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Abstract

Low-dose tomography is highly preferred in medical procedures for its re-

duced radiation risk when compared to standard-dose Computed Tomography

(CT). However, the lower the intensity of X-rays, the higher the acquisition

noise and hence the reconstructions suffer from artefacts. A large body of work

has focussed on improving the algorithms to minimize these artefacts. In this

work, we propose two new techniques, rescaled non-linear least squares and

Poisson-Gaussian convolution, that reconstruct the underlying image making

use of an accurate or near-accurate statistical model of the noise in the projec-

tions. We also propose a reconstruction method when prior knowledge of the

underlying object is available in the form of templates. This is applicable to

longitudinal studies wherein the same object is scanned multiple times to ob-

serve the changes that evolve in it over time. Our results on 3D data show that

prior information can be used to compensate for the low-dose artefacts, and

we demonstrate that it is possible to simultaneously prevent the prior from ad-

versely biasing the reconstructions of new changes in the test object, by means

of careful selection of a weights map, subsequently followed by a method called

“re-irradiation”. Additionally, we also present a technique for automated tuning

of the regularization parameters for tomographic inversion.

Keywords: low-dose tomographic reconstruction, compressed sensing, priors,

longitudinal studies.
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1. Introduction

Reduction in radiation exposure is a critical goal, especially in CT of medical

subjects [1] and biological specimens [2]. One of the ways to reduce this radiation

is to acquire projections from fewer views. An alternate way, which is the

focus of this work, is to lower the strength (‘dose’) of X-ray beam. The CT

imaging model that incorporates the strength of X-rays, I0, is non-linear and

non-deterministic and is given by:

y ∼ Poisson(I0 exp{−Φx}) + η (1)

where η represents the zero mean additive Gaussian noise vector with a fixed

signal-independent standard deviation σ, where Φ is the sensing matrix which

represents the forward model for the tomographic projections, and x is the

underlying image representing the density values. The noise model for y is5

primarily Poisson in nature as this is a photon counting process [3], and the

added Gaussian noise is due to the thermal effects [4]. This Poisson-Gaussian

noise model is quite common in optical or X-ray based imaging systems, but we

consider it here explicitly for tomography, where it induces a non-linear inversion

problem. Specifically, the ith index (for bin number and projection angle) in the10

measurement vector y is given as: yi ∼ Poisson(I0 exp{−Φix}) + ηi, where Φi

is the ith row of the sensing matrix Φ. The major effect of low-dose acquisition

is the large magnitude (relative to the signal) of Poisson noise due to the low

strength of X-ray beam. This is because the Signal-to-Noise-Ratio (SNR) of

Poisson noise with mean κ and variance κ is given by κ√
κ

=
√
κ. Due to the15

inherently low SNR, traditional low dose reconstructions are noisy.

2. Previous Work

Modelling of Poisson noise and recovery of images also finds applications

in areas outside of CT. [5] recovered images from Poisson-noise corrupted and

blurred images using alternating direction method of multipliers(ADMM). Low-20

dose imaging and reconstruction (with dense projection view sampling) has been
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more widely studied than the few-views imaging. This is probably because the

former does not involve a strategy for selection of the set of view angles, which in

itself is an active field of research [6, 7, 8]. For long, almost all of the commercial

CT machines used FBP 1 as the standard reconstruction technique [9]. Only25

recently are the iterative techniques being deployed for commercial use [10].

The power of iterative routines was reinforced by [11], where it was proved

that iterative reconstructions from ultra-low dose 2 CT are of similar quality to

those of FBP reconstructions from low -dose CT. Here, a commercial forward

projected model-based algorithm was deployed and compared with FBP.30

Among the other iterative methods, [12] presented a technique that min-

imizes log-likelihood of the Poisson distribution and a patch-based spatially

encoded non-local penalty. [13] used a smoothness prior along with data-fidelity

constraint and solved using ADMM. In order to improve the reconstruction fur-

ther, various prior-based and learning-based methods have also been explored35

in literature. In these techniques, properties of available standard-dose CT im-

ages influence low-dose reconstruction of the test (i.e., the object which needs

to be reconstructed from the current set of new tomographic projections). One

such technique was described by [14], wherein the iterative reconstruction was

formulated as a penalized weighted least squares problem with a pre-learned40

sparsifying transform. While the weights were set manually, the sparsifying

transform was learned from a database of regular-dose CT images. Another

technique presented by [15] clustered overlapping patches of previously scanned

standard-dose CT images using Gaussian Mixture Model (GMM). The texture

of the prior was learned for each cluster. Following this, patches from a pilot45

reconstruction of the test were classified using the learned GMM and depend-

ing on the class, the corresponding texture priors were imposed on patches of

the reconstructed test image. The limitation here is– patches that correspond

1Filtered Backprojection
2Typically, low-dose imaging is performed at 120 kVp and 30 mAs beam current, and

ultra-low dose imaging is performed at 80-100 kVp and 20-30 mAs beam current settings.
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to new changes between the test and the templates will also be influenced by

some inappropriate texture of patches from prior. [16] solved a cost function50

with L1 norm for imposing similarity to a learned dictionary. They concluded

that the number of measurements needed is progressively less for each of the

four methods: Simultaneous Algebraic Reconstruction Technique (SART) [17],

Adaptive Dictionary based Statistical Iterative Reconstruction (ADSIR) [18],

Gradient Projection Barzilai Borwein (GBPP) [19] and their method (L1-DL),55

in the same order. [20] used edge-based priors to reconstruct normal-dose CT

along with Compressed Sensing (CS) sparsity prior. An iterative method [21] in

a related area (electrical impedance tomography) reconstructs using Split Breg-

man algorithm for L1 minimization. None of these methods explore optimizing

a log-likelihood based cost-function that accurately reflects the Poisson-Gaussian60

noise statistics. In addition, they do not address the issue of the prior playing

a role in the reconstruction of parts of the test that are dissimilar to the parts

of the prior, which is undesirable. In contrast, this work focuses on applying

a computationally fast global prior on only those regions of the test that are

similar to the prior.65

Given the noisy nature of tomographic projections under low radiation dosage,

there are some techniques such as [22] that first seek to denoise these projections,

possibly making use of the Poisson-Gaussian noise model, and subsequently re-

construct the final image from these cleaner projections. However, this can alter

the noise statistics as all denoising techniques introduce their own ‘method noise’70

which may introduce inconsistencies during reconstruction. Hence in this pa-

per, we directly reconstruct the image from the noisy projections making use

of the noise-model, and also use important prior information about the un-

derlying image. Lately, artificial neural networks have also been designed for

low-dose reconstruction. [23] proposed one such neural network to learn features75

of the image that is later imposed along with data-fidelity during iterative re-

construction. [24] showed that deep neural network based reconstructions are

faster than iterative reconstructions for comparable reconstruction quality. All

of these neural-network based techniques need large amount of data. This can
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be challenging in longitudinal studies where usually only a few of the previous80

scans of the same object are available. Hence, this paper focuses on analytical

iterative techniques.

We also present a technique for parameter selection. Most techniques in

literature tune the parameters omnisciently, i.e. by running the reconstruction

algorithm for a wide range of parameters and choosing the result which is closest85

to the ground truth (which is assumed to be known, as is the case with synthetic

experiments). A recent work [25] used the L-curve method in which data-

fidelity residue is plotted against regularization norm. The parameter can then

be selected based on the performance required for the application at hand.

However, this method does not utilize the available information about noise90

statistics in low-dose imaging. In this work, we use the noise-model for the

purpose of automated parameter selection.

3. Contributions

Our contributions are as follows:

1. We propose two new statistically motivated cost functions for tomographic95

reconstruction from projections contaminated with Poisson-Gaussian noise:

the Poisson-Gaussian convolution technique (Sec. 4.7), and the rescaled

non-linear LASSO (Sec. 4.6).

2. We propose a method for tomographic reconstruction from low-dose mea-

surements (i.e. where Poisson-Gaussian noise dominates) of an object x,100

which makes use of previous high-dosage reconstructions of similar objects.

This is common in longitudinal studies where the same subject is scanned

several times, for example in cancer imaging. Our technique (Sec. 5) de-

tects new changes (i.e., differences between the test and templates) directly

in the measurement space. This information is then used to adaptively105

infer weights to be applied to the previous template reconstructions and

used in the current reconstruction. These weights are designed to be low

in those regions of x where there are new structural changes, and high in
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those regions which have remained unchanged over time. The weights are

obtained using sound statistical criteria.110

3. Regions of low weight (see previous point) correspond to genuine anatom-

ical changes and such regions are often small in area. Hence, such regions

can be ‘re-irradiated’ (Sec. 5.2) so as to improve the quality of finer struc-

tures within them, at the cost of just a small added amount of radiation.

This concept of re-irradiation is a third major contribution.115

4. Lastly, we present a technique (Sec. 6) for choice of the regularization

parameter to relatively balance the contribution of the data fidelity term

and the regularization term in tomographic reconstruction (as in all the

different techniques presented in Sec. 4). To our best knowledge, there

is no prior literature on this issue, in the context of tomography. Most120

papers tune this parameter manually or assuming that the true image is

available to drive the choice of the optimal regularization parameter.

As far as the template based techniques are concerned, there is no prior

literature (to our best knowledge) which looks at non-linear tomographic recon-

struction under Poisson-Gaussian noise and makes use of past reconstructions125

in a principled way. The existing template based reconstructions assume high

dosage, or a single template [26], and most importantly do not use [18] the

very important weighting scheme, which we have proposed in section (Sec. 5-

Equation 23).

4. Reconstruction without prior130

A good low-dose reconstruction technique should make optimal use of noise

statistics as well as appropriate signal priors. Most techniques will involve min-

imizing a cost function of the following form: J(x;y,Φ) = DF (y|Φx)+λR(x).

Here the first term involves a data-fidelity cost, and may possibly (though not

necessarily) be expressed by the negative log-likelihood of y given Φ and x (i.e.,135

by − log p(y|Φ, x)). Other alternatives could include a simple least squares term

‖y−Φx‖22, or a weighted version of the same. In this section, we review several
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such fidelity functions from the literature and propose two new ones. The second

term R(x) is a regularizer (weighted by the regularization parameter λ) repre-

senting prior knowledge about x. This could be in the form of the well-known to-140

tal variation prior TV (x) =
∑
i,j

√
(x(i+ 1, j)− x(i, j))2 + (x(i, j + 1)− x(i, j))2

or penalty on the `1 norm of the coefficients θ in a sparsifying basis Ψ where

x = Ψθ. Such cost functions are minimized by iterative shrinkage and threshold-

ing algorithms such as ISTA. However, ISTA by itself is known to have sublinear

convergence (as discussed in Sec.3 of [27]). Hence, faster methods such as the145

Fast Iterative Soft Thresholding Algorithm (FISTA) [27] may be used, which

have a quadratic rate of convergence, and hence are employed for the purpose

of optimization in this paper. Below are some of the existing reconstruction

methods, or intuitive variants thereof, and two new proposed techniques.

4.1. Post-log Compressed Sensing (CS)150

A preliminary approach is to ignore the presence of Poisson noise and apply

traditional CS reconstruction after linearizing the measurements [28]. The latter

process is performed by computing the logarithm of the acquired measurements.

The linearized measurements y0 are given by y0 = − log
(
y+ε
I0

)
= ΦΨθ, where

ε is a small positive constant added to the measurements to make them all

positive and thus suitable for linearizing by applying a logarithm. For practical

purposes, if min(y) is zero or negative, ε is set to −min(y) + 0.001. The cost

function is given by

JPL−CS(θ) = ‖y0 −ΦΨθ‖22 + λ‖θ‖1, subject to Ψθ � 0 (2)

JPL−CS is minimized by l1 − ls solver [29]. This method is however not true

to the Poisson-Gaussian statistics and suffers from an inherent statistical bias

(as seen in Fig. 1) as it is a so-called ‘post-log’ method. The bias arises because

for any non-negative random variable X, we have log(E[X]) ≥ E(log(X)) as

per Jensen’s inequality. Another way of viewing this is that the noise in y0 (i.e.155

post-log) is being treated as if it were Gaussian with a constant variance (which

is not true of Poisson or Poisson-Gaussian settings). This is not true except
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Figure 1: Histogram of statistical bias in post-log methods. The bias is computed as (y0 −

ΦΨθ), where y0 refers to linearized post-log measurements. Here, the added Gaussian noise

had a mean value of 0 and σ = 0.01× average Poisson-corrupted projection value. The fact

that every bin has a different bias, but is shifted by a constant ε is problematic. This results

in poor reconstructions, as shown in a later Sec. 4.8.

at very high intensity (I0) values. The adverse effects of computing post-log

measurements is also discussed in [30].

4.2. Non-linear Least Squares with CS160

An intuitive way to modify the previous cost JPL−CS is by allowing the data

fidelity cost to mimic the non-linearity inherent in the acquisition process. The

cost function is then given by

JNL−CS = ‖y − I0e−ΦΨθ‖22 + λ‖θ‖1, subject to Ψθ � 0 (3)

The FISTA routine [27] is used for this minimization. Since the attenuation

constant of an object is never negative, a non-negativity constraint is imposed

on Ψθ. It can be seen that this cost function is non-convex in θ.

4.3. Filtered Backprojection

In this technique, the classic filtered backprojection is applied on the lin-165

earized measurements: y0 = − log y+εI0 = Φx. The slice or volume x is then re-

constructed from the linearized measurements by filtered backprojection (FBP)

in case of parallel beam projections or FeldKamp David Kress (FDK) algo-

rithm [31] in case of cone beam projections. This method is called the post-log

FBP. While it is computationally efficient, it suffers from a statistical bias for170

8



the same reasons as post-log CS, as described in 4.1. The performance of post-

log FBP has been extensively compared with iterative schemes in [32],[33],[34]

and the latter has been found to be well suited for low-dose reconstructions [35].

4.4. Negative Log Likelihood-Poisson with CS

This technique accounts for only the Poisson noise (ignoring the Gaussian

part) and searches for a solution that minimizes the negative log-likelihood [36]

of the observed measurements. Given m measurements, the likelihood of θ is

defined as

L(θ|y) := PY (Y = y|θ) =

m∏
i=1

e−aiayii
yi!

(4)

where ai = I0e
−(ΦΨθ)i . Thus, the negative log likelihood of θ is given by

− log(P (y|θ)) =
∑
i

(ai − yi log ai + log(yi!))

=
∑
i

(Ioe
−(ΦΨθ)i − yi(log(I0)− (ΦΨθ)i) + log(yi!))

(5)

The cost function combines the likelihood and the CS term as shown below:

JNLL−P (θ) =
∑
i

(Ioe
−(ΦΨθ)i−yi(log(I0)−(ΦΨθ)i)+λ‖θ‖1, subject to Ψθ � 0.

(6)

This technique has been used in [30] for ultra-low-dose CT reconstruction.175

For the case of Poisson-Gaussian noise, a shifted form of the likelihood is used,

where yi is replaced by yi + σ2 and (ΦΨθ)i is replaced by (ΦΨθ)i + σ2.

4.5. Negative Log Likelihood-Poisson-Gaussian with CS

A natural extension of the earlier method is one wherein both the Poisson

and Gaussian noise processes are accounted for in the design of the cost function.

Here, given the measurements, the solution that minimizes the sum of negative

likelihood terms of both Poisson and Gaussian noise models, is selected. Let

V denote the Poisson random variable, i.e. y = v + η. As seen earlier, the

Poisson likelihood of θ is given by

L(θ|v) := PV (V = v|θ) =

m∏
i=1

e−aiavii
vi!

(7)

9



where ai = I0e
−ΦΨx. Poisson negative log-likelihood of θ is given by

− log(PV (V = v|θ)) =
∑
i

(ai − vi log ai + log(vi!))

=
∑
i

(Ioe
−(ΦΨθ)i − vi(log(I0)− (ΦΨθ)i) + log(vi!))

(8)

Next, if the assumed Gaussian noise has a variance of σ2, then Gaussian likeli-

hood of σ is given by

L(σ|η) := PE(E = η|σ) = P ((y − v)|σ) =

m∏
i=1

e−
(yi−vi)

2

2σ2 (9)

The Gaussian negative log-likelihood of σ is given by

− log(P (y − v)|σ) =
∑
i

(yi − vi)2

2σ2
(10)

We minimize the sum of the two negative log-likelihoods:

JPG−NLL(θ, v) =
∑
i

(Ioe
−(ΦΨθ)i − vi(log I0 − (ΦΨθ)i) + log(vi!)

+
(yi − vi)2

2σ2
) + λ‖θ‖1, subject to Ψθ � 0.

(11)

θ and v are solved for alternately. Note that v is integer-valued, but a typical

gradient-based method will not restrict v to remain in the domain of integers.180

For computational convenience, v needs to be ‘softened’ to real values. Conse-

quently log(vi!) must be replaced by the gamma function.

This cost function is non-convex. However it can be shown to be bi-convex,

i.e., it is convex in θ if v is kept fixed and vice versa. Such a cost-function

was used in [37] as a method of pre-processing/denoising of projections prior185

to tomographic reconstruction. In contrast, we directly use it as a data-fidelity

term for tomographic reconstruction. This appears more principled because de-

noising of a projection induces some ‘method noise’ which cannot be accurately

modelled and which may affect subsequent reconstruction quality.

4.6. Proposed Rescaled non-linear Least Squares (RNLLS) with CS190

This new method integrates Poisson noise model into the technique described

in Sec.4.2. Since, the variance of a Poisson random variable is proportional to
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its mean, the variance of y is directly proportional to I0 exp(−ΦΨθ). Hence

the data-fidelity cost must be rescaled as shown below:

JRNLLS(θ) =

m∑
i=1

(yi − I0e(−ΦΨθ)i)2

I0e(−ΦΨθ)i
+ λ‖θ‖1, subject to Ψθ � 0 (12)

Again, the cost is minimized using FISTA solver. This technique is in some sense

similar to the Penalized Weighted Least Squares (PWLS) technique from [38]

which seeks to minimize

JPWLS(θ) = ‖W (y − ΦΨθ)‖2 + λ‖θ‖1 (13)

where W is a diagonal matrix of weights which are explicitly set (prior to

running the optimization) based on the values in y. This approach is heuristic

in nature. Rather in RNLLS, the ‘weights’ are set to be equal to the underlying

noiseless measurements, i.e. equal to I0e
(−ΦΨθ), and are explicitly inferred on

the fly. In fact, a major motivation for our proposed technique is based on the

fact that

E

(
[yi − I0 exp(−ΦΨθ)i]

2

I0 exp(−ΦΨθ)i

)
= V ar

(
[yi − I0 exp(−ΦΨθ)i]

I0 exp(−ΦΨθ)i

)
= 1 (14)

This technique can be used for the case of Poisson-Gaussian noise as well, as in

JRNLLS−PG(θ) =

m∑
i=1

(yi − I0e(−ΦΨθ)i)2

I0e(−ΦΨθ)i + σ2
+ λ‖θ‖1, subject to Ψθ � 0 (15)

We noticed that in [39], tomographic reconstruction was performed by minimiz-

ing the following cost function:

JRNLLS−PG−log(θ) =

m∑
i=1

(yi − I0e(−ΦΨθ)i)2

I0e(−ΦΨθ)i + σ2
+ 〈log(I0 exp(−ΦΨθ)i + σ2), 1〉

(16)

which is inspired by the approximation of Poisson(z) by N (z, z) and treating

it as a maximum quasi-likelihood problem. On the other hand, the proposed

method (RNLLS) can be interpreted as a weighted form of the well-known

LASSO problem [40]. We also note that the cost function for RNLLS is convex
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in the case of Poisson noise, as shown in the supplemental material. In the195

case of Poisson-Gaussian noise, our numerical simulations reveal that the cost

function is not convex in the worst case which does not often arise in practice.

However, this non-convexity did not affect the numerical results significantly.

4.7. Proposed Poisson-Gaussian Convolution

This new technique models both the Poisson and Gaussian noise. It is based

on the fact that if a random variable Q is the sum of two random variables

R and S, then the density function of Q is given by the convolution of the

density functions of R and S. This scheme has been used earlier [41] for image

restoration from linear degradations such as blur, followed by Poisson-Gaussian

corruption of the signal. In contrast, in CT, the measured signal is a non-linear

function of the underlying image (i.e. its attenuation coefficients) as per Beer’s

law. Eq. 17 refers to the Beer’s law along with the Poisson and Gaussian noise.

The measurement is the sum of a Poisson random variable and a Gaussian

random variable:

y ∼ Poisson(a) + η (17)

where a = I0e
−ΦΨθ. The ith measurement is given as: yi ∼ Poisson(ai) + ηi,

where ai = Ioe
−[ΦΨθ]i . The probability density of the ith measurement yi is

given by the following convolution:

pyi(zi) =

l=+∞∑
l=0

e−aiali
l!

1

σ
√

2π
e−

(zi−l)
2

2σ2 (18)

The running variable does not take on negative values because the Poisson

is a counting process and hence the corresponding random variable is always

positive. Because all the m measurements are independent (i.e., the noise in the

sensor at any one pixel is independent of the noise at any other pixel on it), we

have

py(z) =

i=m∏
i=1

( l=∞∑
l=0

e−aiali
l!

1

σ
√

2π
e−

(zi−l)
2

2σ2

)
(19)

The θ that maximizes the above probability needs to be computed. This is

equivalent to minimizing the negative log-likelihood of the above probability.
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Hence, our cost function Jconv is given by

Jconv(θ) = − log py(z)

=

i=m∑
i=1

− log
( l=∞∑
l=0

e−Ioe
−[ΦΨθ]i

(Ioe
−[ΦΨθ]i)l

l!

1

σ
√

2π
e−

(zi−l)
2

2σ2

)
+ λ‖θ‖1, subject to Ψθ � 0

(20)

Since l! is computationally intractable for large l, it has been approximated200

using Stirling’s approximation: l! ∼
√

2πl
(
l
e

)l
. Further, in order to make

the optimization numerically feasible, the value that l takes for a particular

measurement yi is limited to the range max(0, yi −Kσ) to yi +Kσ where K is

an integer that is usually set to 3. It is assumed here that some estimate of the

variance σ2 of the Gaussian noise is already known. This is usually feasible by205

recording the values sensed by the detector during an empty scan (without any

object), usually before the actual scan is taken.

4.8. Results on comparison of different methods

In order to compare the performance of various methods, 2D reconstruc-

tions of two datasets (Walnut[42] and Colon CT[43]) shown in Fig. 2 were com-210

puted for varying low-dose intensities. Reconstructions of two other datasets

(Pelvis[44] and Shoulder CT[45]) are shown later in the supplemental mate-

rial [46]. Following are the details of the datasets and the conditions used

for simulating low-dose imaging: The size of the image from Walnut dataset

was 156 × 156, and the size of image from Colon CT dataset was 154 × 154.215

The sum of the intensity values for the Walnut and Colon dataset images were

75 and 60 respectively. Measurements were simulated using equidistant angle

sampling based on parallel beam geometry. The Cosine filter was applied for

filtered backprojection. While the number of projection views was large (200

views for all datasets) and kept constant, the beam strength I0 was varied as220

follows: I0 = 20, 40, 80, 160, 320 and 620. Based on the intensity (attenuation

coefficients) of the images, the above values of I0 correspond to a Poisson noise-

to-signal ratio (i.e. average value of 1/
√
κ) of 25% for I0 = 20, and 4.5% for

13



I0 = 620, for both the datasets. In addition, Gaussian noise of 0 mean and vari-

ance equal to 2% of average Poisson-corrupted measurement was added to mea-225

surements. The regularization parameter λ was chosen omnisciently. Among

the methods discussed here, the ones that model both Poisson and Gaussian

noise are non-convex. A few of the methods that model Poisson noise alone are

convex and their convexity is proved in Sec.1 of [46].

(a) walnut (b) colon

Figure 2: Ground truth test slices used for comparison of low dose reconstruction techniques.

A slice from (a) [42] dataset is of size 156× 156, (b) [43] dataset is of size 154× 154

Sample reconstructions are shown in Figs. 3 and 4. The corresponding SSIM230

values of the reconstructions are shown in Fig. 5. From these plots, the following

can be inferred: the convolution method and the Poisson-Gaussian likelihood re-

constructions were comparable and gave the best reconstructions for a majority

of dose levels and datasets. The Poisson-Gaussian Likelihood and the Poisson-

only likelihood have very similar performance. However, at a theoretical level,235

the former is a more principled method, and can deal with negative-valued mea-

surements which have to be weeded out for the Poisson-only method. A shifted

Poisson model as used in [30] for Poisson-Gaussian noise does not weed out

measurements, but it matches the noise distribution for only the first two mo-

ments, and thus does not fully account for noise statistics. The non-linear least240

squares method (Sec. 4.2) performed poorly. This is because the data-fidelity

term assumes constant variance for all signal values. In reality, the variance of

Poisson noise increases as signal intensity increases. The post-log linear least

squares (Sec. 4.1) failed because the linear model fails to approximate the highly

non-linear low-dose acquisition. The post-log FBP yielded poor results, espe-245
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Convolution (Sec. 4.7)

Log-Likelihood Poisson-Gaussian (Sec. 4.5)

Rescaled Non-Linear Least Squares (Sec. 4.6)

Post-Log FBP (Sec. 4.3)

Figure 3: 2D Low-dose reconstructions of Walnut dataset for I0 = 20, 40, 80, 160, 320 and 620

(from left to right). Gaussian noise of 0 mean and variance equal to 2% of average Poisson-

corrupted measurement was added to simulate the low-dose acquisition. The SSIM values are

shown in Fig. 5.

cially at slightly higher dose levels (for example at I0 = 620 in Fig. 3). This

could be due to the absence of iterative optimization when compared to the

other methods and due to the post-log approximation. For all datasets except

Walnut (Colon as discussed here, and Pelvis, Shoulder as discussed in [46]),

the performance of rescaled non-linear least squares (RNLLS) is inbetween the250

performance of likelihood-based methods and those of all other methods. For

the Walnut dataset though, the RNLLS gives the best quality for many dosage

levels. The performance of the above methods across multiple noise instances
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Convolution (Sec. 4.7)

Log-Likelihood Poisson-Gaussian (Sec. 4.5)

Rescaled Non-Linear Least Squares (Sec. 4.6)

Post-Log FBP (Sec. 4.3)

Figure 4: 2D Low-dose reconstructions of Colon dataset for I0 = 20, 40, 80, 160, 320 and 620

(from left to right). Gaussian noise of 0 mean and variance equal to 2% of average Poisson-

corrupted measurement was added to simulate the low-dose acquisition. The SSIM values are

shown in Fig. 5.

is discussed in Sec.2.1 of [46].

To summarize, among the techniques for which no templates are used, we255

have compared our techniques to recent ones such as [37] and [30]. The technique

in [37] is the same as the one described in Sec. 4.5 and Equation 11. The

work in [30] presents post-log (similar to the non-linear CS in Sec. 4.2) and

pre-log techniques including the one in Sec. 4.4. Our rescaled nonlinear LASSO

technique from Sec. 4.6 is an improved version of the pre-log technique from [30],260

which sets the weights based on the noisy measurements in y. On the other

16



Figure 5: SSIM of the reconstructions for Walnut and Colon datasets shown in Fig. 4 for

varying values of X-ray doses. A higher SSIM implies better reconstruction. Here, the recon-

structions by Poisson-likelihood and Poisson-Gaussian likelihood methods were very similar.

Hence, their SSIM plots (blue and yellow respectively) overlap.
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hand, our technique sets these weights in a more principled fashion, as seen in

Equation 15).

5. Reconstruction with prior

As seen so far, principled data fidelity terms play a significant role in improv-265

ing the reconstruction performance. However, when the x-ray dose is less, the

performance can be further improved by incorporation of useful priors [26, 47].

These priors could be previous high-quality reconstructions of the same object

in longitudinal studies, or high-quality reconstructions of similar objects. We

refer to such prior data as templates. Here, our aim is to reconstruct an object270

from its low-dose measurements, using templates which are previous high-dose

reconstructions of the same object in a longitudinal study. However, there is

a danger of the templates overwhelming the current reconstruction and ad-

versely affecting reconstruction of new regions in the test (i.e., the object which

needs to be reconstructed from the current set of new tomographic projections)275

that are absent in any of the templates. In the case of reconstruction from

few projection views, the above problem was tackled [48] by generating a map

(known as ‘weights-map’) that shows an estimate of the regions of new changes

and their magnitude. This map was then used to modulate the influence of

the prior on the reconstruction of the test. The weights-map was computed280

based on the difference between the pilot reconstruction from the test mea-

surements (acquired from a sparse set of projection angles) and its projection

onto an eigenspace spanned by representative templates. However, in the low-

dose case, this is not a preferable method because all information about the

noise model is valid for the measurement space alone. The noise model (i.e.,285

y ∼ Poisson(I0 exp{−Φx}) + η) is not applicable to the spatial reconstructed

image domain.

Hence, in this work, we propose a new algorithm to compute the weights-

map (i.e to detect differences between the test and the templates) directly in

the measurement space. The aim is to identify those measurement bins which290
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correspond to the new changes in the test. Following are the steps followed in

order to accomplish this:

1. Let xt1 ...xtn be n high quality template volumes, i.e. template volumes

reconstructed from their standard dose measurements.

2. Simulate noiseless measurements from template volumes using the same295

I0 used for imaging the test i.e. yti = I0 exp{−Φxti}, where 1 ≤ i ≤ n.

3. Let yti,j be the tomographic projection of the ith template from the jth

angle, where 1 ≤ j ≤ Q. Let {Ej}Qj=1 represent the set of eigenspaces,

where Ej is the eigenspace built from the tomographic projections of each

of the templates in the jth angle, i.e. built from {yti,j}
n
i=1300

4. Let yj be the noisy tomographic projection of the test volume x from the

jth angle. For each j ∈ {1, ..., Q}, project yj onto Ej , i.e., compute the

eigen-coefficients αmj of the measurements yj , along the set of eigenvectors

V m
j :

αmj = (V m
j )T (yj − µmj ) (21)

where µmj denotes the mean tomographic projection of all templates in

the jth angle. The m in the suffix denotes that the eigenspace Ej :=

{µmj ,V
m
j } is computed in the measurement space (We will contrast this

with another eigen-space computed in image domain, used later in Eq. 23).

Next, compute the resultant projection ypj , i.e.,

ypj = µmj + V m
j α

m
j (22)

5. Note that if a random variable s ∼ Poisson(λ) + η, where η ∼ N (0, σ2),

then
√
s+ (3/8) + σ2 is approximately distributed asN(

√
λ+ (3/8) + σ2, 1/4).

The quality of the approximation is known to improve as λ increases. In

the absence of Gaussian noise (equivalent to the case where σ = 0), this

transform is called the Anscombe transform [49, 50], and has been widely305

used in image processing. In the presence of Gaussian noise, it is referred

to as the generalized Anscombe transform [51]. Now consider the kth bin

in the test measurement y as well as in ypj , which we shall denote as y(k)
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and ypj (k) respectively. If y(k) represents the same underlying structure

as in ypj (k), barring the effect of Poisson-Gaussian noise, i.e. if the kth310

bin in y is not part of the ‘new changes’, then the following is true:√
y + 3/8 + σ2 −

√
yp + 3/8 + σ2 ∼ N(0, 1/4).

For bins falling in the regions of change in the test (compared to the

template projections), the above hypothesis is false. The same argument

can be extended for entire segments or 2D regions.315

6. Based on the aforementioned fact, hypothesis testing is performed on√
y + 3/8 + σ2 −

√
yp + 3/8 + σ2 to detect bins corresponding to new

changes in the measurement space. We use Z-test for hypothesis test-

ing [52] on 2D patches in the measurement space (note that since the

volume is in 3D, the measurement space is in 2D for every imaging view).320

This Z test computes the probability that the given sample is likely to

be drawn from a population as specified by the null hypothesis. In this

case, the null hypothesis is that the intensity values of small-sized patches

taken from
√
y + 3/8 + σ2 −

√
yp + 3/8 + σ2 are drawn from N (0, 1/4).

The confidence level was set to 95%, i.e. for null hypothesis to be false,325

the probability p that the sample is drawn from Normal distribution must

lie in the 2.5% tail-end of the Normal distribution on either side. A lower

p-value denotes the presence of new changes i.e., presence of differences

between the test and the templates in the measurement bins.

7. Once the new changes are detected in the measurement space, filtered330

backprojection of the vectors (containing p-values) resulting from the hy-

pothesis test gives the location of the new changes (which we denote

W inlier) in the original (3D) spatial domain. The Cosine filter was used

in the filtered backprojection process.

8. The final weights-map W 3 is computed from W inlier by the following335

steps: (a) Inversion: W = 1./(1 + (W inlier).
2) where ./ and .2 indi-

3An alternate method to compute a weights-map (a simpler binary weights-map) is dis-

cussed in Sec.3 of [46]
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cate point-wise division and squaring, respectively. This step is just for

inversion so that new regions get lower weight/intensity than prior-similar

regions, (b) Linear stretching: Perform linear stretching on W so that

the weights lie between 0 and 1.340

Finally, the computed weights-map is used in a reconstruction optimization

as follows:

J(θ,α) =

m∑
i=1

(yi − I0e(−ΦΨθ)i)2

I0e(−ΦΨθ)i + σ2
+ λ1‖θ‖1 + λ2‖W (Ψθ − (µ+

n−1∑
i=1

Viαi))‖22

(23)

where the eigenvectors V and mean of the templates µ form the eigenspace

which is built from the available high-dose reconstructions of the templates.

Here, α is the vector of coefficients obtained by projecting the reconstruction

of the test onto this eigenspace created from the high-quality templates. Infor-

mation about the location and magnitude of new changes in the test is present345

in the weights-map W . Eq. 23 is solved by alternating minimization on θ and

α until convergence is reached.

5.1. Reconstruction results

The above algorithm was validated by reconstructing a 3D volume from its

low dose measurements. Fig. 6 shows a slice from each of the template and350

test volumes of the potato dataset. This dataset 4 consisted of four scans, each

4We are grateful to Dr. Andrew Kingston for facilitating data collection at the Australian

National University.

Figure 6: Potato 3D dataset: One of the slices from template volumes (first four from the

left) and test volume (extreme right). Size of each volume is [150× 150× 20].
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(a) Test (b) No prior (c) Unweighted (d) Our

reconstruction

(e) Weights W

Figure 7: Prior-based low-dose reconstruction on 3D potato dataset. (a) Slice from test

volume (b) Reconstruction using no prior (using RNLLS of Sec. 4.6); SSIM = 0.22 (c) Slice

from unweighted prior (i.e. setting W to be the identity matrix in Eq. 23) reconstruction;

SSIM = 0.42 . The new change (highlighted as red RoI) is missing. (d) Slice from weighted

prior reconstruction; SSIM = 0.69. The new change is detected here and its reconstruction

is guided by the low-dose measurements. (e) Weights map showing the location and intensity

of the new changes (darker regions indicate regions of change, coinciding with the red RoI).

All SSIM values are averaged over 14 slices of the reconstructed volume in the red RoI region.

The reconstructed volumes can be seen in [46].

acquired under high radiation dosage, of the humble potato, chosen for its sim-

plicity. Measurements from each scan consisted of cone-beam projections from

900 views, each of size 150 × 150. The corresponding size of the reconstructed

volume is 150×150×20. While the first scan was taken of the undistorted potato,355

subsequent scans were taken of the same specimen, each time after drilling a

new hole halfway into the potato. The ground truth consists of FDK reconstruc-

tions from the full set of acquired measurements from 900 equi-spaced projection

views. Low dose cone-beam measurements were simulated from full-view FDK

reconstructions of the test volume. I0 was set to 4000, a value corresponding360

to Poisson noise of 1.5%. Mean of the added Gaussian noise was 0 and σ was

set to 0.1% of the mean of Poisson-corrupted measurements. Fig 7 shows the

same slice from each of the reconstructed volumes. A patch size of [5, 5] was

used for hypothesis testing and the location of new changes (marked in red RoI

in test) was accurately detected in the weights-map as seen in Fig. 7e. The365

reconstructed volumes can be found in [46].
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5.2. Re-irradiation to improve reconstruction

Once the regions of new changes are detected by the weights map, this

information can be used to re-irradiate them with standard-dose rays and further

improve the quality of their reconstruction. Following are the steps of the re-370

irradiation process:

1. Let the X-rays passing through the new regions have their source points

denoted by S1, and the corresponding bins at the detector be denoted

by D1. Let the X-rays passing through the other regions (i.e. regions

where the test and the templates are not structurally different) have their375

source points denoted by S2, and the corresponding bins at the detector

be denoted by D2.

2. Block S2 and re-irradiate the object by passing standard-dose rays from

S1. This will generate measurements of high quality for regions of new

changes. If the regions of new change are small in area, this process incurs380

only a small cost for the extra amount of radiation, since the latter is

restricted to only specific regions.

3. In the measurement matrix captured for pilot reconstruction, replace all

the bins in set D1 by their new measurements. Therefore, the final mea-

surement matrix consists of standard-dose measurements corresponding385

to new regions of the object and low-dose measurements corresponding to

the other regions of the object.

Note that the original sampling pattern is uniform. Once the weights are ob-

tained, the sampling pattern for re-irradiation is non-uniform and dependent on

the location of the region of interest in the object. The new measurement model390

is: y ∼ Poisson(I0 exp{−Φx}) + η. Here I0 now denotes a diagonal matrix (as

opposed to a scalar quantity as in Eq. 1) with I0(k, k) denoting the strength of

the X-ray incident on the kth bin of the sensor. Fig. 8 shows the templates and

test images, and Fig. 9 shows the reconstructions and PSNR values illustrating

the benefit of re-irradiation. Note that these reconstructions are from 360 (i.e.395

dense) equi-spaced parallel-beam projections. The new changes within the RoI
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are reconstructed very well after they are re-imaged with standard-dose X-rays.

This is also reinforced by results on the sprouts data (Fig. 10), shown in Fig. 11.

The selection of bins for re-irradiation and the choice of new X-ray intensity can

also be chosen in a supervised manner by the physician or scientist based on400

the particular clinical or non-clinical setting.

Figure 8: Dataset for illustrating re-irradiation: Templates (first four from the left) and test

(extreme right). Size of each slice is (310 × 310). The RoI shows the region of difference

between the test and the templates. (Also see Fig. 9.)

(a) Test (b) Pilot (c) weights W (d) Weighted

Prior

(e) After

re-irradiation

Figure 9: Improving reconstruction by re-irradiation in Okra 2D dataset (from Fig. 8).

Measurements acquired were 360 equispaced parallel-beam projections. (a) test (b) pilot

(PSNR=41.0 in the RoI, relative MSE = 0.24 in the RoI, relative MSE for full image =

0.40) (c) weights-map; the lower the intensity, the higher the magnitude of new changes. (d)

weighted prior reconstruction (PSNR=49.0 in the RoI, relative MSE = 0.16 in the RoI, rela-

tive MSE for full image = 0.24); the quality of reconstruction of new regions is poor because

it is guided by the measurements alone. (e) re-irradiated reconstruction (PSNR=64.7 in the

RoI, relative MSE = 0.07 in the RoI, relative MSE for full image = 0.30); new measurements

with twice the earlier low-dose X-ray intensity at 20% of the bins enable better reconstruction

of new regions (as shown in RoI).
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Figure 10: Sprouts Dataset for illustrating re-irradiation: Templates (first row) and test

(second row). Size of each slice is (156×156). The RoI shows the region of difference between

the test and the templates. (Also see Fig. 11.)

(a) Test (b) Pilot (c) weights W (d) Weighted

Prior

(e) After

re-irradiation

Figure 11: Improving reconstruction by re-irradiation in Sprouts 2D dataset (from Fig. 10).

Measurements acquired were 350 equispaced parallel-beam projections. (a) test (b) pilot

(PSNR= 39.3 in the RoI, relative MSE = 0.33 in the RoI, relative MSE for full image =

0.25) (c) weights-map; the lower the intensity, the higher the magnitude of new changes. (d)

weighted prior reconstruction (PSNR=34.6 in the RoI, relative MSE = 0.42 in the RoI, relative

MSE for full image = 0.22); the quality of reconstruction of new regions is poor because it is

guided by the measurements alone. (e) re-irradiated reconstruction (PSNR=47.8 in the RoI,

relative MSE = 0.22 in the RoI, relative MSE for full image = 0.17); new measurements with

8 times the earlier low-dose X-ray intensity at 25% of the bins enable better reconstruction

of new regions (as shown in RoI).

6. Tuning of parameters

Two parameters were used in the techniques presented in this chapter: λ1:

weight for CS term and λ2: weight for object-prior. Below are few of the ways

to select these parameters.405

6.1. Selection of weightage for CS term

In a large body of work on tomographic reconstruction [14], [53], the regu-

larization parameter λ1 in Eq. 23 is chosen in an “omniscient fashion”. That
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is, the optimization problem is solved separately for many different values of

λ1. The particular result which yields the least MSE with respect to a ground410

truth image is chosen to be the correct result. Such a method requires knowl-

edge of the ground truth, and hence is infeasible in practice. Other alternatives

include visual inspection or cross-validation. However none of these techniques

are fully practical. Instead, we propose a method to choose λ1 based on sound

statistical principles pertaining to the Poisson or the Poisson-Gaussian noise415

model. The method is shown here in conjunction with the rescaled non-linear

least squares method, however in principle, it can be used with any data fi-

delity term. For the Poisson-Gaussian noise model, the cost function is given

by J(θ) =
∑m
i=1

(yi−I0e(−ΦΨθ)i )2

I0e(−ΦΨθ)i+σ2 + λ1‖θ‖1.

Let m denote the total number of bins, θopt the reconstruction with optimal

λ1 = λ1 opt. The measurements were based on equidistant angle sampling. Let

ai , Ioe
−[ΦΨθopt]i . Clearly, we have V ar(yi) = ai + σ2. Hence we can state

that E[
∑m
i=1(yi − ai)2/(ai + σ2)] = m. Furthermore, our simulations (Fig. 12)

have shown that

E
(
‖(y − I0e−ΦΨθopt)�

√
I0e−ΦΨθopt + σ2‖2

)
≈
√
m (24)

where� denotes element-wise division. We also observed that the variance of the

quantity ‖(y − I0e−ΦΨθopt)�
√
I0e−ΦΨθopt + σ2‖2 is very small. This is illus-

trated in Fig. 12, which shows that the variance ofR =

√∑m
i=1

(yi − I0e−[ΦΨθ]i)2

σ2 + I0e−[ΦΨθ]i

is very small compared to its mean. The expected value of R varies with the

number of measurements (is equal to
√
m), and is independent of I0. Hence we

conclude that the quantity R should be as close to
√
m as possible. Therefore,

we consider

D = abs
(∥∥(y − I0e−ΦΨθopt)�

√
(I0e−ΦΨθopt + σ2)

∥∥
2
−
√
m
)

(25)

and observe how D and relative MSE of reconstructions vary for different values420

of λ1. At a value of λ1 close to the optimal one, D must achieve its minimum.

The test image (154×154) and the reconstructions are shown in Figure 14. For

these reconstructions, 410 projection views were chosen and Gaussian noise =

26



(a) (b)

(c) (d)

Figure 12: Mean and variance of the data-fidelity term R =

√∑m
i=1

(yi − I0e−[ΦΨθ]i )2

σ2 + I0e−[ΦΨθ]i
for

different number of measurements (projection views) and beam strength I0. (a) Expected

value of R exactly coincides with
√
m, (b) Variance of R is insignificant for any number of

measurements, (c) mean of R is approximately independent of beam strength and very close

to
√
m (here m was 8649), and (d) Variance of R is insignificant for all I0 values.

0.3% was added to the measurements. The dose of X-rays resulted in a Poisson

NSR of 0.018. As shown in Fig. 13, the λ1 for which D and relative MSE are425

minimum, are very close. In a real-life setting, when relative MSE cannot be

computed because of absence of ground-truth, a brute force search needs to be

done followed by selecting the value of λ1 that minimizes D.

6.2. Selection of weightage for object-prior term

The weightage for the object prior, λ2 term needs to be chosen omnisciently430

for every dataset. We observed that for a large range of values from 700 to 1200
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Figure 13: A method to choose the parameter λ1 in low-dose reconstruction: We expect D to

be minimum at approximately the same λ1 for which relative MSE is minimum. Here, the λ1

for which D and relative MSE are minimum are very close. Refer to Fig. 14 to observe the

reconstruction results for different values of λ1.

for okra dataset and from 400 to 700 for sprouts dataset, there was no significant

effect on the reconstructions. Lower values indicate that the reconstructions are

primarily guided by the measurements, and higher values will strengthen the

effect of the prior.435

7. Conclusions

In the low-dose CT imaging regime, the noise in the measurements becomes

significant and needs to be accounted for during the reconstruction. Two new

techniques: Poisson-Gaussian convolution and rescaled non-linear least squares

(RNLLS) were presented and extensively compared with many of the existing440

methods. RNLLS was further used in low-dose reconstruction for longitudinal

studies to specifically detect new regions in the test and simultaneously reduce

noise in the other reconstructed regions. The results were validated on both 2D

and 3D biological data. We demonstrated that the reconstructions of the regions

of new changes can be significantly improved by re-irradiating these specific445

regions by standard-dose X-rays. Further, different methods for choosing the

parameters λ1, λ2 were also discussed, which has not been dealt with in the

literature. Another interesting avenue of research is to consider the case of
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Test λ1 = 0.0001 λ1 = 0.0010 λ1 = 0.01 λ1 = 0.10

λ1 = 1.00 λ1 = 1.10 λ1 = 1.20 λ1 = 1.30 λ1 = 1.400

λ1 = 2.00 λ1 = 5.00 λ1 = 10.0 λ1 = 15.0 λ1 = 20.0

Figure 14: Colon test data and its reconstructions for different values of λ1. D is minimum

for λ1 = 1.2, shown in green, with a relative MSE of 0.1691. The reconstruction for λ1 = 2,

shown in red, gives the minimum relative MSE of 0.1501.

tomographic reconstruction from a sparse set of projections (as opposed to the

dense angle sampling considered in this paper), all acquired under low dosage of450

radiation. Our technique can possibly be extended to the case where templates

of a similar class of objects are available, as against previous scans of the same

object. This may further increase the utility of the technique in clinical settings.
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