
LOW BIT-RATE COMPRESSION OF VIDEO AND LIGHT-FIELD DATA USING CODED
SNAPSHOTS AND LEARNED DICTIONARIES

Chandrajit Choudhury††, Yellamraju Tarun††∗, Ajit Rajwade†, and Subhasis Chaudhuri††

††Dept. of Electrical Engineering and †Dept. of Computer Science & Engineering, IIT Bombay, Mumbai, India
††{chandrajit,ytarun,sc}@ee.iitb.ac.in,†ajitvr@cse.iitb.ac.in

ABSTRACT

The method of coded snapshots has been proposed recently
for compressive acquisition of video data to overcome the
space-time trade-of inherent in video acquisition. The method
involves modulation of the light entering the video camera at
different time instants during the exposure period by means
of a different and randomly generated code pattern at each
of those time instants, followed by integration across time,
leading to a single coded snapshot image. Given this image
and knowledge of the random codes, it is possible to recon-
struct the underlying video frames - by means of sparse cod-
ing on a suitably learned dictionary. In this paper, we ap-
ply a modified version of this idea, proposed formerly in the
compressive sensing literature, to the task of compression of
videos and light-field data. At low bit rates, we demonstrate
markedly better reconstruction fidelity for the same storage
costs, in comparison to JPEG2000 and MPEG-4 (H.264) on
light-field and video data respectively. Our technique can
cope with overlapping blocks of image data, thereby leading
to suppression of block artifacts.

1. INTRODUCTION

Image/video compression of videos is a mature field, with
standards such as JPEG, JPEG2000 and MPEG-4 which ex-
ploit the fact that small blocks from images/video have a
sparse/compressible representation in an orthonormal basis,
eg, the discrete cosine transform (DCT) or wavelet transform.
These bases are not data-specific. Recent advances in dic-
tionary learning and sparse representation allow inference
of data-specific dictionaries. PCA outputs a data-specific
orthonormal basis for the most compact representation of a
set of data-points. Techniques such as vector quantization
along with geometric feature extraction have shown promis-
ing results for compression of some image classes (eg faces)
at low-bit rates [1]. However, an overcomplete dictionary
(where the number of vectors exceeds the dimensionality of
each vector) [2] is typically known to allow for much sparser
representation. This property has seen many applications in

∗Chandrajit Choudhury and Yellamraju Tarun are authors with equal con-
tribution.

image processing [3], but applications to data compression
have been much fewer [2], [4].

Compressive sensing is a paradigm for acquisition of data
directly in a compressed format, as against the conventional
concept of complete acquisition and subsequent compres-
sion. Conversion of the compressive measurements to the
conventional formats requires solving an under-determined
system of equations. Compressive sensing theory states that
this system is in fact well-posed under the conditions that (1)
the underlying data have a sparse/compressible representa-
tion in some orthonormal basis, and (2) the forward model of
the measuring device is incoherent (in a precise mathemati-
cal sense) with the chosen orthonormal basis [5]. The basic
theory has also been extended to overcomplete dictionaries
[6]. Examples of actual compressive cameras include the
Rice Single Pixel Camera [7], and video cameras using coded
snapshot images [8].

Here, we apply ideas inspired from [8] to compression
of video and light-field data. During encoding, we modu-
late each image from a group of images (some T consecutive
time-frames for video, or images with T consecutive shifts of
the camera for light-field data) with a known but randomly
generated code, followed by an addition operation to gener-
ate a single coded snapshot image as shown in Figure 1. The
decoder performs the task of converting these coded snap-
shots back to regular video frames or light-field images, given
the codes used for encoding and an overcomplete dictionary
which can sparsely represent small blocks of data. This dic-
tionary is learned offline from a representative training set. A
major factor that decides the compression rate is T . Since
most videos contain more than T images, the encoded data
essentially consists of a sequence of coded snapshot images
which can be MPEG-4 encoded. In the case of light-field
data, each coded snapshot can be encoded using JPEG2000.
Thus, our method is specifically designed to combine coded
snapshots with existing compression standards, but in a way
that avoids blocking artifacts during reconstruction (as will be
discussed in Section 3).

In this paper, Section 2 describes the video compressive
sensing architecture from [8]. Section 3 describes our encoder
and decoder for video/light-field data. Section 4 presents ex-
perimental results, followed by a discussion in Section 5.

2. VIDEO COMPRESSIVE SENSING USING CODED
SNAPSHOTS

Consider the video I(x, y, t) as a space-time volume of size
N1×N2×NT withNT frames each of sizeN1×N2. A con-
ventional video camera separately acquires each frame from
this space-time volume. However, the camera from [8] seeks
a T -fold gain in temporal resolution, in the following manner.
Let C(x, y, t) be a function that modulates each pixel (x, y)
at time t. Consider a captured snapshot image of the form

Is(x, y) =

T∑
t=1

I(x, y, t) · C(x, y, t). (1)

For a conventional camera, we have ∀(x, y, t), C(x, y, t) = 1,
however in [8], we have ∀(x, y, t), C(x, y, t) ∈ {0, 1}. We
now need to estimate the T frames of I given C and Is. As
the system is under-determined, one imposes the constraint
that small blocks from I are sparse in a known dictionary.
We use an overcomplete dictionary for sparser representation.
Consider a p×p×T block from I reshaped to produce a p2T×
1 vector q. We express q as q = Dθ =

∑K
k=1 Dkθk, where

D is a dictionary matrix of size p2T×K with Dk being the kth

column, and θ is a vector of K dictionary coefficients, which
we assume to be sparse, i.e. ‖θ‖0 � K. Now, any p×p patch
from the snapshot image Is (reshaped to form a p2× 1 vector
qs) can be expressed as qs = Csq = CsDθ where Cs is a
matrix of size p2×p2T representing modulation byC(x, y, t)
for suitable (x, y, t). The inversion problem basically requires
the estimation of θ from qs, D and Cs, by solving:

minθ‖θ‖0 such that ‖qs −CsDθ‖22 ≤ ε (2)

for a small-valued ε. This optimization problem is known to
be NP-hard and the solution uses approximation algorithms
such as orthogonal matching pursuit (OMP) or basis pursuit
(BP). The dictionary D is learned offline on a representative
training set of similarly sized blocks, using the well-known
dictionary learning technique K-SVD [2]. The reader is
referred to [8] for details of the hardware implementation.
However, we emphasize here that code C is time-dependent,
which is critically important for successful reconstruction,
given the incoherence conditions required for success of the
reconstruction algorithms for a sparsifying dictionary [5].

In terms of actual hardware in [8], the modulation of
I(x, y, t) with C(x, y, t) is performed by means of a liquid
crystal on silicon (LCoS) device which basically consists of a
2D array of tiny mirrors. These mirrors are randomly turned
on (code 1) or off (code 0) with some additional constraints
such as the bump length (total ‘on’ time). The code changes
T times during one single exposure period of the video cam-
era, as the LCoS device operates at a rate that is T times the
frame rate of the video camera. The modulated image thus
produced strikes a CCD array. This occurs T times during
a single exposure period, and the CCD array performs an

Fig. 1. Sample coded snapshot images for Video (left) and
Light-field data (right). Zoom in the pdf for clearer view of
the coded blur artifacts over edges and moving objects.

addition of these images to produce the final coded snapshot
image Is. In effect, such a video camera acquires a stream
of coded snapshot images, each corresponding to the addi-
tion of T consecutive video frames. The randomly generated
codes are time-dependent, which is critically important for
successful recovery of the underlying videos from the snap-
shot sequence, given the incoherence conditions required for
success of the reconstruction algorithms given a sparsifying
dictionary [5].

3. PROPOSED SCHEME: ENCODER/DECODER

Video: Given T consecutive frames from a video, a coded
snapshot image Is is computed as follows, with a subtle dif-
ference from Eqn 1:

Is(x, y) =

T∑
t=1

I(x, y, t) · C(x, y, t)/
T∑
t=1

C(x, y, t). (3)

The original architecture requires binary codes, but we have
used C(x, y, t) ∈ [0, 1] as ours is a video compression
scheme. It is clear from Figure 1, that the coded snapshot
images carry information about the structural details of the
scene and the object motion. Hence, a sequence of coded
snapshot images (each corresponding to the addition of T
modulated consecutive frames from the original video) can
be encoded using MPEG-4 at some chosen quality factor
(which affects the bit rate). We shall refer to such a video as a
‘MPEG-4-encoded coded snapshot sequence’ (MECSS). The
MECSS file contains a sequence of intensity-quantized coded
snapshot images. From each snapshot image, the decoder
needs to recover the original sequence of T video frames. For
this, each snapshot image is divided into overlapping blocks,
and the corresponding block from the original video is recon-
structed by finding θ from Eqn. 2 given D. Since the blocks
are overlapping, there will be multiple values produced at
most pixel locations. These values are averaged to yield a
smoother reconstruction, avoiding block-seam artifacts.

The slightly different method of computing snapshots in
Eqn 3 (as compared to Eqn 1) yields significant advantages
for videos with moving foregrounds superimposed on static

backgrounds, a common scenario in surveillance videos. It
can be seen that for pixel (x, y) located in the static back-
ground, we now have ∀t, Is(x, y) = I(x, y, t), which ob-
viates the need to ‘reconstruct’ patches lying entirely in the
static background. Therefore, the reconstruction algorithm
based on inference of θ needs to focus only on patches ly-
ing entirely in the foreground or straddling the foreground-
background boundary. This leads to significant speedup of
the reconstruction and also slightly improves reconstruction
accuracy. In our experiments, we marked a pixel (x, y) in
snapshot Is1 as foreground or background based on the fol-
lowing rule:

|Is1(x, y)− Is2(x, y)| ≥ τ → foreground pixel (4)
|Is1(x, y)− Is2(x, y)| < τ → background pixel

where Is1 and Is2 are two consecutive snapshots in the snap-
shot sequence and τ is a threshold. While our method has a
special advantage for surveillance videos, it must be empha-
sized though, that it is in no way limited to processing videos
with this feature.

Light-field Data: A set of light-field images consists
of images acquired by a camera from consecutive, closely
spaced viewpoints. While the individual images can be com-
pressed independently, say using JPEG2000, it is desirable
to make use of the tremendous inter-image redundancy in
such sets of images. This broad idea has been used ear-
lier in [9] (disparity compensation in a 4D wavelet coding
framework),[10] (ideas from video compression), [11] (ge-
ometrical information about camera viewpoints) and [12]
(constructing view-dependent models of a representative im-
age from the entire set). The idea of dictionary learning has
not been applied for this task, to the best of our knowledge.
Here, we generate a coded snapshot from some T images
at consecutive viewpoints, all related to each other by spa-
tial shifts. The coded snapshot image is JPEG2000 encoded
at some chosen quality factor. Note that this snapshot is
intensity-quantized. From each such snapshot image, the de-
coder needs to recover the original set of light-field images.
For this, each snapshot image is divided into overlapping
blocks, and each block is reconstructed by finding θ from
Eqn. 2 given D. Since the blocks are overlapping, block-
seam artifacts are avoided during reconstruction.
In case of both video as well as light-field compression, we
are able to avoid block seam artifacts. This was possible
only because we are storing coded snapshot images to form
our encoded files, and not dictionary coefficients unlike the
methods in [2], [4]. Note that MPEG-4 as well as JPEG2000
divide the image into non-overlapping blocks, however we
are still free to choose overlapping patches from the coded
snapshot images for the purpose of reconstruction. Also, it
should be noted that our techniques are specifically designed
to work in conjunction with MPEG-4 and JPEG2000.

4. EXPERIMENTAL RESULTS

For the video data, we performed training on all overlapping
spatio-temporal patches of size 6× 6× T from spatially and
temporally cropped versions of 10 videos (size 268 × 384,
frame rate 25 fps) from the well-known CAVIAR Dataset1.
This dataset contains videos of people moving around in de-
partmental stores, i.e. these videos consist of a static back-
ground and a relatively sparse moving foreground portion.
For the purpose of training alone, the videos were spatially
cropped to size 150 × 200, to focus on the foreground por-
tions. In each video, 75 consecutive frames (total duration =
3 sec per video) containing significant motion were taken as
part of the training set. The dictionary D was learned using
KSVD [2], and had a size of 36T×K whereK = 5400 which
is 50 × 36T for T = 3. Separate dictionaries were learned
for four different values of T ∈ {3, 5, 7, 9}. The number of
patches on which D was learned, was between 250,000 for
T = 9 to 800,000 for T = 3. The video compression algo-
rithm was tested on a 3 second portion of 13 different videos
without spatial cropping, including 10 videos from the train-
ing set and 8 other videos from the same dataset which were
not part of the training set. The threshold τ for foreground-
background segmentation in Eqn 5 was set to 5 in our exper-
iments (other nearby values of τ produced very similar re-
sults).

We compared our technique to MPEG-4 (H.264 coding)
on the original (uncoded) videos, by plotting ROC curves of
PSNR versus bit rate measured in kbps (the videos available
from the database were treated as the reference for measur-
ing PSNR). For MPEG-4 encoding, we used the MATLAB
(version 2013a) VideoWriter class with default parameters
on a Windows 7 machine. The bit rate of the video was
calculated as #storage bits per pixel (bpp) × #pixels per
frame × video frame rate, where bpp = total file size in
bits / (#pixels per frame × #frames). For any given value
of T , we generated sample-points for different bit-rates of
the MECSS (MPEG-4-encoded coded snapshot sequence)
by varying the quality factor of MPEG-4 from Q = 10 to
Q = 100 in steps of 10. Different Q values produce var-
ied levels of quantization, however we set the value of ε in
Equation 2 to 0.1 always (this did not adversely affect recon-
struction quality). The quality factor of the uncoded MPEG-4
videos was varied from Q ∈ {0, 1, 2, 3, 4, 5 : 5 : 100}. The
ROC curves are plotted in Figure 2. In many cases, more
than one Q value gave similar values of PSNR and bit-rate.
As can be observed from the plots, our technique sometimes
outperforms MPEG-4 by as much as 2 dB in the low bit-rate
regime, i.e. around 100 kbps. We observed this especially
in cases where the object motion was significant. The recon-
structed videos have a PSNR around 30-34 dB and acceptable
visual quality. Moreover, at low bit rates (Q ≤ 5), MPEG-4
encoded videos exhibit distinct blocking artifacts especially

1http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/

Fig. 2. ROC curves for our compression algorithm for 8 dif-
ferent videos, each for T ∈ {3, 5, 7, 9} in comparison with
MPEG-4 using H.264 encoder on a Windows 7 machine.
Color codes: MPEG-4, H.264 (black); T = 3, 5, 7, 9 is blue,
red, green and cyan respectively.

around moving objects. These artifacts are absent in videos
reconstructed by our method. In Figure 3, we show a sam-
ple reconstruction of four frames from a test video (which
was not part of the training set for dictionary learning) using
T = 7, in comparison with (a) the original frames and (b)
MPEG-4 encoded frames at Q = 1 (file size 29.3 KB). The
file size of the MECSS was 20.3 KB. The reconstructions
reveal that the motion of the objects is faithfully recon-
structed. The complete set of video reconstructions is avail-
able at http://www.cse.iitb.ac.in/˜ajitvr/
MMSP2015_Supplemental/Video (you may also see
the file Video.rar inside the folder). In this supplemental
material, we present results for each video from the CAVIAR
dataset, for each different value of T , as follows: the original
video, the reconstruction result for our method and the MPEG
encoded result at approximately equal bit rates, as well as the
MECSS are all displayed side by side for ready comparison
in the form of one large mp4 file. We also tested the same dic-
tionary on two unrelated videos - the Miss America sequence
and the Foreman sequence. ROC curves for both sequences
and reconstruction results for Foreman are shown in Figures
4. While the reconstructions are satisfactory, we believe that
related training and test data would have produced better
reconstructions.

For light-field data, we performed experiments with four

Fig. 3. In each row, leftmost: result of our technique for T =
7, middle: original frame, right: video frame when the video
was coded with Q = 1, i.e. same bit rate as MECSS for
T = 7. Zoom in pdf file for a better view - notice block-seam
aritfacts for MPEG-4 encoding at low bit rates.

image sets from the Stanford Light-field Archive2: lego-truck,
bunny, stone, chess. Each image set consisted of 256 images
in different poses (in the form of a 16 × 16 array, based on
camera shifts in the X and Y directions). Each image had a
size of 996 × 1296, except for stone whose images had size
1020 × 756. We created a singe coded snapshot for each
value of T ∈ {16, 36, 64} with a random binary code, and
learned a separate dictionary for each value of T on non-
overlapping patches of size 12 × 12 × T . The training was
performed on the lego-truck image set. The number of dic-
tionary columns was set to around 3000, 5000 and 12,500 for
T = 16, T = 36, T = 64 respectively. For T = 16, the
training set consisted of images corresponding to the the first
16 horizontal shifts with zero vertical shift. For T = 36 and
T = 64, the training set consisted of images corresponding
to a 6 × 6 and 8 × 8 subarray of the lowest horizontal and
vertical shifts respectively. The compression capabilities of
the learned dictionary were tested by reconstructing each of
the four sequences from its coded snapshot image, at every
different value of T . For testing, the exact same set of hor-
izontal/vertical shifts were selected as those chosen for the
training set for that particular T . We compared our compres-
sion scheme to JPEG2000 and JPEG, by plotting ROC curves
of PSNR versus bpp (average number of bits per pixel). For

2http://lightfield.stanford.edu/

any given value of T , we generated sample-points for differ-
ent bpp values by varying the compression ratio of JPEG2000
or JPEG (to store the coded snapshot images).

The ROC curves are plotted in Figure 5 (top row). For
the stone dataset, at bpp of 0.005, our technique outper-
forms JPEG2000 by 2.58 dB for T = 16, by 1.8 dB for
T = 36 and 0.8 dB for T = 64. The PSNR of the recon-
structed image set is around 27 dB, an acceptable quality
level. At bpp > 0.025, we observe that JPEG2000 begins
to outperform our method. However, our method outper-
forms JPEG up to bpp around 0.13. We show a sample
reconstruction of 4 frames each from the bunny and stone
datasets compared to the original frames, in Figure 5 for
T = 36 and quality factor of 100 for JPEG-encoding of the
coded snapshot. The complete set of reconstructions is avail-
able at http://www.cse.iitb.ac.in/˜ajitvr/
MMSP2015_Supplemental/Lightfield (you may
see the file Lightfield.rar inside the folder).

More Observations: The reader may have noticed that
we have experimented with much larger values of T for the
light-field data in comparison to the video data. This is be-
cause our video datasets contained fast objects with different
motion, whereas the motion between consecutive images of
the light-field dataset was much smaller and more ‘global’.
We have observed that it is difficult to accurately reconstruct
sequences with large motion, if the value of T was large.
From Figures 2, 4 and 5, one can observe that our tech-
nique allows us to reach far lower bit-rates than MPEG-4 or
JPEG2000 allows for upto quality factor of 0. This is accom-
plished by increasing the value of T , albeit at a possible loss
of PSNR.

Note that for video as well as light-field data, we are pre-
senting comparative results at low bit-rates. This is due to the
fact that representations using learned dictionaries are inher-
ently lossy, even more so under sensor noise. Hence at higher
bit-rates, our method is outperformed by MPEG/JPEG2000
even though it performs better at lower bit-rates.

5. CONCLUSION

We have presented a compression scheme that combines
coded snapshots created by addition of randomly modulated
video frames or light-field images, with existing standards
such as MPEG-4 or JPEG 2000, and uses the concept of
learned dictionaries. Our method outperforms the original
schemes at low bit rates, with visually acceptable reconstruc-
tions. Our method is especially suitable for compression of
large databases of similar or related images/videos, or for
surveillance videos where the degree of inter-frame redun-
dancy is high. The dictionary can be learned from a subset
of images of the same database, and has negligible storage
or transmission costs. Directions for future work include
(a) improving the quality of reconstruction at moving object
boundaries by taking into account temporal redundancy be-

tween successive coded snapshots, (b) increasing the speed
of the reconstruction algorithm, and (c) exploring efficient
methods to judge optimal T values for creating the coded
snapshots based on the content of the underlying data.

6. REFERENCES

[1] M. Elad, R. Goldenberg, and R. Kimmel, “Low bit-rate
compression of facial images,” IEEE Trans. on Image
Processing, vol. 16, no. 9, pp. 2379–2383, 2007.

[2] M. Aharon, M. Elad, and A. Bruckstein, “KSVD: An
algorithm for designing over-complete dictionaries for
sparse representation,” IEEE Trans. on Signal Process-
ing, vol. 54, no. 11, pp. 4311–4322, 2006.

[3] M. Elad and M. Aharon, “Image denoising via sparse
and redundant representations over learned dictionar-
ies,” IEEE Trans. on Image Processing, vol. 15, no. 12,
pp. 3736–3745, 2006.

[4] O. Bryt and M. Elad, “Compression of facial images
using the k-svd algorithm,” Journal of Visual Commu-
nication and Image Representation, vol. 19, no. 4, pp.
270–282, 2008.

[5] E. Candes and M. Wakin, “An introduction to com-
pressive sampling,” IEEE Signal Processing Magazine,
2008.

[6] E. Candes, Y. Eldar, D. Needell, and P. Randall, “Com-
pressed sensing with coherent and redundant dictionar-
ies,” Applied and Computational Harmonic Analysis,
vol. 31, no. 1, pp. 59–73, 2011.

[7] M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun,
K. Kelly, and R. Baraniuk, “Single pixel imaging via
compressive sampling,” IEEE Signal Processing Maga-
zine, 2008.

[8] Y. Hitomi, J. Gu, M. Gupta, T. Mitsunaga, and S. Nayar,
“Video from a single coded exposure photograph using
a learned over-complete dictionary,” in ICCV, 2011.

[9] B. Girod, C.-L. Chang, P. Ramanathan, and X. Zhu,
“Light-field compression using disparity-compensated
lifting,” in ICME, 2003, pp. 373–376.

[10] M. Magnor and B. Girod, “Data compression for light-
field rendering,” IEEE Trans. on Circuits and Systems
for Video Technology, vol. 10, pp. 338–343, 2000.

[11] N. Gehrig and P. L. Dragotti, “Distributed compression
of the plenoptic function,” in ICIP, 2004, pp. 529–532.

[12] Y. Taguchi and T. Naemura, “View-dependent coding of
light-fields based on free-viewpoint image synthesis,” in
ICIP, 2006, pp. 509–512.

Fig. 4. Top Row: ROC curves for our compression algorithm
for T ∈ {3, 5, 7, 9} compared to MPEG-4 using H.264 en-
coder on a Windows machine for Foreman (left) and Miss
America (right) sequences. Color codes: MPEG-4 in black,
T = 3, 5, 7, 9 in blue, red, green and cyan respectively. Bot-
tom Two Rows: Reconstruction of 4 frames of Foreman se-
quence at T = 7 with Q = 20 for MECSS (1st and 4th im-
age), alongside the corresponding frame of the original video
(2nd and 5th image) and lower quality MPEG-4 video at the
same bit rate as MECSS for T = 7 (3rd and 6th image). Zoom
in pdf file for a better view - notice block-seam aritfacts for
MPEG-4 encoding at low bit rates.

Fig. 5. Row 1 Left: ROC curves for our compression al-
gorithm, JPEG and JPEG-2000 for the stone data for T ∈
{16, 36, 64}. Color codes: JPEG2000 (cyan), JPEG (bright
green); T = 16, 36, 64 with snapshots coded in JPEG2000:
blue, dark green, red respectively; T = 16, 36, 64 with snap-
shots coded in JPEG: purple, yellow, black respectively. Mid-
dle: An expanded version of the left image for a smaller bpp
range. Right: The ROC curve for the bunny image set com-
paring our method for T = 16 with JPEG2000. Row 2: Re-
construction of 4 images from the bunny image set at T = 16
alongside the JPEG2000 image at bpp 0.0068 - presented in
pairs (images reconstructed with our method on the left fol-
lowed by JPEG2000 to its right). Row 3: for the stone image
set with T = 36, bpp = 0.0068. Zoom in pdf for more detail.

