The essence of this paper lies in a learning method
to produceK exemplar orthonormal bases{(Ua, Va)},
1 ≤ a ≤ K, to encode a training set ofN image patches

1The decompositionP = ŪSV̄ T exists for anyP even ifŪ and
V̄ are not orthonormal. We still follow ortho-normality constraints to
facilitate optimization and coding. See section 2.3 and 3.1.

2See section 3 for the merits of our sparsity-based approach over
the low-rank approach.

Pi ∈ Rm1×m2 (1 ≤ i ≤ N ) with least possible error (in
the sense of theL2 norm of the difference between the
original and reconstructed patches). Note thatK ≪ N .
In addition, we impose a sparsity constraint that every
Sia (the matrix used to reconstructPi from (Ua, Va))
has at mostT non-zero elements. The main objective
function to be minimized is

E({Ua, Va, Sia, Mia}) =

N∑

i=1

K∑

a=1

Mia‖Pi−UaSiaV T
a ‖2

(1)
subject to the constraints thatUT

a Ua = V T
a Va = I, ∀a,

‖Sia‖0 ≤ T, ∀(i, a) and
∑

a Mia = 1, ∀i. HereMia is
a binary matrix of sizeN ×K which indicates whether
the ith patch belongs to the space defined by(Ua, Va).
This is a difficult optimization problem asMia is bi-
nary, so we cast it in an expectation-maximization
(EM) framework and relax the binary membership con-
straint so that nowMia ∈ (0, 1), ∀(i, a), subject to∑K

a=1 Mia = 1, ∀i [3]. Using Lagrange parameters
{µi} and a temperature parameterβ, we rewrite the ob-
jective function as follows (without the orthonormality
constraint onUa andVa):

E({Ua, Va, Sia, Mia}) =
∑

ia

Mia‖Pi − UaSiaV T
a ‖2

+
1

β

∑

ia

Mia log Mia +
∑

i

µi(
∑

a

(Mia) − 1). (2)

We first initialize {Ua} and {Va}, ∀a to random or-
thonormal matrices, andMia = 1

K
, ∀(i, a). Secondly,

as{Ua} and{Va} are orthonormal, the projection ma-
trix we haveSia = UT

a PiVa, ∀(i, a). Thenm1m2 − T

elements inSia with least absolute value are nullified.
Thereafter,Ua andVa are updated using the following
equations:

Ua = Z1a(ZT
1aZ1a)−

1

2 = Γ1aΥT
1a (3)

Va = Z2a(ZT
2aZ2a)−

1

2 = Γ2aΥT
2a (4)

where Z1a =
∑K

i=1 MiaPiVaST
ia, Z2a =∑K

i=1 MiaPT
i UaSia, and (Γ1a, Υ1a) and (Γ2a, Υ2a)

are orthonormal matrix pairs from the SVD ofZ1a and
Z2a respectively. The membership values are obtained
by the following update:

Mia =
e−β‖Pi−UaSiaV T

a
‖2

∑K

a=1 e−β‖Pi−UaSiaV T
a

‖2
. (5)

The matricesS, U, V, M are then updated sequentially
following one another for a fixedβ value, until conver-
gence. The value ofβ is then increased and the sequen-
tial updates are repeated. The entire process is repeated
until an integrality condition is met.



2.3 Application to Compact Image
Representation

Our framework is geared towards compact butlow-
error patch reconstruction. We are not concerned with
the discriminating assignment of aspecific kindof
patches to aspecificexemplar, quite unlike in a clus-
tering or classification application. In our method, after
the optimization, each training patchPi (1 ≤ i ≤ N )
gets represented as a projection onto one out of theK

exemplar orthonormal bases, which produces the least
reconstruction error, i.e. thekth exemplar is chosen
if ‖Pi − UkSikV T

k ‖2 ≤ ‖Pi − UaSiaV T
a ‖2, ∀a ∈

{1, 2, ..., K}, 1 ≤ k ≤ K. For patchPi, we denote
the corresponding ‘optimal’ projection matrix asS⋆

i =
Sik, and the corresponding exemplar as(U⋆

i , V ⋆
i ) =

(Uk, Vk). Thus the entire training set is approximated
by (1) thecommonset of basis-pairs{(Ua, Va)}, 1 ≤
a ≤ K (K ≪ N ), and (2) the optimal sparse pro-
jection matrices{S⋆

i } for each patch, with at mostT
non-zero elements each. The overall storage per image
is thus greatly reduced (see also section 3.1). Further-
more, these bases{(Ua, Va)} can now be used to en-
code patches from a new set of images that are some-
what similar to the ones existing in the training set.
However, a practical application demands that the re-
construction meet a specific error threshold on unseen
patches, and hence theL0 norm of the projection ma-
trix of the patch is adjusted dynamically in order to meet
the error. Experimental results using such a scheme are
described in the next section.

3 Experiments

We tested our algorithm for compression of the ORL
database3 and a subset of the Yale database4. For the
ORL database, we created a training set of patches of
size12 × 12 from images of 10 different people, with
10 images per person. Patches from images of the re-
maining 30 people (10 images per person) were treated
as the test set. From the training set, a total of 50 pairs
of orthonormal bases were learned using the algorithm
described in Section (2). TheT value for sparsity of
the projection matrices was set to 10 during training.
Then, we projected each test patchPi onto that exem-
plar (U⋆

i , V ⋆
i ) which produced thesparsestprojection

matrixS⋆
i that yielded an average per-pixel reconstruc-

tion error‖Pi−U⋆

i
S⋆

i
V ⋆

i

T ‖2

m1m2

of no more than some chosen
δ. Note that different test patches required differentT

values, depending upon their inherent ‘complexity’. We

3http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
4http://cvc.yale.edu/projects/yalefaces/yalefaces.html
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Figure 1. ROC curves on (a) ORL and (b)
Yale Databases. Legend- Red (1): Our
Method, Blue (2): KSVD, Green (3): Over-
complete DCT, Black (4): SSVD. (c) Orig-
inal image from ORL database. Sample
reconstructions with δ = 3× 10−4 of (c) by
using (d) Our Method [RPP: 1.785, PSNR:
35.44], (e) KSVD [RPP: 2.112, PSNR:
35.37], (f) Overcomplete DCT [RPP: 2.929,
PSNR: 35.256] and (g) SSVD [RPP: 2.69,
PSNR: 34.578].

varied the sparsity of the projection matrix (but keep-
ing its size fixed to12 × 12), by greedily nullifying the
smallest elements in the matrix, without letting the re-
construction error go aboveδ. This gave us the flexibil-
ity to adjust to patches of different complexities, with-
out altering the rank of the exemplar bases(U⋆

i , V ⋆
i ).

As any patchPi is projected onto exemplar orthonor-
mal bases that are different from those produced by its
own SVD, the projection matrices turn out to be non-
diagonal. Hence, there is no such thing as a hierarchy
of ‘singular values’ as in ordinary SVD. As a result,
we cannot resort to restricting the rank of the projec-
tion matrix (and thereby the rank of(U⋆

i , V ⋆
i )) to adjust

for patches of different complexity.This highlights an
advantage of our approach over that of algorithms that
adjust the rank of the projection matrices.Next, the
fractional parts of the values inS⋆

i were quantized us-
ing the coding scheme described below, so as to yield a
new matrixŜ⋆

i . After quantization, the PSNR for each
image was measured as10 log10

Nm1m2
P

N

i=1
‖Pi−U⋆

i
Ŝ⋆

i
V ⋆

i

T ‖2
,

and then averaged over the entire test set. The aver-
age number of bits per pixel (RPP) was calculated as in
equation (6) below for each image, and then averaged
over the whole test set. We repeated this procedure for
differentδ values from8 × 10−5 to 8 × 10−3 (range of
image intensity values was[0, 1]) and plotted an ROC
curve of average PSNR vs. average RPP. We pitted our
method against three existing approaches: (1) KSVD



algorithm from [1] using 441 unit norm dictionary vec-
tors of size 144 with the sameT value for training, (2)
Overcomplete DCT dictionary with 441 unit norm vec-
tors of size 144 created by sampling cosine waves of
various frequencies, (3) the SSVD method from [6].
In the former two methods, we computed the optimal
sparse projections of each patch onto the dictionary el-
ements using the OMP algorithm [8]. While testing the
KSVD and overcomplete DCT methods, theT values
for each patch were adjusted dynamically so as to meet
the error thresholdδ, in the same way as in our method.
The same experiment was run on a subset of the Yale
database with a value ofT = 10 (with 12 × 12 patches
from 58 images for training) and 248 images for testing.
For our method, we learned 50 pairs of exemplar bases,
and the dictionary size for KSVD and overcomplete
DCT was 441. The ROC curves for our method were su-
perior to those of other methods over a significant range
of δ, for the ORL as well as the Yale database, as seen
in Figure 3(a) and (b). Sample reconstructions for an
image from the ORL database are shown in Figure 3(c)
to (g) for δ = 3 × 10−4. For this image, our method
produced a better PSNR to RPP ratio than others.

3.1 Image Coding

We obtainS⋆
i by sparsifyingU⋆

i
T PiV

⋆
i . As U⋆

i

and V ⋆
i are orthonormal, we can show that the val-

ues in S⋆
i will always lie in the range[−12, 12] for

12 × 12 patches, if the values ofPi lie in [0, 1]. Similar
bounds exist for KSVD and overcomplete DCT based
approaches as well. We Huffman-encoded the integer
parts of the values in the{S⋆

i } matrices over the whole
image (giving us an average of someQ1 bits per entry)
and quantized the fractional parts withQ2 bits per en-
try. Thus, we needed to store the following information
per test-patch to create the compressed image: (1) the
index of the best exemplar, usinga1 bits, (2) the index
and value of each non-zero element in itsS⋆

i matrix, us-
ing a2 bits per index andQ1+Q2 bits for the value, and
(3) the number of non-zero elements per patch encoded
usinga3 bits. Hence the total number of bits per pixel
for the whole image is given by:

RPP =
N(a1 + a3) + T whole(a2 + Q1 + Q2)

M1M2
(6)

whereT whole =
∑N

i=1 ‖S⋆
i ‖0. The values ofa1, a2 and

a3 were obtained by Huffman encoding. For KSVD and
overcomplete DCT, the RPP value was computed using
the formula in [1], equation (27), with the modification
that the integer parts of the coefficients were Huffman-
encoded and the fractional parts separately quantized
(as it gave a better ROC curve for KSVD). For the

SSVD method, the RPP was calculated as in [6], sec-
tion (5).

4 Conclusions and Discussion

We have presented a new matrix-based learning-
based method for image compression using sparse pro-
jections onto exemplar bases. Our approach is radically
different from typical SVD-based compression algo-
rithms, in that we replace a low-rank reconstruction by a
sparse reconstruction. This sparsity-based approach has
two major advantages: (1) optimal reconstructions even
with a simple greedy algorithm, unlike approximation
algorithms required for computing the optimal sparse
combination of an overcomplete set of unit vectors, (2)
elegant, principled adjustment to the varying complex-
ity of different image patches. Our algorithm has been
tested with good results on two major face databases.
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